Message ID | 1420723339-30735-4-git-send-email-mikko.perttunen@kapsi.fi (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
On Thu, Jan 08, 2015 at 03:22:06PM +0200, Mikko Perttunen wrote: > From: Tuomas Tynkkynen <ttynkkynen@nvidia.com> > > With closed loop support, the clock rate of the DFLL can be adjusted. > > The oscillator itself in the DFLL is a free-running oscillator whose > rate is directly determined the supply voltage. However, the DFLL > module contains logic to compare the DFLL output rate to a fixed > reference clock (51 MHz) and make a decision to either lower or raise > the DFLL supply voltage. The DFLL module can then autonomously change > the supply voltage by communicating with an off-chip PMIC via either I2C > or PWM signals. This driver currently supports only I2C. > > Signed-off-by: Tuomas Tynkkynen <ttynkkynen@nvidia.com> > Signed-off-by: Mikko Perttunen <mikko.perttunen@kapsi.fi> Acked-By: pdeschrijver@nvidia.com > --- > drivers/clk/tegra/clk-dfll.c | 666 ++++++++++++++++++++++++++++++++++++++++++- > 1 file changed, 663 insertions(+), 3 deletions(-) > > diff --git a/drivers/clk/tegra/clk-dfll.c b/drivers/clk/tegra/clk-dfll.c > index 6f46943..018489b 100644 > --- a/drivers/clk/tegra/clk-dfll.c > +++ b/drivers/clk/tegra/clk-dfll.c > @@ -205,12 +205,16 @@ > */ > #define REF_CLOCK_RATE 51000000UL > > +#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) > +#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) > > /** > * enum dfll_ctrl_mode - DFLL hardware operating mode > * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) > * @DFLL_DISABLED: DFLL not generating an output clock > * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage > + * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match > + * the requested rate > * > * The integer corresponding to the last two states, minus one, is > * written to the DFLL hardware to change operating modes. > @@ -219,6 +223,7 @@ enum dfll_ctrl_mode { > DFLL_UNINITIALIZED = 0, > DFLL_DISABLED = 1, > DFLL_OPEN_LOOP = 2, > + DFLL_CLOSED_LOOP = 3, > }; > > /** > @@ -236,6 +241,22 @@ enum dfll_tune_range { > DFLL_TUNE_LOW = 1, > }; > > +/** > + * struct dfll_rate_req - target DFLL rate request data > + * @rate: target frequency, after the postscaling > + * @dvco_target_rate: target frequency, after the postscaling > + * @lut_index: LUT index at which voltage the dvco_target_rate will be reached > + * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register > + * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register > + */ > +struct dfll_rate_req { > + unsigned long rate; > + unsigned long dvco_target_rate; > + int lut_index; > + u8 mult_bits; > + u8 scale_bits; > +}; > + > struct tegra_dfll { > struct device *dev; > struct tegra_dfll_soc_data *soc; > @@ -259,9 +280,27 @@ struct tegra_dfll { > struct dentry *debugfs_dir; > struct clk_hw dfll_clk_hw; > const char *output_clock_name; > + struct dfll_rate_req last_req; > + unsigned long last_unrounded_rate; > > /* Parameters from DT */ > u32 droop_ctrl; > + u32 sample_rate; > + u32 force_mode; > + u32 cf; > + u32 ci; > + u32 cg; > + bool cg_scale; > + > + /* I2C interface parameters */ > + u32 i2c_fs_rate; > + u32 i2c_reg; > + u32 i2c_slave_addr; > + > + /* i2c_lut array entries are regulator framework selectors */ > + unsigned i2c_lut[MAX_DFLL_VOLTAGES]; > + int i2c_lut_size; > + u8 lut_min, lut_max, lut_safe; > }; > > #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) > @@ -271,6 +310,7 @@ static const char * const mode_name[] = { > [DFLL_UNINITIALIZED] = "uninitialized", > [DFLL_DISABLED] = "disabled", > [DFLL_OPEN_LOOP] = "open_loop", > + [DFLL_CLOSED_LOOP] = "closed_loop", > }; > > /* > @@ -497,6 +537,283 @@ static void dfll_set_mode(struct tegra_dfll *td, > } > > /* > + * DFLL-to-I2C controller interface > + */ > + > +/** > + * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests > + * @td: DFLL instance > + * @enable: whether to enable or disable the I2C voltage requests > + * > + * Set the master enable control for I2C control value updates. If disabled, > + * then I2C control messages are inhibited, regardless of the DFLL mode. > + */ > +static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) > +{ > + u32 val; > + > + val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); > + > + if (enable) > + val |= DFLL_OUTPUT_CFG_I2C_ENABLE; > + else > + val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; > + > + dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); > + dfll_i2c_wmb(td); > + > + return 0; > +} > + > +/** > + * dfll_load_lut - load the voltage lookup table > + * @td: struct tegra_dfll * > + * > + * Load the voltage-to-PMIC register value lookup table into the DFLL > + * IP block memory. Look-up tables can be loaded at any time. > + */ > +static void dfll_load_i2c_lut(struct tegra_dfll *td) > +{ > + int i, lut_index; > + u32 val; > + > + for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { > + if (i < td->lut_min) > + lut_index = td->lut_min; > + else if (i > td->lut_max) > + lut_index = td->lut_max; > + else > + lut_index = i; > + > + val = regulator_list_hardware_vsel(td->vdd_reg, > + td->i2c_lut[lut_index]); > + __raw_writel(val, td->lut_base + i * 4); > + } > + > + dfll_i2c_wmb(td); > +} > + > +/** > + * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface > + * @td: DFLL instance > + * > + * During DFLL driver initialization, program the DFLL-I2C interface > + * with the PMU slave address, vdd register offset, and transfer mode. > + * This data is used by the DFLL to automatically construct I2C > + * voltage-set commands, which are then passed to the DFLL's internal > + * I2C controller. > + */ > +static void dfll_init_i2c_if(struct tegra_dfll *td) > +{ > + u32 val; > + > + if (td->i2c_slave_addr > 0x7f) { > + val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; > + val |= DFLL_I2C_CFG_SLAVE_ADDR_10; > + } else { > + val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; > + } > + val |= DFLL_I2C_CFG_SIZE_MASK; > + val |= DFLL_I2C_CFG_ARB_ENABLE; > + dfll_i2c_writel(td, val, DFLL_I2C_CFG); > + > + dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); > + > + val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); > + BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); > + val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; > + > + /* default hs divisor just in case */ > + val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; > + __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); > + dfll_i2c_wmb(td); > +} > + > +/** > + * dfll_init_out_if - prepare DFLL-to-PMIC interface > + * @td: DFLL instance > + * > + * During DFLL driver initialization or resume from context loss, > + * disable the I2C command output to the PMIC, set safe voltage and > + * output limits, and disable and clear limit interrupts. > + */ > +static void dfll_init_out_if(struct tegra_dfll *td) > +{ > + u32 val; > + > + td->lut_min = 0; > + td->lut_max = td->i2c_lut_size - 1; > + td->lut_safe = td->lut_min + 1; > + > + dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG); > + val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | > + (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | > + (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); > + dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); > + dfll_i2c_wmb(td); > + > + dfll_writel(td, 0, DFLL_OUTPUT_FORCE); > + dfll_i2c_writel(td, 0, DFLL_INTR_EN); > + dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, > + DFLL_INTR_STS); > + > + dfll_load_i2c_lut(td); > + dfll_init_i2c_if(td); > +} > + > +/* > + * Set/get the DFLL's targeted output clock rate > + */ > + > +/** > + * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate > + * @td: DFLL instance > + * @rate: clock rate > + * > + * Determines the index of a I2C LUT entry for a voltage that approximately > + * produces the given DFLL clock rate. This is used when forcing a value > + * to the integrator during rate changes. Returns -ENOENT if a suitable > + * LUT index is not found. > + */ > +static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) > +{ > + struct dev_pm_opp *opp; > + int i, uv; > + > + opp = dev_pm_opp_find_freq_ceil(td->soc->opp_dev, &rate); > + if (IS_ERR(opp)) > + return PTR_ERR(opp); > + uv = dev_pm_opp_get_voltage(opp); > + > + for (i = 0; i < td->i2c_lut_size; i++) { > + if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv) > + return i; > + } > + > + return -ENOENT; > +} > + > +/** > + * dfll_calculate_rate_request - calculate DFLL parameters for a given rate > + * @td: DFLL instance > + * @req: DFLL-rate-request structure > + * @rate: the desired DFLL rate > + * > + * Populate the DFLL-rate-request record @req fields with the scale_bits > + * and mult_bits fields, based on the target input rate. Returns 0 upon > + * success, or -EINVAL if the requested rate in req->rate is too high > + * or low for the DFLL to generate. > + */ > +static int dfll_calculate_rate_request(struct tegra_dfll *td, > + struct dfll_rate_req *req, > + unsigned long rate) > +{ > + u32 val; > + > + /* > + * If requested rate is below the minimum DVCO rate, active the scaler. > + * In the future the DVCO minimum voltage should be selected based on > + * chip temperature and the actual minimum rate should be calibrated > + * at runtime. > + */ > + req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; > + if (rate < td->dvco_rate_min) { > + int scale; > + > + scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, > + td->dvco_rate_min / 1000); > + if (!scale) { > + dev_err(td->dev, "%s: Rate %lu is too low\n", > + __func__, rate); > + return -EINVAL; > + } > + req->scale_bits = scale - 1; > + rate = td->dvco_rate_min; > + } > + > + /* Convert requested rate into frequency request and scale settings */ > + val = DVCO_RATE_TO_MULT(rate, td->ref_rate); > + if (val > FREQ_MAX) { > + dev_err(td->dev, "%s: Rate %lu is above dfll range\n", > + __func__, rate); > + return -EINVAL; > + } > + req->mult_bits = val; > + req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); > + req->rate = dfll_scale_dvco_rate(req->scale_bits, > + req->dvco_target_rate); > + req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); > + if (req->lut_index < 0) > + return req->lut_index; > + > + return 0; > +} > + > +/** > + * dfll_set_frequency_request - start the frequency change operation > + * @td: DFLL instance > + * @req: rate request structure > + * > + * Tell the DFLL to try to change its output frequency to the > + * frequency represented by @req. DFLL must be in closed-loop mode. > + */ > +static void dfll_set_frequency_request(struct tegra_dfll *td, > + struct dfll_rate_req *req) > +{ > + u32 val = 0; > + int force_val; > + int coef = 128; /* FIXME: td->cg_scale? */; > + > + force_val = (req->lut_index - td->lut_safe) * coef / td->cg; > + force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); > + > + val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; > + val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; > + val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & > + DFLL_FREQ_REQ_FORCE_MASK; > + val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; > + > + dfll_writel(td, val, DFLL_FREQ_REQ); > + dfll_wmb(td); > +} > + > +/** > + * tegra_dfll_request_rate - set the next rate for the DFLL to tune to > + * @td: DFLL instance > + * @rate: clock rate to target > + * > + * Convert the requested clock rate @rate into the DFLL control logic > + * settings. In closed-loop mode, update new settings immediately to > + * adjust DFLL output rate accordingly. Otherwise, just save them > + * until the next switch to closed loop. Returns 0 upon success, > + * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL > + * if @rate is outside the DFLL's tunable range. > + */ > +static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) > +{ > + int ret; > + struct dfll_rate_req req; > + > + if (td->mode == DFLL_UNINITIALIZED) { > + dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", > + __func__, mode_name[td->mode]); > + return -EPERM; > + } > + > + ret = dfll_calculate_rate_request(td, &req, rate); > + if (ret) > + return ret; > + > + td->last_unrounded_rate = rate; > + td->last_req = req; > + > + if (td->mode == DFLL_CLOSED_LOOP) > + dfll_set_frequency_request(td, &td->last_req); > + > + return 0; > +} > + > +/* > * DFLL enable/disable & open-loop <-> closed-loop transitions > */ > > @@ -568,8 +885,76 @@ static void dfll_set_open_loop_config(struct tegra_dfll *td) > dfll_wmb(td); > } > > +/** > + * tegra_dfll_lock - switch from open-loop to closed-loop mode > + * @td: DFLL instance > + * > + * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, > + * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the > + * DFLL is not currently in open-loop mode. > + */ > +static int dfll_lock(struct tegra_dfll *td) > +{ > + struct dfll_rate_req *req = &td->last_req; > + > + switch (td->mode) { > + case DFLL_CLOSED_LOOP: > + return 0; > + > + case DFLL_OPEN_LOOP: > + if (req->rate == 0) { > + dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", > + __func__); > + return -EINVAL; > + } > + > + dfll_i2c_set_output_enabled(td, true); > + dfll_set_mode(td, DFLL_CLOSED_LOOP); > + dfll_set_frequency_request(td, req); > + return 0; > + > + default: > + BUG_ON(td->mode > DFLL_CLOSED_LOOP); > + dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", > + __func__, mode_name[td->mode]); > + return -EPERM; > + } > +} > + > +/** > + * tegra_dfll_unlock - switch from closed-loop to open-loop mode > + * @td: DFLL instance > + * > + * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, > + * or -EPERM if the DFLL is not currently in open-loop mode. > + */ > +static int dfll_unlock(struct tegra_dfll *td) > +{ > + switch (td->mode) { > + case DFLL_CLOSED_LOOP: > + dfll_set_open_loop_config(td); > + dfll_set_mode(td, DFLL_OPEN_LOOP); > + dfll_i2c_set_output_enabled(td, false); > + return 0; > + > + case DFLL_OPEN_LOOP: > + return 0; > + > + default: > + BUG_ON(td->mode > DFLL_CLOSED_LOOP); > + dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", > + __func__, mode_name[td->mode]); > + return -EPERM; > + } > +} > + > /* > * Clock framework integration > + * > + * When the DFLL is being controlled by the CCF, always enter closed loop > + * mode when the clk is enabled. This requires that a DFLL rate request > + * has been set beforehand, which implies that a clk_set_rate() call is > + * always required before a clk_enable(). > */ > > static int dfll_clk_is_enabled(struct clk_hw *hw) > @@ -582,21 +967,72 @@ static int dfll_clk_is_enabled(struct clk_hw *hw) > static int dfll_clk_enable(struct clk_hw *hw) > { > struct tegra_dfll *td = clk_hw_to_dfll(hw); > + int ret; > + > + ret = dfll_enable(td); > + if (ret) > + return ret; > + > + ret = dfll_lock(td); > + if (ret) > + dfll_disable(td); > > - return dfll_enable(td); > + return ret; > } > > static void dfll_clk_disable(struct clk_hw *hw) > { > struct tegra_dfll *td = clk_hw_to_dfll(hw); > + int ret; > + > + ret = dfll_unlock(td); > + if (!ret) > + dfll_disable(td); > +} > + > +static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + struct tegra_dfll *td = clk_hw_to_dfll(hw); > > - dfll_disable(td); > + return td->last_unrounded_rate; > +} > + > +static long dfll_clk_round_rate(struct clk_hw *hw, > + unsigned long rate, > + unsigned long *parent_rate) > +{ > + struct tegra_dfll *td = clk_hw_to_dfll(hw); > + struct dfll_rate_req req; > + int ret; > + > + ret = dfll_calculate_rate_request(td, &req, rate); > + if (ret) > + return ret; > + > + /* > + * Don't return the rounded rate, since it doesn't really matter as > + * the output rate will be voltage controlled anyway, and cpufreq > + * freaks out if any rounding happens. > + */ > + return rate; > +} > + > +static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct tegra_dfll *td = clk_hw_to_dfll(hw); > + > + return dfll_request_rate(td, rate); > } > > static const struct clk_ops dfll_clk_ops = { > .is_enabled = dfll_clk_is_enabled, > .enable = dfll_clk_enable, > .disable = dfll_clk_disable, > + .recalc_rate = dfll_clk_recalc_rate, > + .round_rate = dfll_clk_round_rate, > + .set_rate = dfll_clk_set_rate, > }; > > static struct clk_init_data dfll_clk_init_data = { > @@ -675,6 +1111,23 @@ static int attr_enable_set(void *data, u64 val) > DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, > "%llu\n"); > > +static int attr_lock_get(void *data, u64 *val) > +{ > + struct tegra_dfll *td = data; > + > + *val = (td->mode == DFLL_CLOSED_LOOP); > + > + return 0; > +} > +static int attr_lock_set(void *data, u64 val) > +{ > + struct tegra_dfll *td = data; > + > + return val ? dfll_lock(td) : dfll_unlock(td); > +} > +DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, > + "%llu\n"); > + > static int attr_rate_get(void *data, u64 *val) > { > struct tegra_dfll *td = data; > @@ -683,7 +1136,14 @@ static int attr_rate_get(void *data, u64 *val) > > return 0; > } > -DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, NULL, "%llu\n"); > + > +static int attr_rate_set(void *data, u64 val) > +{ > + struct tegra_dfll *td = data; > + > + return dfll_request_rate(td, val); > +} > +DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); > > static int attr_registers_show(struct seq_file *s, void *data) > { > @@ -749,6 +1209,10 @@ static int dfll_debug_init(struct tegra_dfll *td) > td->debugfs_dir, td, &enable_fops)) > goto err_out; > > + if (!debugfs_create_file("lock", S_IRUGO, > + td->debugfs_dir, td, &lock_fops)) > + goto err_out; > + > if (!debugfs_create_file("rate", S_IRUGO, > td->debugfs_dir, td, &rate_fops)) > goto err_out; > @@ -780,6 +1244,19 @@ err_out: > */ > static void dfll_set_default_params(struct tegra_dfll *td) > { > + u32 val; > + > + val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); > + BUG_ON(val > DFLL_CONFIG_DIV_MASK); > + dfll_writel(td, val, DFLL_CONFIG); > + > + val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | > + (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | > + (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | > + (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | > + (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); > + dfll_writel(td, val, DFLL_PARAMS); > + > dfll_tune_low(td); > dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); > dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); > @@ -858,6 +1335,8 @@ static int dfll_init(struct tegra_dfll *td) > goto di_err2; > } > > + td->last_unrounded_rate = 0; > + > pm_runtime_enable(td->dev); > pm_runtime_get_sync(td->dev); > > @@ -869,6 +1348,8 @@ static int dfll_init(struct tegra_dfll *td) > > dfll_set_open_loop_config(td); > > + dfll_init_out_if(td); > + > pm_runtime_put_sync(td->dev); > > return 0; > @@ -888,6 +1369,130 @@ di_err1: > * DT data fetch > */ > > +/* > + * Find a PMIC voltage register-to-voltage mapping for the given voltage. > + * An exact voltage match is required. > + */ > +static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) > +{ > + int i, n_voltages, reg_uV; > + > + n_voltages = regulator_count_voltages(td->vdd_reg); > + for (i = 0; i < n_voltages; i++) { > + reg_uV = regulator_list_voltage(td->vdd_reg, i); > + if (reg_uV < 0) > + break; > + > + if (uV == reg_uV) > + return i; > + } > + > + dev_err(td->dev, "no voltage map entry for %d uV\n", uV); > + return -EINVAL; > +} > + > +/* > + * Find a PMIC voltage register-to-voltage mapping for the given voltage, > + * rounding up to the closest supported voltage. > + * */ > +static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) > +{ > + int i, n_voltages, reg_uV; > + > + n_voltages = regulator_count_voltages(td->vdd_reg); > + for (i = 0; i < n_voltages; i++) { > + reg_uV = regulator_list_voltage(td->vdd_reg, i); > + if (reg_uV < 0) > + break; > + > + if (uV <= reg_uV) > + return i; > + } > + > + dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); > + return -EINVAL; > +} > + > +/** > + * dfll_build_i2c_lut - build the I2C voltage register lookup table > + * @td: DFLL instance > + * > + * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with > + * PMIC voltage register values that span the entire DFLL operating range. > + * This function builds the look-up table based on the OPP table provided by > + * the soc-specific platform driver (td->soc->opp_dev) and the PMIC > + * register-to-voltage mapping queried from the regulator framework. > + * > + * On success, fills in td->i2c_lut and returns 0, or -err on failure. > + */ > +static int dfll_build_i2c_lut(struct tegra_dfll *td) > +{ > + int ret = -EINVAL; > + int j, v, v_max, v_opp; > + int selector; > + unsigned long rate; > + struct dev_pm_opp *opp; > + > + rcu_read_lock(); > + > + rate = ULONG_MAX; > + opp = dev_pm_opp_find_freq_floor(td->soc->opp_dev, &rate); > + if (IS_ERR(opp)) { > + dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); > + goto out; > + } > + v_max = dev_pm_opp_get_voltage(opp); > + > + v = td->soc->min_millivolts * 1000; > + td->i2c_lut[0] = find_vdd_map_entry_exact(td, v); > + if (td->i2c_lut[0] < 0) > + goto out; > + > + for (j = 1, rate = 0; ; rate++) { > + opp = dev_pm_opp_find_freq_ceil(td->soc->opp_dev, &rate); > + if (IS_ERR(opp)) > + break; > + v_opp = dev_pm_opp_get_voltage(opp); > + > + if (v_opp <= td->soc->min_millivolts * 1000) > + td->dvco_rate_min = dev_pm_opp_get_freq(opp); > + > + for (;;) { > + v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); > + if (v >= v_opp) > + break; > + > + selector = find_vdd_map_entry_min(td, v); > + if (selector < 0) > + goto out; > + if (selector != td->i2c_lut[j - 1]) > + td->i2c_lut[j++] = selector; > + } > + > + v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; > + selector = find_vdd_map_entry_exact(td, v); > + if (selector < 0) > + goto out; > + if (selector != td->i2c_lut[j - 1]) > + td->i2c_lut[j++] = selector; > + > + if (v >= v_max) > + break; > + } > + td->i2c_lut_size = j; > + > + if (!td->dvco_rate_min) > + dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", > + td->soc->min_millivolts); > + else > + ret = 0; > + > +out: > + rcu_read_unlock(); > + > + return ret; > +} > + > /** > * read_dt_param - helper function for reading required parameters from the DT > * @td: DFLL instance > @@ -912,6 +1517,50 @@ static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) > } > > /** > + * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem > + * @td: DFLL instance > + * > + * Read all the parameters required for operation in I2C mode. The parameters > + * can originate from the device tree or the regulator subsystem. > + * Returns 0 on success or -err on failure. > + */ > +static int dfll_fetch_i2c_params(struct tegra_dfll *td) > +{ > + struct regmap *regmap; > + struct device *i2c_dev; > + struct i2c_client *i2c_client; > + int vsel_reg, vsel_mask; > + int ret; > + > + if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) > + return -EINVAL; > + > + regmap = regulator_get_regmap(td->vdd_reg); > + i2c_dev = regmap_get_device(regmap); > + i2c_client = to_i2c_client(i2c_dev); > + > + td->i2c_slave_addr = i2c_client->addr; > + > + ret = regulator_get_hardware_vsel_register(td->vdd_reg, > + &vsel_reg, > + &vsel_mask); > + if (ret < 0) { > + dev_err(td->dev, > + "regulator unsuitable for DFLL I2C operation\n"); > + return -EINVAL; > + } > + td->i2c_reg = vsel_reg; > + > + ret = dfll_build_i2c_lut(td); > + if (ret) { > + dev_err(td->dev, "couldn't build I2C LUT\n"); > + return ret; > + } > + > + return 0; > +} > + > +/** > * dfll_fetch_common_params - read DFLL parameters from the device tree > * @td: DFLL instance > * > @@ -923,6 +1572,13 @@ static int dfll_fetch_common_params(struct tegra_dfll *td) > bool ok = true; > > ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); > + ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); > + ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); > + ok &= read_dt_param(td, "nvidia,cf", &td->cf); > + ok &= read_dt_param(td, "nvidia,ci", &td->ci); > + ok &= read_dt_param(td, "nvidia,cg", &td->cg); > + td->cg_scale = of_property_read_bool(td->dev->of_node, > + "nvidia,cg-scale"); > > if (of_property_read_string(td->dev->of_node, "clock-output-names", > &td->output_clock_name)) { > @@ -978,6 +1634,10 @@ int tegra_dfll_register(struct platform_device *pdev, > return ret; > } > > + ret = dfll_fetch_i2c_params(td); > + if (ret) > + return ret; > + > mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); > if (!mem) { > dev_err(td->dev, "no control register resource\n"); > -- > 2.2.1 >
diff --git a/drivers/clk/tegra/clk-dfll.c b/drivers/clk/tegra/clk-dfll.c index 6f46943..018489b 100644 --- a/drivers/clk/tegra/clk-dfll.c +++ b/drivers/clk/tegra/clk-dfll.c @@ -205,12 +205,16 @@ */ #define REF_CLOCK_RATE 51000000UL +#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) +#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) /** * enum dfll_ctrl_mode - DFLL hardware operating mode * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) * @DFLL_DISABLED: DFLL not generating an output clock * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage + * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match + * the requested rate * * The integer corresponding to the last two states, minus one, is * written to the DFLL hardware to change operating modes. @@ -219,6 +223,7 @@ enum dfll_ctrl_mode { DFLL_UNINITIALIZED = 0, DFLL_DISABLED = 1, DFLL_OPEN_LOOP = 2, + DFLL_CLOSED_LOOP = 3, }; /** @@ -236,6 +241,22 @@ enum dfll_tune_range { DFLL_TUNE_LOW = 1, }; +/** + * struct dfll_rate_req - target DFLL rate request data + * @rate: target frequency, after the postscaling + * @dvco_target_rate: target frequency, after the postscaling + * @lut_index: LUT index at which voltage the dvco_target_rate will be reached + * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register + * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register + */ +struct dfll_rate_req { + unsigned long rate; + unsigned long dvco_target_rate; + int lut_index; + u8 mult_bits; + u8 scale_bits; +}; + struct tegra_dfll { struct device *dev; struct tegra_dfll_soc_data *soc; @@ -259,9 +280,27 @@ struct tegra_dfll { struct dentry *debugfs_dir; struct clk_hw dfll_clk_hw; const char *output_clock_name; + struct dfll_rate_req last_req; + unsigned long last_unrounded_rate; /* Parameters from DT */ u32 droop_ctrl; + u32 sample_rate; + u32 force_mode; + u32 cf; + u32 ci; + u32 cg; + bool cg_scale; + + /* I2C interface parameters */ + u32 i2c_fs_rate; + u32 i2c_reg; + u32 i2c_slave_addr; + + /* i2c_lut array entries are regulator framework selectors */ + unsigned i2c_lut[MAX_DFLL_VOLTAGES]; + int i2c_lut_size; + u8 lut_min, lut_max, lut_safe; }; #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) @@ -271,6 +310,7 @@ static const char * const mode_name[] = { [DFLL_UNINITIALIZED] = "uninitialized", [DFLL_DISABLED] = "disabled", [DFLL_OPEN_LOOP] = "open_loop", + [DFLL_CLOSED_LOOP] = "closed_loop", }; /* @@ -497,6 +537,283 @@ static void dfll_set_mode(struct tegra_dfll *td, } /* + * DFLL-to-I2C controller interface + */ + +/** + * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests + * @td: DFLL instance + * @enable: whether to enable or disable the I2C voltage requests + * + * Set the master enable control for I2C control value updates. If disabled, + * then I2C control messages are inhibited, regardless of the DFLL mode. + */ +static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) +{ + u32 val; + + val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); + + if (enable) + val |= DFLL_OUTPUT_CFG_I2C_ENABLE; + else + val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; + + dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); + dfll_i2c_wmb(td); + + return 0; +} + +/** + * dfll_load_lut - load the voltage lookup table + * @td: struct tegra_dfll * + * + * Load the voltage-to-PMIC register value lookup table into the DFLL + * IP block memory. Look-up tables can be loaded at any time. + */ +static void dfll_load_i2c_lut(struct tegra_dfll *td) +{ + int i, lut_index; + u32 val; + + for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { + if (i < td->lut_min) + lut_index = td->lut_min; + else if (i > td->lut_max) + lut_index = td->lut_max; + else + lut_index = i; + + val = regulator_list_hardware_vsel(td->vdd_reg, + td->i2c_lut[lut_index]); + __raw_writel(val, td->lut_base + i * 4); + } + + dfll_i2c_wmb(td); +} + +/** + * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface + * @td: DFLL instance + * + * During DFLL driver initialization, program the DFLL-I2C interface + * with the PMU slave address, vdd register offset, and transfer mode. + * This data is used by the DFLL to automatically construct I2C + * voltage-set commands, which are then passed to the DFLL's internal + * I2C controller. + */ +static void dfll_init_i2c_if(struct tegra_dfll *td) +{ + u32 val; + + if (td->i2c_slave_addr > 0x7f) { + val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; + val |= DFLL_I2C_CFG_SLAVE_ADDR_10; + } else { + val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; + } + val |= DFLL_I2C_CFG_SIZE_MASK; + val |= DFLL_I2C_CFG_ARB_ENABLE; + dfll_i2c_writel(td, val, DFLL_I2C_CFG); + + dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); + + val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); + BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); + val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; + + /* default hs divisor just in case */ + val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; + __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); + dfll_i2c_wmb(td); +} + +/** + * dfll_init_out_if - prepare DFLL-to-PMIC interface + * @td: DFLL instance + * + * During DFLL driver initialization or resume from context loss, + * disable the I2C command output to the PMIC, set safe voltage and + * output limits, and disable and clear limit interrupts. + */ +static void dfll_init_out_if(struct tegra_dfll *td) +{ + u32 val; + + td->lut_min = 0; + td->lut_max = td->i2c_lut_size - 1; + td->lut_safe = td->lut_min + 1; + + dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG); + val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | + (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | + (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); + dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); + dfll_i2c_wmb(td); + + dfll_writel(td, 0, DFLL_OUTPUT_FORCE); + dfll_i2c_writel(td, 0, DFLL_INTR_EN); + dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, + DFLL_INTR_STS); + + dfll_load_i2c_lut(td); + dfll_init_i2c_if(td); +} + +/* + * Set/get the DFLL's targeted output clock rate + */ + +/** + * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate + * @td: DFLL instance + * @rate: clock rate + * + * Determines the index of a I2C LUT entry for a voltage that approximately + * produces the given DFLL clock rate. This is used when forcing a value + * to the integrator during rate changes. Returns -ENOENT if a suitable + * LUT index is not found. + */ +static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) +{ + struct dev_pm_opp *opp; + int i, uv; + + opp = dev_pm_opp_find_freq_ceil(td->soc->opp_dev, &rate); + if (IS_ERR(opp)) + return PTR_ERR(opp); + uv = dev_pm_opp_get_voltage(opp); + + for (i = 0; i < td->i2c_lut_size; i++) { + if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv) + return i; + } + + return -ENOENT; +} + +/** + * dfll_calculate_rate_request - calculate DFLL parameters for a given rate + * @td: DFLL instance + * @req: DFLL-rate-request structure + * @rate: the desired DFLL rate + * + * Populate the DFLL-rate-request record @req fields with the scale_bits + * and mult_bits fields, based on the target input rate. Returns 0 upon + * success, or -EINVAL if the requested rate in req->rate is too high + * or low for the DFLL to generate. + */ +static int dfll_calculate_rate_request(struct tegra_dfll *td, + struct dfll_rate_req *req, + unsigned long rate) +{ + u32 val; + + /* + * If requested rate is below the minimum DVCO rate, active the scaler. + * In the future the DVCO minimum voltage should be selected based on + * chip temperature and the actual minimum rate should be calibrated + * at runtime. + */ + req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; + if (rate < td->dvco_rate_min) { + int scale; + + scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, + td->dvco_rate_min / 1000); + if (!scale) { + dev_err(td->dev, "%s: Rate %lu is too low\n", + __func__, rate); + return -EINVAL; + } + req->scale_bits = scale - 1; + rate = td->dvco_rate_min; + } + + /* Convert requested rate into frequency request and scale settings */ + val = DVCO_RATE_TO_MULT(rate, td->ref_rate); + if (val > FREQ_MAX) { + dev_err(td->dev, "%s: Rate %lu is above dfll range\n", + __func__, rate); + return -EINVAL; + } + req->mult_bits = val; + req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); + req->rate = dfll_scale_dvco_rate(req->scale_bits, + req->dvco_target_rate); + req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); + if (req->lut_index < 0) + return req->lut_index; + + return 0; +} + +/** + * dfll_set_frequency_request - start the frequency change operation + * @td: DFLL instance + * @req: rate request structure + * + * Tell the DFLL to try to change its output frequency to the + * frequency represented by @req. DFLL must be in closed-loop mode. + */ +static void dfll_set_frequency_request(struct tegra_dfll *td, + struct dfll_rate_req *req) +{ + u32 val = 0; + int force_val; + int coef = 128; /* FIXME: td->cg_scale? */; + + force_val = (req->lut_index - td->lut_safe) * coef / td->cg; + force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); + + val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; + val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; + val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & + DFLL_FREQ_REQ_FORCE_MASK; + val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; + + dfll_writel(td, val, DFLL_FREQ_REQ); + dfll_wmb(td); +} + +/** + * tegra_dfll_request_rate - set the next rate for the DFLL to tune to + * @td: DFLL instance + * @rate: clock rate to target + * + * Convert the requested clock rate @rate into the DFLL control logic + * settings. In closed-loop mode, update new settings immediately to + * adjust DFLL output rate accordingly. Otherwise, just save them + * until the next switch to closed loop. Returns 0 upon success, + * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL + * if @rate is outside the DFLL's tunable range. + */ +static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) +{ + int ret; + struct dfll_rate_req req; + + if (td->mode == DFLL_UNINITIALIZED) { + dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", + __func__, mode_name[td->mode]); + return -EPERM; + } + + ret = dfll_calculate_rate_request(td, &req, rate); + if (ret) + return ret; + + td->last_unrounded_rate = rate; + td->last_req = req; + + if (td->mode == DFLL_CLOSED_LOOP) + dfll_set_frequency_request(td, &td->last_req); + + return 0; +} + +/* * DFLL enable/disable & open-loop <-> closed-loop transitions */ @@ -568,8 +885,76 @@ static void dfll_set_open_loop_config(struct tegra_dfll *td) dfll_wmb(td); } +/** + * tegra_dfll_lock - switch from open-loop to closed-loop mode + * @td: DFLL instance + * + * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, + * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the + * DFLL is not currently in open-loop mode. + */ +static int dfll_lock(struct tegra_dfll *td) +{ + struct dfll_rate_req *req = &td->last_req; + + switch (td->mode) { + case DFLL_CLOSED_LOOP: + return 0; + + case DFLL_OPEN_LOOP: + if (req->rate == 0) { + dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", + __func__); + return -EINVAL; + } + + dfll_i2c_set_output_enabled(td, true); + dfll_set_mode(td, DFLL_CLOSED_LOOP); + dfll_set_frequency_request(td, req); + return 0; + + default: + BUG_ON(td->mode > DFLL_CLOSED_LOOP); + dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", + __func__, mode_name[td->mode]); + return -EPERM; + } +} + +/** + * tegra_dfll_unlock - switch from closed-loop to open-loop mode + * @td: DFLL instance + * + * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, + * or -EPERM if the DFLL is not currently in open-loop mode. + */ +static int dfll_unlock(struct tegra_dfll *td) +{ + switch (td->mode) { + case DFLL_CLOSED_LOOP: + dfll_set_open_loop_config(td); + dfll_set_mode(td, DFLL_OPEN_LOOP); + dfll_i2c_set_output_enabled(td, false); + return 0; + + case DFLL_OPEN_LOOP: + return 0; + + default: + BUG_ON(td->mode > DFLL_CLOSED_LOOP); + dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", + __func__, mode_name[td->mode]); + return -EPERM; + } +} + /* * Clock framework integration + * + * When the DFLL is being controlled by the CCF, always enter closed loop + * mode when the clk is enabled. This requires that a DFLL rate request + * has been set beforehand, which implies that a clk_set_rate() call is + * always required before a clk_enable(). */ static int dfll_clk_is_enabled(struct clk_hw *hw) @@ -582,21 +967,72 @@ static int dfll_clk_is_enabled(struct clk_hw *hw) static int dfll_clk_enable(struct clk_hw *hw) { struct tegra_dfll *td = clk_hw_to_dfll(hw); + int ret; + + ret = dfll_enable(td); + if (ret) + return ret; + + ret = dfll_lock(td); + if (ret) + dfll_disable(td); - return dfll_enable(td); + return ret; } static void dfll_clk_disable(struct clk_hw *hw) { struct tegra_dfll *td = clk_hw_to_dfll(hw); + int ret; + + ret = dfll_unlock(td); + if (!ret) + dfll_disable(td); +} + +static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, + unsigned long parent_rate) +{ + struct tegra_dfll *td = clk_hw_to_dfll(hw); - dfll_disable(td); + return td->last_unrounded_rate; +} + +static long dfll_clk_round_rate(struct clk_hw *hw, + unsigned long rate, + unsigned long *parent_rate) +{ + struct tegra_dfll *td = clk_hw_to_dfll(hw); + struct dfll_rate_req req; + int ret; + + ret = dfll_calculate_rate_request(td, &req, rate); + if (ret) + return ret; + + /* + * Don't return the rounded rate, since it doesn't really matter as + * the output rate will be voltage controlled anyway, and cpufreq + * freaks out if any rounding happens. + */ + return rate; +} + +static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, + unsigned long parent_rate) +{ + struct tegra_dfll *td = clk_hw_to_dfll(hw); + + return dfll_request_rate(td, rate); } static const struct clk_ops dfll_clk_ops = { .is_enabled = dfll_clk_is_enabled, .enable = dfll_clk_enable, .disable = dfll_clk_disable, + .recalc_rate = dfll_clk_recalc_rate, + .round_rate = dfll_clk_round_rate, + .set_rate = dfll_clk_set_rate, }; static struct clk_init_data dfll_clk_init_data = { @@ -675,6 +1111,23 @@ static int attr_enable_set(void *data, u64 val) DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, "%llu\n"); +static int attr_lock_get(void *data, u64 *val) +{ + struct tegra_dfll *td = data; + + *val = (td->mode == DFLL_CLOSED_LOOP); + + return 0; +} +static int attr_lock_set(void *data, u64 val) +{ + struct tegra_dfll *td = data; + + return val ? dfll_lock(td) : dfll_unlock(td); +} +DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, + "%llu\n"); + static int attr_rate_get(void *data, u64 *val) { struct tegra_dfll *td = data; @@ -683,7 +1136,14 @@ static int attr_rate_get(void *data, u64 *val) return 0; } -DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, NULL, "%llu\n"); + +static int attr_rate_set(void *data, u64 val) +{ + struct tegra_dfll *td = data; + + return dfll_request_rate(td, val); +} +DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); static int attr_registers_show(struct seq_file *s, void *data) { @@ -749,6 +1209,10 @@ static int dfll_debug_init(struct tegra_dfll *td) td->debugfs_dir, td, &enable_fops)) goto err_out; + if (!debugfs_create_file("lock", S_IRUGO, + td->debugfs_dir, td, &lock_fops)) + goto err_out; + if (!debugfs_create_file("rate", S_IRUGO, td->debugfs_dir, td, &rate_fops)) goto err_out; @@ -780,6 +1244,19 @@ err_out: */ static void dfll_set_default_params(struct tegra_dfll *td) { + u32 val; + + val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); + BUG_ON(val > DFLL_CONFIG_DIV_MASK); + dfll_writel(td, val, DFLL_CONFIG); + + val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | + (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | + (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | + (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | + (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); + dfll_writel(td, val, DFLL_PARAMS); + dfll_tune_low(td); dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); @@ -858,6 +1335,8 @@ static int dfll_init(struct tegra_dfll *td) goto di_err2; } + td->last_unrounded_rate = 0; + pm_runtime_enable(td->dev); pm_runtime_get_sync(td->dev); @@ -869,6 +1348,8 @@ static int dfll_init(struct tegra_dfll *td) dfll_set_open_loop_config(td); + dfll_init_out_if(td); + pm_runtime_put_sync(td->dev); return 0; @@ -888,6 +1369,130 @@ di_err1: * DT data fetch */ +/* + * Find a PMIC voltage register-to-voltage mapping for the given voltage. + * An exact voltage match is required. + */ +static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) +{ + int i, n_voltages, reg_uV; + + n_voltages = regulator_count_voltages(td->vdd_reg); + for (i = 0; i < n_voltages; i++) { + reg_uV = regulator_list_voltage(td->vdd_reg, i); + if (reg_uV < 0) + break; + + if (uV == reg_uV) + return i; + } + + dev_err(td->dev, "no voltage map entry for %d uV\n", uV); + return -EINVAL; +} + +/* + * Find a PMIC voltage register-to-voltage mapping for the given voltage, + * rounding up to the closest supported voltage. + * */ +static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) +{ + int i, n_voltages, reg_uV; + + n_voltages = regulator_count_voltages(td->vdd_reg); + for (i = 0; i < n_voltages; i++) { + reg_uV = regulator_list_voltage(td->vdd_reg, i); + if (reg_uV < 0) + break; + + if (uV <= reg_uV) + return i; + } + + dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); + return -EINVAL; +} + +/** + * dfll_build_i2c_lut - build the I2C voltage register lookup table + * @td: DFLL instance + * + * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with + * PMIC voltage register values that span the entire DFLL operating range. + * This function builds the look-up table based on the OPP table provided by + * the soc-specific platform driver (td->soc->opp_dev) and the PMIC + * register-to-voltage mapping queried from the regulator framework. + * + * On success, fills in td->i2c_lut and returns 0, or -err on failure. + */ +static int dfll_build_i2c_lut(struct tegra_dfll *td) +{ + int ret = -EINVAL; + int j, v, v_max, v_opp; + int selector; + unsigned long rate; + struct dev_pm_opp *opp; + + rcu_read_lock(); + + rate = ULONG_MAX; + opp = dev_pm_opp_find_freq_floor(td->soc->opp_dev, &rate); + if (IS_ERR(opp)) { + dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); + goto out; + } + v_max = dev_pm_opp_get_voltage(opp); + + v = td->soc->min_millivolts * 1000; + td->i2c_lut[0] = find_vdd_map_entry_exact(td, v); + if (td->i2c_lut[0] < 0) + goto out; + + for (j = 1, rate = 0; ; rate++) { + opp = dev_pm_opp_find_freq_ceil(td->soc->opp_dev, &rate); + if (IS_ERR(opp)) + break; + v_opp = dev_pm_opp_get_voltage(opp); + + if (v_opp <= td->soc->min_millivolts * 1000) + td->dvco_rate_min = dev_pm_opp_get_freq(opp); + + for (;;) { + v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); + if (v >= v_opp) + break; + + selector = find_vdd_map_entry_min(td, v); + if (selector < 0) + goto out; + if (selector != td->i2c_lut[j - 1]) + td->i2c_lut[j++] = selector; + } + + v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; + selector = find_vdd_map_entry_exact(td, v); + if (selector < 0) + goto out; + if (selector != td->i2c_lut[j - 1]) + td->i2c_lut[j++] = selector; + + if (v >= v_max) + break; + } + td->i2c_lut_size = j; + + if (!td->dvco_rate_min) + dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", + td->soc->min_millivolts); + else + ret = 0; + +out: + rcu_read_unlock(); + + return ret; +} + /** * read_dt_param - helper function for reading required parameters from the DT * @td: DFLL instance @@ -912,6 +1517,50 @@ static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) } /** + * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem + * @td: DFLL instance + * + * Read all the parameters required for operation in I2C mode. The parameters + * can originate from the device tree or the regulator subsystem. + * Returns 0 on success or -err on failure. + */ +static int dfll_fetch_i2c_params(struct tegra_dfll *td) +{ + struct regmap *regmap; + struct device *i2c_dev; + struct i2c_client *i2c_client; + int vsel_reg, vsel_mask; + int ret; + + if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) + return -EINVAL; + + regmap = regulator_get_regmap(td->vdd_reg); + i2c_dev = regmap_get_device(regmap); + i2c_client = to_i2c_client(i2c_dev); + + td->i2c_slave_addr = i2c_client->addr; + + ret = regulator_get_hardware_vsel_register(td->vdd_reg, + &vsel_reg, + &vsel_mask); + if (ret < 0) { + dev_err(td->dev, + "regulator unsuitable for DFLL I2C operation\n"); + return -EINVAL; + } + td->i2c_reg = vsel_reg; + + ret = dfll_build_i2c_lut(td); + if (ret) { + dev_err(td->dev, "couldn't build I2C LUT\n"); + return ret; + } + + return 0; +} + +/** * dfll_fetch_common_params - read DFLL parameters from the device tree * @td: DFLL instance * @@ -923,6 +1572,13 @@ static int dfll_fetch_common_params(struct tegra_dfll *td) bool ok = true; ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); + ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); + ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); + ok &= read_dt_param(td, "nvidia,cf", &td->cf); + ok &= read_dt_param(td, "nvidia,ci", &td->ci); + ok &= read_dt_param(td, "nvidia,cg", &td->cg); + td->cg_scale = of_property_read_bool(td->dev->of_node, + "nvidia,cg-scale"); if (of_property_read_string(td->dev->of_node, "clock-output-names", &td->output_clock_name)) { @@ -978,6 +1634,10 @@ int tegra_dfll_register(struct platform_device *pdev, return ret; } + ret = dfll_fetch_i2c_params(td); + if (ret) + return ret; + mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(td->dev, "no control register resource\n");