@@ -153,6 +153,16 @@ config SPI_BCM63XX_HSSPI
This enables support for the High Speed SPI controller present on
newer Broadcom BCM63XX SoCs.
+config SPI_BCM_QSPI
+ tristate "Broadcom BSPI and MSPI controller support"
+ depends on ARCH_BRCMSTB || ARCH_BCM || ARCH_BCM_NSP || \
+ ARCH_BCM_CYGNUS || COMPILE_TEST
+ help
+ Enables support for the Broadcom SPI flash and MSPI controller.
+ Select this option for any one of BRCMSTB, Cygnus, NSP, NS2 SoCs
+ based platforms. This driver works for both SPI master for spi-nor
+ flash device as well as MSPI device.
+
config SPI_BITBANG
tristate "Utilities for Bitbanging SPI masters"
help
@@ -21,6 +21,7 @@ obj-$(CONFIG_SPI_BCM2835AUX) += spi-bcm2835aux.o
obj-$(CONFIG_SPI_BCM53XX) += spi-bcm53xx.o
obj-$(CONFIG_SPI_BCM63XX) += spi-bcm63xx.o
obj-$(CONFIG_SPI_BCM63XX_HSSPI) += spi-bcm63xx-hsspi.o
+obj-$(CONFIG_SPI_BCM_QSPI) += spi-bcm-qspi.o
obj-$(CONFIG_SPI_BFIN5XX) += spi-bfin5xx.o
obj-$(CONFIG_SPI_ADI_V3) += spi-adi-v3.o
obj-$(CONFIG_SPI_BFIN_SPORT) += spi-bfin-sport.o
new file mode 100644
@@ -0,0 +1,1684 @@
+/*
+ * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
+ *
+ * Copyright 2016 Broadcom
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation (the "GPL").
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License version 2 (GPLv2) for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * version 2 (GPLv2) along with this source code.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/spi-nor.h>
+#include <linux/of.h>
+#include <linux/of_irq.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spi/spi.h>
+#include <linux/sysfs.h>
+#include <linux/types.h>
+
+#define DRIVER_NAME "bcm_qspi"
+
+#define STATE_IDLE 0
+#define STATE_RUNNING 1
+#define STATE_SHUTDOWN 2
+
+/* BSPI register offsets */
+#define BSPI_REVISION_ID 0x000
+#define BSPI_SCRATCH 0x004
+#define BSPI_MAST_N_BOOT_CTRL 0x008
+#define BSPI_BUSY_STATUS 0x00c
+#define BSPI_INTR_STATUS 0x010
+#define BSPI_B0_STATUS 0x014
+#define BSPI_B0_CTRL 0x018
+#define BSPI_B1_STATUS 0x01c
+#define BSPI_B1_CTRL 0x020
+#define BSPI_STRAP_OVERRIDE_CTRL 0x024
+#define BSPI_FLEX_MODE_ENABLE 0x028
+#define BSPI_BITS_PER_CYCLE 0x02c
+#define BSPI_BITS_PER_PHASE 0x030
+#define BSPI_CMD_AND_MODE_BYTE 0x034
+#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
+#define BSPI_BSPI_XOR_VALUE 0x03c
+#define BSPI_BSPI_XOR_ENABLE 0x040
+#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
+#define BSPI_BSPI_PIO_IODIR 0x048
+#define BSPI_BSPI_PIO_DATA 0x04c
+
+/* RAF register offsets */
+#define BSPI_RAF_START_ADDR 0x100
+#define BSPI_RAF_NUM_WORDS 0x104
+#define BSPI_RAF_CTRL 0x108
+#define BSPI_RAF_FULLNESS 0x10c
+#define BSPI_RAF_WATERMARK 0x110
+#define BSPI_RAF_STATUS 0x114
+#define BSPI_RAF_READ_DATA 0x118
+#define BSPI_RAF_WORD_CNT 0x11c
+#define BSPI_RAF_CURR_ADDR 0x120
+
+/* MSPI register offsets */
+#define MSPI_SPCR0_LSB 0x000
+#define MSPI_SPCR0_MSB 0x004
+#define MSPI_SPCR1_LSB 0x008
+#define MSPI_SPCR1_MSB 0x00c
+#define MSPI_NEWQP 0x010
+#define MSPI_ENDQP 0x014
+#define MSPI_SPCR2 0x018
+#define MSPI_MSPI_STATUS 0x020
+#define MSPI_CPTQP 0x024
+#define MSPI_SPCR3 0x028
+#define MSPI_TXRAM 0x040
+#define MSPI_RXRAM 0x0c0
+#define MSPI_CDRAM 0x140
+#define MSPI_WRITE_LOCK 0x180
+
+#define MSPI_MASTER_BIT BIT(7)
+
+#define MSPI_NUM_CDRAM 16
+#define MSPI_CDRAM_CONT_BIT BIT(7)
+#define MSPI_CDRAM_BITSE_BIT BIT(6)
+#define MSPI_CDRAM_PCS 0xf
+
+#define MSPI_SPCR2_SPE BIT(6)
+#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
+
+#define MSPI_MSPI_STATUS_SPIF BIT(0)
+
+#define BSPI_ADDRLEN_3BYTES 3
+#define BSPI_ADDRLEN_4BYTES 4
+
+#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
+
+#define BSPI_RAF_CTRL_START_MASK BIT(0)
+#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
+
+#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
+#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
+
+/* HIF INTR2 offsets */
+#define HIF_SPI_INTR2_CPU_STATUS 0x00
+#define HIF_SPI_INTR2_CPU_SET 0x04
+#define HIF_SPI_INTR2_CPU_CLEAR 0x08
+#define HIF_SPI_INTR2_CPU_MASK_STATUS 0x0c
+#define HIF_SPI_INTR2_CPU_MASK_SET 0x10
+#define HIF_SPI_INTR2_CPU_MASK_CLEAR 0x14
+
+#define INTR_BASE_BIT_SHIFT 0x02
+#define INTR_COUNT 0x07
+
+/* MSPI Interrupt masks */
+#define INTR_MSPI_HALTED_MASK BIT(6)
+#define INTR_MSPI_DONE_MASK BIT(5)
+
+/* BSPI interrupt masks */
+#define INTR_BSPI_LR_OVERREAD_MASK BIT(4)
+#define INTR_BSPI_LR_SESSION_DONE_MASK BIT(3)
+#define INTR_BSPI_LR_IMPATIENT_MASK BIT(2)
+#define INTR_BSPI_LR_SESSION_ABORTED_MASK BIT(1)
+#define INTR_BSPI_LR_FULLNESS_REACHED_MASK BIT(0)
+
+/* Override mode masks */
+#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
+#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
+#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
+#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
+#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
+
+#define MSPI_INTERRUPTS_ALL \
+ (INTR_MSPI_DONE_MASK | \
+ INTR_MSPI_HALTED_MASK)
+
+#define BSPI_LR_INTERRUPTS_DATA \
+ (INTR_BSPI_LR_SESSION_DONE_MASK | \
+ INTR_BSPI_LR_FULLNESS_REACHED_MASK)
+
+#define BSPI_LR_INTERRUPTS_ERROR \
+ (INTR_BSPI_LR_OVERREAD_MASK | \
+ INTR_BSPI_LR_IMPATIENT_MASK | \
+ INTR_BSPI_LR_SESSION_ABORTED_MASK)
+
+#define BSPI_LR_INTERRUPTS_ALL \
+ (BSPI_LR_INTERRUPTS_ERROR | \
+ BSPI_LR_INTERRUPTS_DATA)
+
+#define QSPI_INTERRUPTS_ALL \
+ (MSPI_INTERRUPTS_ALL | \
+ BSPI_LR_INTERRUPTS_ALL)
+
+#define NUM_CHIPSELECT 4
+#define MSPI_BASE_FREQ 27000000UL
+#define QSPI_SPBR_MIN 8U
+#define QSPI_SPBR_MAX 255U
+#define MAX_SPEED_HZ (MSPI_BASE_FREQ / (QSPI_SPBR_MIN * 2))
+
+#define OPCODE_DIOR 0xBB
+#define OPCODE_QIOR 0xEB
+#define OPCODE_DIOR_4B 0xBC
+#define OPCODE_QIOR_4B 0xEC
+
+#define MAX_CMD_SIZE 6
+
+#define DWORD_ALIGNED(a) IS_ALIGNED((uintptr_t)(a), 4)
+#define ADDR_TO_4MBYTE_SEGMENT(addr) (((u32)(addr)) >> 22)
+
+struct bcm_qspi_parms {
+ u32 speed_hz;
+ u8 mode;
+ u8 bits_per_word;
+};
+
+static const struct bcm_qspi_parms bcm_qspi_default_parms_cs0 = {
+ .speed_hz = MAX_SPEED_HZ,
+ .mode = SPI_MODE_3,
+ .bits_per_word = 8,
+};
+
+struct bcm_xfer_mode {
+ bool flex_mode;
+ unsigned int width;
+ unsigned int addrlen;
+ unsigned int hp;
+};
+
+enum base_type {
+ MSPI,
+ BSPI,
+ INTR,
+ INTR_STATUS,
+ CHIP_SELECT,
+ BASEMAX,
+};
+
+struct bcm_qspi_irq {
+ const char *irq_name;
+ const irq_handler_t irq_handler;
+ u32 mask;
+};
+
+struct bcm_qspi_dev_id {
+ const struct bcm_qspi_irq *irqp;
+ void *dev;
+};
+
+struct position {
+ struct spi_transfer *trans;
+ int byte;
+};
+
+struct bcm_qspi {
+ struct platform_device *pdev;
+ struct spi_master *master;
+ struct clk *clk;
+ u32 base_clk;
+ u32 max_speed_hz;
+ void __iomem *base[BASEMAX];
+ struct bcm_qspi_parms last_parms;
+ struct position pos;
+ int state;
+ int next_udelay;
+ int cs_change;
+ int curr_cs;
+ int bspi_maj_rev;
+ int bspi_min_rev;
+ int bspi_enabled;
+ int bspi_cs_bmap;
+ struct spi_flash_read_message *bspi_rf_msg;
+ u32 bspi_rf_msg_idx;
+ u32 bspi_rf_msg_len;
+ u32 bspi_rf_msg_status;
+ struct bcm_xfer_mode xfer_mode;
+ u32 s3_intr2_mask;
+ u32 s3_strap_override_ctrl;
+ bool hif_spi_mode;
+ bool bspi_mode;
+ bool probed_trans_mode;
+ bool use_l2_intc;
+ int num_irqs;
+ struct bcm_qspi_dev_id *dev_ids;
+ struct completion mspi_done;
+ struct completion bspi_done;
+};
+
+static inline bool has_bspi(struct bcm_qspi *qspi)
+{
+ return qspi->bspi_mode;
+}
+
+/* Read qspi controller register*/
+static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
+ unsigned int offset)
+{
+ /*
+ * MIPS endianness is configured by boot strap, which also reverses all
+ * bus endianness (i.e., big-endian CPU + big endian bus ==> native
+ * endian I/O).
+ *
+ * Other architectures (e.g., ARM) either do not support big endian, or
+ * else leave I/O in little endian mode.
+ */
+ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
+ return ioread32be(qspi->base[type] + offset);
+ else
+ return readl_relaxed(qspi->base[type] + offset);
+
+}
+
+/* Write qspi controller register*/
+static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
+ unsigned int offset, unsigned int data)
+{
+ /* See brcm_mspi_readl() comments */
+ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
+ iowrite32be(data, (qspi->base[type] + offset));
+ else
+ writel_relaxed(data, (qspi->base[type] + offset));
+}
+
+/* Interrupt helpers when not using brcm intc driver */
+static void bcm_qspi_enable_interrupt(struct bcm_qspi *qspi, u32 mask)
+{
+ unsigned int val;
+
+ if (qspi->hif_spi_mode) {
+ bcm_qspi_write(qspi, INTR, HIF_SPI_INTR2_CPU_MASK_CLEAR, mask);
+ } else {
+ val = bcm_qspi_read(qspi, INTR, 0);
+ val = val | (mask << INTR_BASE_BIT_SHIFT);
+ bcm_qspi_write(qspi, INTR, 0, val);
+ }
+}
+
+static void bcm_qspi_disable_interrupt(struct bcm_qspi *qspi, u32 mask)
+{
+ unsigned int val;
+
+ if (qspi->hif_spi_mode) {
+ bcm_qspi_write(qspi, INTR, HIF_SPI_INTR2_CPU_MASK_SET, mask);
+ } else {
+ val = bcm_qspi_read(qspi, INTR, 0);
+ val = val & ~(mask << INTR_BASE_BIT_SHIFT);
+ bcm_qspi_write(qspi, INTR, 0, val);
+ }
+}
+
+static void bcm_qspi_clear_interrupt(struct bcm_qspi *qspi, u32 mask)
+{
+ unsigned int val;
+
+ if (qspi->hif_spi_mode) {
+ bcm_qspi_write(qspi, INTR_STATUS,
+ HIF_SPI_INTR2_CPU_CLEAR, mask);
+ } else {
+ for (val = 0; val < INTR_COUNT; val++) {
+ if (mask & (1UL << val))
+ bcm_qspi_write(qspi, INTR_STATUS,
+ (val * 4), 1);
+ }
+ }
+}
+
+static u32 bcm_qspi_read_l2int_status(struct bcm_qspi *qspi)
+{
+ unsigned int val = 0;
+ unsigned int i = 0;
+
+ WARN_ON(!qspi->base[INTR_STATUS]);
+
+ if (qspi->hif_spi_mode) {
+ val = bcm_qspi_read(qspi, INTR_STATUS,
+ HIF_SPI_INTR2_CPU_STATUS);
+ } else {
+ for (i = 0; i < INTR_COUNT; i++) {
+ if (bcm_qspi_read(qspi, INTR_STATUS, (i * 4)))
+ val |= 1UL << i;
+ }
+ }
+ return val;
+}
+
+static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
+{
+ int i;
+
+ /* this should normally finish within 10us */
+ for (i = 0; i < 1000; i++) {
+ if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
+ return 0;
+ udelay(1);
+ }
+ dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
+ return -EIO;
+}
+
+static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
+{
+ if (qspi->bspi_maj_rev < 4)
+ return true;
+ return false;
+}
+
+static void bcm_qspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
+{
+ bcm_qspi_bspi_busy_poll(qspi);
+ /* Force rising edge for the b0/b1 'flush' field */
+ bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
+ bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
+ bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
+ bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
+}
+
+static int bcm_qspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
+{
+ return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
+ BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
+}
+
+static inline u32 bcm_qspi_lr_read_fifo(struct bcm_qspi *qspi)
+{
+ u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
+
+ /* BSPI v3 LR is LE only, convert data to host endianness */
+ if (bcm_qspi_bspi_ver_three(qspi))
+ data = le32_to_cpu(data);
+
+ return data;
+}
+
+static inline void bcm_qspi_lr_start(struct bcm_qspi *qspi)
+{
+ bcm_qspi_bspi_busy_poll(qspi);
+ bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
+ BSPI_RAF_CTRL_START_MASK);
+}
+
+static inline void bcm_qspi_lr_clear(struct bcm_qspi *qspi)
+{
+ bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
+ BSPI_RAF_CTRL_CLEAR_MASK);
+ bcm_qspi_flush_prefetch_buffers(qspi);
+}
+
+static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
+{
+ u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
+ u32 data = 0;
+
+ pr_debug("xfer %p rx %p rxlen %d\n",
+ qspi->bspi_rf_msg, qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
+ while (!bcm_qspi_lr_is_fifo_empty(qspi)) {
+ data = bcm_qspi_lr_read_fifo(qspi);
+ if (likely(qspi->bspi_rf_msg_len >= 4) &&
+ likely(DWORD_ALIGNED(buf))) {
+ buf[qspi->bspi_rf_msg_idx++] = data;
+ qspi->bspi_rf_msg_len -= 4;
+ } else {
+ /* Read out remaining bytes, make sure*/
+ u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
+
+ data = cpu_to_le32(data);
+ while (qspi->bspi_rf_msg_len) {
+ *cbuf++ = (u8)data;
+ data >>= 8;
+ qspi->bspi_rf_msg_len--;
+ }
+ }
+ }
+}
+
+static inline int bcm_qspi_is_4_byte_mode(struct bcm_qspi *qspi)
+{
+ return qspi->xfer_mode.addrlen == BSPI_ADDRLEN_4BYTES;
+}
+
+static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
+ int bpp, int bpc, int flex_mode)
+{
+ bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
+ bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
+ bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
+ bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
+ bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
+}
+
+static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
+ int addrlen, int hp)
+{
+ int bpc = 0, bpp = 0;
+ u8 command = SPINOR_OP_READ_FAST;
+ int flex_mode = 1, rv = 0;
+ bool spans_4byte = false;
+
+ pr_debug("set flex mode w %x addrlen %x hp %d\n", width, addrlen, hp);
+
+ if (addrlen == BSPI_ADDRLEN_4BYTES) {
+ bpp = BSPI_BPP_ADDR_SELECT_MASK;
+ spans_4byte = true;
+ }
+
+ bpp |= 8;
+
+ switch (width) {
+ case SPI_NBITS_SINGLE:
+ if (addrlen == BSPI_ADDRLEN_3BYTES)
+ /* default mode, does not need flex_cmd */
+ flex_mode = 0;
+ else
+ command = SPINOR_OP_READ4_FAST;
+ break;
+ case SPI_NBITS_DUAL:
+ bpc = 0x00000001;
+ if (hp) {
+ bpc |= 0x00010100; /* address and mode are 2-bit */
+ bpp = BSPI_BPP_MODE_SELECT_MASK;
+ command = OPCODE_DIOR;
+ if (spans_4byte == true)
+ command = OPCODE_DIOR_4B;
+ } else {
+ command = SPINOR_OP_READ_1_1_2;
+ if (spans_4byte == true)
+ command = SPINOR_OP_READ4_1_1_2;
+ }
+ break;
+ case SPI_NBITS_QUAD:
+ bpc = 0x00000002;
+ if (hp) {
+ bpc |= 0x00020200; /* address and mode are 4-bit */
+ bpp = 4; /* dummy cycles */
+ bpp |= BSPI_BPP_ADDR_SELECT_MASK;
+ command = OPCODE_QIOR;
+ if (spans_4byte == true)
+ command = OPCODE_QIOR_4B;
+ } else {
+ command = SPINOR_OP_READ_1_1_4;
+ if (spans_4byte == true)
+ command = SPINOR_OP_READ4_1_1_4;
+ }
+ break;
+ default:
+ rv = -EINVAL;
+ break;
+ }
+
+ if (rv == 0)
+ bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
+ flex_mode);
+
+ return rv;
+}
+
+static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
+ int addrlen, int hp)
+{
+ u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
+
+ pr_debug("set override mode w %x addrlen %x hp %d\n",
+ width, addrlen, hp);
+
+ switch (width) {
+ case SPI_NBITS_QUAD:
+ /* clear dual mode and set quad mode */
+ data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
+ data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
+ break;
+ case SPI_NBITS_DUAL:
+ /* clear quad mode set dual mode */
+ data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
+ data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
+ break;
+ case SPI_NBITS_SINGLE:
+ /* clear quad/dual mode */
+ data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
+ BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
+ break;
+ default:
+ break;
+ }
+
+ if (addrlen == BSPI_ADDRLEN_4BYTES)
+ /* set 4byte mode*/
+ data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
+ else
+ /* clear 4 byte mode */
+ data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
+
+ /* set the override mode */
+ data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
+ bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
+ bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
+
+ return 0;
+}
+
+static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
+ int width, int addrlen, int hp)
+{
+ int error = 0;
+
+ if (width == -1)
+ width = qspi->xfer_mode.width;
+ if (addrlen == -1)
+ addrlen = qspi->xfer_mode.addrlen;
+ if (hp == -1)
+ hp = qspi->xfer_mode.hp;
+
+ if (width == -1 && addrlen == -1 && hp == -1)
+ qspi->probed_trans_mode = false;
+
+ /* default mode */
+ qspi->xfer_mode.flex_mode = true;
+
+ if (!bcm_qspi_bspi_ver_three(qspi)) {
+ u32 val, mask;
+
+ val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
+ mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
+ if (val & mask || qspi->s3_strap_override_ctrl & mask) {
+ qspi->xfer_mode.flex_mode = false;
+ bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
+ 0);
+
+ if ((val | qspi->s3_strap_override_ctrl) &
+ BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
+ width = SPI_NBITS_DUAL;
+ else if ((val | qspi->s3_strap_override_ctrl) &
+ BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
+ width = SPI_NBITS_QUAD;
+
+ error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
+ hp);
+ }
+ }
+
+ if (qspi->xfer_mode.flex_mode)
+ error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
+
+ if (error) {
+ dev_warn(&qspi->pdev->dev,
+ "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
+ width, addrlen, hp);
+ } else if (qspi->xfer_mode.width != width ||
+ qspi->xfer_mode.addrlen != addrlen ||
+ qspi->xfer_mode.hp != hp) {
+ qspi->xfer_mode.width = width;
+ qspi->xfer_mode.addrlen = addrlen;
+ qspi->xfer_mode.hp = hp;
+ if (!qspi->probed_trans_mode) {
+ dev_info(&qspi->pdev->dev,
+ "cs:%d %d-lane output, %d-byte address%s\n",
+ qspi->curr_cs,
+ qspi->xfer_mode.width,
+ qspi->xfer_mode.addrlen,
+ qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
+ qspi->probed_trans_mode = true;
+ }
+ }
+
+ return error;
+}
+
+static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
+{
+ u32 data = 0;
+
+ if (qspi->curr_cs == cs)
+ return;
+ if (qspi->base[CHIP_SELECT]) {
+ data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
+ data = (data & ~0xff) | (1 << cs);
+ bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
+ udelay(10);
+ }
+ qspi->curr_cs = cs;
+}
+
+static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
+{
+
+ if ((!qspi->base[BSPI]) || (qspi->bspi_enabled))
+ return;
+
+ qspi->bspi_enabled = 1;
+ if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
+ return;
+
+ bcm_qspi_flush_prefetch_buffers(qspi);
+ udelay(1);
+ bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
+ udelay(1);
+}
+
+static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
+{
+ if ((!qspi->base[BSPI]) || (!qspi->bspi_enabled))
+ return;
+
+ qspi->bspi_enabled = 0;
+ if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
+ return;
+
+ bcm_qspi_bspi_busy_poll(qspi);
+ bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
+ udelay(1);
+}
+
+static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
+ const struct bcm_qspi_parms *xp)
+{
+ u32 spcr, spbr = 0;
+
+ if (xp->speed_hz)
+ spbr = qspi->base_clk / (2 * xp->speed_hz);
+
+ spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
+
+ spcr = MSPI_MASTER_BIT;
+ /* for 16 bit the data should be zero */
+ if (xp->bits_per_word != 16)
+ spcr |= xp->bits_per_word << 2;
+ spcr |= xp->mode & 3;
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
+
+ qspi->last_parms = *xp;
+}
+
+static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
+ struct spi_device *spi,
+ struct spi_transfer *trans)
+{
+ struct bcm_qspi_parms xp;
+
+ xp.speed_hz = trans->speed_hz;
+ xp.bits_per_word = trans->bits_per_word;
+ xp.mode = spi->mode;
+
+ bcm_qspi_hw_set_parms(qspi, &xp);
+}
+
+static int bcm_qspi_setup(struct spi_device *spi)
+{
+ struct bcm_qspi_parms *xp;
+
+ if (spi->bits_per_word > 16)
+ return -EINVAL;
+
+ xp = spi_get_ctldata(spi);
+ if (!xp) {
+ xp = kzalloc(sizeof(struct bcm_qspi_parms), GFP_KERNEL);
+ if (!xp)
+ return -ENOMEM;
+ spi_set_ctldata(spi, xp);
+ }
+ xp->speed_hz = spi->max_speed_hz;
+ xp->mode = spi->mode;
+ xp->bits_per_word = spi->bits_per_word ? spi->bits_per_word : 8;
+
+ return 0;
+}
+
+/* MSPI helpers */
+
+/* stop at end of transfer, no other reason */
+#define FNB_BREAK_NONE 0
+/* stop at end of spi_message */
+#define FNB_BREAK_EOM 1
+/* stop at end of spi_transfer if delay */
+#define FNB_BREAK_DELAY 2
+/* stop at end of spi_transfer if cs_change */
+#define FNB_BREAK_CS_CHANGE 4
+/* stop if we run out of bytes */
+#define FNB_BREAK_NO_BYTES 8
+
+/* events that make us stop filling TX slots */
+#define FNB_BREAK_TX (FNB_BREAK_EOM | FNB_BREAK_DELAY | \
+ FNB_BREAK_CS_CHANGE)
+
+/* events that make us deassert CS */
+#define FNB_BREAK_DESELECT (FNB_BREAK_EOM | FNB_BREAK_CS_CHANGE)
+
+static int find_next_byte(struct bcm_qspi *qspi, struct position *p,
+ int flags)
+{
+ int ret = FNB_BREAK_NONE;
+
+ if (p->trans->bits_per_word <= 8)
+ p->byte++;
+ else
+ p->byte += 2;
+
+ if (p->byte >= p->trans->len) {
+ /* we're at the end of the spi_transfer */
+
+ /* in TX mode, need to pause for a delay or CS change */
+ if (p->trans->delay_usecs && (flags & FNB_BREAK_DELAY))
+ ret |= FNB_BREAK_DELAY;
+ if (p->trans->cs_change && (flags & FNB_BREAK_CS_CHANGE))
+ ret |= FNB_BREAK_CS_CHANGE;
+ if (ret)
+ goto done;
+
+ pr_debug("find_next_byte: advance msg exit\n");
+ if (spi_transfer_is_last(qspi->master, p->trans))
+ ret = FNB_BREAK_EOM;
+ else
+ ret = FNB_BREAK_NO_BYTES;
+
+ p->trans = NULL;
+ }
+
+done:
+ pr_debug("find_next_byte: trans %p len %d byte %d ret %x\n",
+ p->trans, p->trans ? p->trans->len : 0, p->byte, ret);
+ return ret;
+}
+
+static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
+{
+ u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
+
+ /* mask out reserved bits */
+ return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
+}
+
+static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
+{
+ u32 reg_offset = MSPI_RXRAM;
+ u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
+ u32 msb_offset = reg_offset + (slot << 3);
+
+ return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
+ ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
+}
+
+static void read_from_hw(struct bcm_qspi *qspi, int slots)
+{
+ struct position p;
+ int slot;
+
+ bcm_qspi_disable_bspi(qspi);
+
+ if (slots > MSPI_NUM_CDRAM) {
+ /* should never happen */
+ dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
+ return;
+ }
+
+ p = qspi->pos;
+
+ for (slot = 0; slot < slots; slot++) {
+ if (p.trans->bits_per_word <= 8) {
+ u8 *buf = p.trans->rx_buf;
+
+ if (buf)
+ buf[p.byte] = read_rxram_slot_u8(qspi, slot);
+ pr_debug("RD %02x\n", buf ? buf[p.byte] : 0xff);
+ } else {
+ u16 *buf = p.trans->rx_buf;
+
+ if (buf)
+ buf[p.byte / 2] = read_rxram_slot_u16(qspi,
+ slot);
+ pr_debug("RD %04x\n", buf ? buf[p.byte] : 0xffff);
+ }
+
+ find_next_byte(qspi, &p, FNB_BREAK_NONE);
+ }
+
+ qspi->pos = p;
+}
+
+static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
+ u8 val)
+{
+ u32 reg_offset = MSPI_TXRAM + (slot << 3);
+
+ /* mask out reserved bits */
+ bcm_qspi_write(qspi, MSPI, reg_offset, val);
+}
+
+static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
+ u16 val)
+{
+ u32 reg_offset = MSPI_TXRAM;
+ u32 msb_offset = reg_offset + (slot << 3);
+ u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
+
+ bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
+ bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
+}
+
+static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
+{
+ return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
+}
+
+static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
+{
+ bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
+}
+
+/* Return number of slots written */
+static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
+{
+ struct position p;
+ int slot = 0, fnb = 0;
+ u32 mspi_cdram = 0;
+
+ bcm_qspi_disable_bspi(qspi);
+ p = qspi->pos;
+ bcm_qspi_update_parms(qspi, spi, p.trans);
+
+ /* Run until end of transfer or reached the max data */
+ while (!fnb && slot < MSPI_NUM_CDRAM) {
+ if (p.trans->bits_per_word <= 8) {
+ const u8 *buf = p.trans->tx_buf;
+ u8 val = buf ? buf[p.byte] : 0xff;
+
+ write_txram_slot_u8(qspi, slot, val);
+ pr_debug("WR %02x\n", val);
+ } else {
+ const u16 *buf = p.trans->tx_buf;
+ u16 val = buf ? buf[p.byte / 2] : 0xffff;
+
+ write_txram_slot_u16(qspi, slot, val);
+ pr_debug("WR %04x\n", val);
+ }
+ mspi_cdram = MSPI_CDRAM_CONT_BIT;
+ mspi_cdram |= (~(1 << spi->chip_select) &
+ MSPI_CDRAM_PCS);
+ mspi_cdram |= ((p.trans->bits_per_word <= 8) ? 0 :
+ MSPI_CDRAM_BITSE_BIT);
+
+ write_cdram_slot(qspi, slot, mspi_cdram);
+
+ /* NOTE: This can update p.trans */
+ fnb = find_next_byte(qspi, &p, FNB_BREAK_TX);
+ slot++;
+ }
+ if (!slot) {
+ dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
+ goto done;
+ }
+
+ /* in TX mode, need to pause for a delay or CS change */
+ if (fnb & FNB_BREAK_CS_CHANGE)
+ qspi->cs_change = 1;
+ if (fnb & FNB_BREAK_DELAY)
+ qspi->next_udelay = p.trans->delay_usecs;
+
+ pr_debug("submitting %d slots\n", slot);
+ bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
+ bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
+
+ if (fnb & FNB_BREAK_DESELECT) {
+ mspi_cdram = read_cdram_slot(qspi, slot - 1) &
+ ~MSPI_CDRAM_CONT_BIT;
+ write_cdram_slot(qspi, slot - 1, mspi_cdram);
+ }
+
+ if (has_bspi(qspi))
+ bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
+
+ /* Must flush previous writes before starting MSPI operation */
+ mb();
+ /* Set cont | spe | spifie */
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
+ qspi->state = STATE_RUNNING;
+
+done:
+ return slot;
+}
+
+static void hw_stop(struct bcm_qspi *qspi)
+{
+ if (has_bspi(qspi))
+ bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
+ qspi->state = STATE_IDLE;
+}
+
+/* BSPI helpers */
+static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
+ struct spi_flash_read_message *msg)
+{
+ struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
+ u32 addr = 0, len, len_words;
+ u8 *buf;
+ int ret = 0;
+ int retry = 3;
+ unsigned long timeo = msecs_to_jiffies(100);
+
+ if (bcm_qspi_bspi_ver_three(qspi))
+ if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
+ return -EIO;
+
+ bcm_qspi_chip_select(qspi, spi->chip_select);
+
+ /*
+ * when using flex mode mode we need to send
+ * the upper address byte to bspi
+ */
+ if (bcm_qspi_bspi_ver_three(qspi) == false) {
+ addr = msg->from & 0xff000000;
+ bcm_qspi_write(qspi, BSPI,
+ BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
+ }
+
+ if (qspi->xfer_mode.flex_mode == false)
+ addr = msg->from;
+ else
+ addr = msg->from & 0x00ffffff;
+
+ /* read result into buffer */
+ buf = msg->buf;
+ len = msg->len;
+
+ if (bcm_qspi_bspi_ver_three(qspi) == true)
+ addr = (addr + 0xc00000) & 0xffffff;
+
+retry:
+ reinit_completion(&qspi->bspi_done);
+ bcm_qspi_enable_bspi(qspi);
+ len_words = (len + 3) >> 2;
+ qspi->bspi_rf_msg = msg;
+ qspi->bspi_rf_msg_status = 0;
+ qspi->bspi_rf_msg_idx = 0;
+ qspi->bspi_rf_msg_len = len;
+ pr_debug("bspi xfr addr 0x%x len 0x%x", addr, len);
+
+ bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
+ bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
+ bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
+ if (!qspi->use_l2_intc) {
+ bcm_qspi_clear_interrupt(qspi, QSPI_INTERRUPTS_ALL);
+ bcm_qspi_enable_interrupt(qspi, BSPI_LR_INTERRUPTS_ALL);
+ }
+
+ bcm_qspi_lr_start(qspi);
+ /* Must flush previous writes before starting BSPI operation */
+ mb();
+ if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
+ if (retry--)
+ goto retry;
+
+ dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
+ ret = -ETIMEDOUT;
+ } else {
+ /* set the return length for the caller */
+ msg->retlen = len;
+ }
+
+ return ret;
+}
+
+static int bcm_qspi_flash_read(struct spi_device *spi,
+ struct spi_flash_read_message *msg)
+{
+ struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
+ int ret = 0;
+ bool mspi_read = false;
+ u32 nbits, addr, len;
+ u_char *buf;
+
+ buf = msg->buf;
+ addr = msg->from;
+ len = msg->len;
+
+ if (bcm_qspi_bspi_ver_three(qspi) == true) {
+ /*
+ * The address coming into this function is a raw flash offset.
+ * But for BSPI <= V3, we need to convert it to a remapped BSPI
+ * address. If it crosses a 4MB boundary, just revert back to
+ * using MSPI.
+ */
+ addr = (addr + 0xc00000) & 0xffffff;
+
+ if (ADDR_TO_4MBYTE_SEGMENT(addr) ^
+ ADDR_TO_4MBYTE_SEGMENT(addr + len - 1))
+ mspi_read = true;
+ }
+
+ /* non-aligned and very short transfers are handled by MSPI */
+ if (unlikely(!DWORD_ALIGNED(addr) || !DWORD_ALIGNED(buf) ||
+ len < sizeof(u32)))
+ mspi_read = true;
+
+ if (mspi_read)
+ /* this will make the m25p80 fallback to mspi read */
+ return -EAGAIN;
+
+ nbits = msg->data_nbits;
+ switch (msg->read_opcode) {
+ case SPINOR_OP_READ4_FAST:
+ if (!bcm_qspi_is_4_byte_mode(qspi)) {
+ ret = bcm_qspi_bspi_set_mode(qspi, nbits,
+ BSPI_ADDRLEN_4BYTES, -1);
+ if (ret < 0)
+ break;
+ }
+ /* fall through */
+ case SPINOR_OP_READ_FAST:
+ ret = bcm_qspi_bspi_flash_read(spi, msg);
+ break;
+ case OPCODE_QIOR_4B:
+ case SPINOR_OP_READ_1_1_4:
+ case SPINOR_OP_READ4_1_1_4:
+ ret = bcm_qspi_bspi_flash_read(spi, msg);
+ break;
+ default:
+ break;
+ }
+
+ return ret;
+}
+
+static void bcm_qspi_trans_mode(struct bcm_qspi *qspi,
+ struct spi_device *spi,
+ struct spi_transfer *trans)
+{
+ u32 nbits = SPI_NBITS_SINGLE;
+ int ret = 0;
+
+ bcm_qspi_chip_select(qspi, spi->chip_select);
+ if (trans && trans->len && trans->tx_buf) {
+ const u8 *buf = trans->tx_buf;
+ u8 command = buf[0];
+
+ if (trans->rx_nbits)
+ nbits = trans->rx_nbits;
+
+ switch (command) {
+ case SPINOR_OP_EN4B:
+ pr_debug("EN4B MODE\n");
+ ret = bcm_qspi_bspi_set_mode(qspi, nbits,
+ BSPI_ADDRLEN_4BYTES, -1);
+ break;
+ case SPINOR_OP_EX4B:
+ pr_debug("EX4B MODE\n");
+ ret = bcm_qspi_bspi_set_mode(qspi, nbits,
+ BSPI_ADDRLEN_3BYTES, -1);
+ break;
+ case SPINOR_OP_BRWR:
+ command = buf[1];
+ pr_debug(" %s 4-BYTE MODE\n",
+ command ? "ENABLE" : "DISABLE");
+ ret = bcm_qspi_bspi_set_mode(qspi, nbits,
+ command ? BSPI_ADDRLEN_4BYTES :
+ BSPI_ADDRLEN_3BYTES, -1);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (ret < 0)
+ dev_warn(&qspi->pdev->dev, "failed to set the read mode\n");
+}
+
+static int bcm_qspi_transfer_one(struct spi_master *master,
+ struct spi_device *spi, struct spi_transfer *trans)
+{
+ struct bcm_qspi *qspi = spi_master_get_devdata(master);
+ int slots;
+ unsigned long timeo = msecs_to_jiffies(100);
+
+ qspi->pos.trans = trans;
+ qspi->pos.byte = 0;
+ bcm_qspi_trans_mode(qspi, spi, trans);
+
+ while (qspi->pos.byte < trans->len) {
+ reinit_completion(&qspi->mspi_done);
+
+ slots = write_to_hw(qspi, spi);
+ if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
+ dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
+ return -ETIMEDOUT;
+ }
+
+ if (qspi->next_udelay) {
+ udelay(qspi->next_udelay);
+ qspi->next_udelay = 0;
+ }
+
+ read_from_hw(qspi, slots);
+ if (qspi->cs_change) {
+ udelay(10);
+ qspi->cs_change = 0;
+ }
+ }
+
+ if (spi_transfer_is_last(master, trans))
+ hw_stop(qspi);
+
+ return 0;
+}
+
+static void bcm_qspi_cleanup(struct spi_device *spi)
+{
+ struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
+
+ kfree(xp);
+}
+
+static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
+{
+ struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
+ struct bcm_qspi *qspi = qspi_dev_id->dev;
+ u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
+
+ if (status & MSPI_MSPI_STATUS_SPIF) {
+ /* clear interrupt */
+ status &= ~MSPI_MSPI_STATUS_SPIF;
+ bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
+ if (!qspi->use_l2_intc)
+ bcm_qspi_clear_interrupt(qspi, INTR_MSPI_DONE_MASK);
+ complete(&qspi->mspi_done);
+ return IRQ_HANDLED;
+ } else
+ return IRQ_NONE;
+}
+
+static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
+{
+ struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
+ struct bcm_qspi *qspi = qspi_dev_id->dev;
+
+ if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
+ bcm_qspi_bspi_lr_data_read(qspi);
+ if (qspi->bspi_rf_msg_len == 0) {
+ qspi->bspi_rf_msg = NULL;
+ if (!qspi->use_l2_intc)
+ bcm_qspi_disable_interrupt(qspi,
+ BSPI_LR_INTERRUPTS_ALL);
+ if (qspi->bspi_rf_msg_status)
+ bcm_qspi_lr_clear(qspi);
+ else
+ bcm_qspi_flush_prefetch_buffers(qspi);
+
+ complete(&qspi->bspi_done);
+ }
+ if (!qspi->use_l2_intc)
+ bcm_qspi_clear_interrupt(qspi, BSPI_LR_INTERRUPTS_ALL);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
+{
+ struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
+ struct bcm_qspi *qspi = qspi_dev_id->dev;
+
+ if (qspi_dev_id->irqp->mask & BSPI_LR_INTERRUPTS_ERROR) {
+ dev_err(&qspi->pdev->dev, "INT error\n");
+ qspi->bspi_rf_msg_status = -EIO;
+ if (!qspi->use_l2_intc)
+ bcm_qspi_clear_interrupt(qspi,
+ BSPI_LR_INTERRUPTS_ERROR);
+ complete(&qspi->bspi_done);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
+{
+ struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
+ struct bcm_qspi *qspi = qspi_dev_id->dev;
+ u32 status = bcm_qspi_read_l2int_status(qspi);
+ irqreturn_t ret = IRQ_NONE;
+
+ if (status & MSPI_INTERRUPTS_ALL)
+ ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
+ else if (status & BSPI_LR_INTERRUPTS_DATA)
+ ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
+ else if (status & BSPI_LR_INTERRUPTS_ERROR)
+ ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
+
+ return ret;
+}
+
+static const struct bcm_qspi_irq qspi_irq_tab[] = {
+ {
+ .irq_name = "spi_lr_fullness_reached",
+ .irq_handler = bcm_qspi_bspi_lr_l2_isr,
+ .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
+ },
+ {
+ .irq_name = "spi_lr_session_aborted",
+ .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
+ .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
+ },
+ {
+ .irq_name = "spi_lr_impatient",
+ .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
+ .mask = INTR_BSPI_LR_IMPATIENT_MASK,
+ },
+ {
+ .irq_name = "spi_lr_session_done",
+ .irq_handler = bcm_qspi_bspi_lr_l2_isr,
+ .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
+ },
+ {
+ .irq_name = "spi_lr_overread",
+ .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
+ .mask = INTR_BSPI_LR_OVERREAD_MASK,
+ },
+ {
+ .irq_name = "mspi_done",
+ .irq_handler = bcm_qspi_mspi_l2_isr,
+ .mask = INTR_MSPI_DONE_MASK,
+ },
+ {
+ .irq_name = "mspi_halted",
+ .irq_handler = bcm_qspi_mspi_l2_isr,
+ .mask = INTR_MSPI_HALTED_MASK,
+ },
+ {
+ /* single muxed L1 interrupt source */
+ .irq_name = "spi_l1_intr",
+ .irq_handler = bcm_qspi_l1_isr,
+ .mask = QSPI_INTERRUPTS_ALL,
+ },
+};
+
+
+static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
+{
+ u32 val = 0;
+ struct bcm_qspi_parms parms;
+
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
+ bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
+ bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
+
+ parms.mode = SPI_MODE_3;
+ parms.bits_per_word = 8;
+ of_property_read_u32(qspi->pdev->dev.of_node, "clock-frequency", &val);
+ if (val > 0) {
+ parms.speed_hz = val;
+ bcm_qspi_hw_set_parms(qspi, &parms);
+ } else {
+ bcm_qspi_hw_set_parms(qspi, &bcm_qspi_default_parms_cs0);
+ }
+
+ if (!qspi->base[BSPI])
+ return;
+ val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
+ qspi->bspi_maj_rev = (val >> 8) & 0xff;
+ qspi->bspi_min_rev = val & 0xff;
+ if (!(bcm_qspi_bspi_ver_three(qspi))) {
+ /* Force mapping of BSPI address -> flash offset */
+ bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
+ bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
+ }
+ qspi->bspi_enabled = 1;
+ bcm_qspi_disable_bspi(qspi);
+ bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
+ bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
+}
+
+static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
+{
+ bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
+ /* disable irq and enable bits */
+ bcm_qspi_enable_bspi(qspi);
+}
+
+/* Get BSPI chip-selects info */
+static int bcm_qspi_get_bspi_cs(struct bcm_qspi *qspi)
+{
+ struct device_node *np = qspi->pdev->dev.of_node, *childnode;
+ int num_bspi_cs;
+ u32 vals[10], i;
+ struct spi_master *master = qspi->master;
+
+ qspi->bspi_cs_bmap = 0;
+ if (!qspi->base[BSPI])
+ return 0;
+
+ if (of_find_property(np, "bspi-sel", NULL)) {
+ num_bspi_cs = of_property_count_u32_elems(np, "bspi-sel");
+ if (num_bspi_cs) {
+ of_property_read_u32_array(np, "bspi-sel", vals,
+ num_bspi_cs);
+ for (i = 0; i < num_bspi_cs; i++)
+ qspi->bspi_cs_bmap |= (1 << vals[i]);
+ }
+ } else {
+ /*
+ * if using m25p80 compatible driver,
+ * find the chip select info in the child node
+ */
+ for_each_child_of_node(np, childnode) {
+ if (of_find_property(childnode, "use-bspi", NULL)) {
+ const u32 *regp;
+ int size;
+
+ /* "reg" field holds chip-select number */
+ regp = of_get_property(childnode, "reg", &size);
+ if (!regp || size != sizeof(*regp))
+ return -EINVAL;
+ if (regp[0] < master->num_chipselect)
+ qspi->bspi_cs_bmap |=
+ (1 << regp[0]);
+ }
+ }
+ }
+ pr_debug("bspi chip selects bitmap 0x%x", qspi->bspi_cs_bmap);
+ return 0;
+}
+
+static int bcm_qspi_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct bcm_qspi *qspi;
+ struct spi_master *master;
+ struct resource *res;
+ int irq, ret = 0, num_ints = 0;
+ u32 val;
+ const char *name = NULL;
+ int num_irqs = ARRAY_SIZE(qspi_irq_tab);
+
+ master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
+ if (!master) {
+ dev_err(dev, "error allocating spi_master\n");
+ return -ENOMEM;
+ }
+
+ qspi = spi_master_get_devdata(master);
+ qspi->pdev = pdev;
+ qspi->state = STATE_IDLE;
+ qspi->pos.trans = NULL;
+ qspi->pos.byte = 0;
+ qspi->master = master;
+
+ master->bus_num = pdev->id;
+ master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
+ master->setup = bcm_qspi_setup;
+ master->transfer_one = bcm_qspi_transfer_one;
+ master->spi_flash_read = bcm_qspi_flash_read;
+ master->cleanup = bcm_qspi_cleanup;
+ master->dev.of_node = dev->of_node;
+ master->num_chipselect = NUM_CHIPSELECT;
+
+ if (!of_property_read_u32(dev->of_node, "num-cs", &val))
+ master->num_chipselect = val;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
+ if (!res)
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "mspi");
+
+ if (res) {
+ qspi->base[MSPI] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(qspi->base[MSPI])) {
+ ret = PTR_ERR(qspi->base[MSPI]);
+ goto err2;
+ }
+ } else
+ goto err2;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
+ if (res) {
+ qspi->base[BSPI] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(qspi->base[BSPI])) {
+ ret = PTR_ERR(qspi->base[BSPI]);
+ goto err2;
+ }
+ qspi->bspi_mode = true;
+ } else
+ qspi->bspi_mode = false;
+
+ if (!qspi->bspi_mode)
+ master->bus_num += 1;
+
+ dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
+ if (res) {
+ qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(qspi->base[CHIP_SELECT])) {
+ ret = PTR_ERR(qspi->base[CHIP_SELECT]);
+ goto err2;
+ }
+ }
+
+ qspi->hif_spi_mode = false;
+ qspi->use_l2_intc = false;
+ /* SoC based interrupt resource differences are handled here */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "intr_regs");
+ if (res) {
+ qspi->base[INTR] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(qspi->base[INTR])) {
+ ret = PTR_ERR(qspi->base[INTR]);
+ goto err2;
+ }
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "intr_status_reg");
+ if (res) {
+ qspi->base[INTR_STATUS] = devm_ioremap_resource(dev,
+ res);
+ if (IS_ERR(qspi->base[INTR_STATUS])) {
+ ret = PTR_ERR(qspi->base[INTR_STATUS]);
+ goto err2;
+ }
+ }
+ } else {
+ /* SoCs with hif_spi_intr */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "hif_spi_intr2");
+ if (res) {
+ qspi->base[INTR] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(qspi->base[INTR])) {
+ ret = PTR_ERR(qspi->base[INTR]);
+ goto err2;
+ }
+ qspi->hif_spi_mode = true;
+ qspi->base[INTR_STATUS] = qspi->base[INTR];
+ } else {
+ /* we must be using l2 intc driver */
+ qspi->use_l2_intc = true;
+ }
+ }
+
+ if (!qspi->use_l2_intc) {
+ bcm_qspi_disable_interrupt(qspi, QSPI_INTERRUPTS_ALL);
+ bcm_qspi_clear_interrupt(qspi, QSPI_INTERRUPTS_ALL);
+ }
+
+ qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
+ GFP_KERNEL);
+ if (IS_ERR(qspi->dev_ids)) {
+ ret = PTR_ERR(qspi->dev_ids);
+ goto err2;
+ }
+
+ for (val = 0; val < num_irqs; val++) {
+ irq = -1;
+ name = qspi_irq_tab[val].irq_name;
+ if (val < (num_irqs - 1))
+ /* get the l2 interrupts */
+ irq = platform_get_irq_byname(pdev, name);
+ else if (!num_ints) {
+ /* all mspi, bspi intrs muxed to one L1 intr */
+ irq = platform_get_irq(pdev, 0);
+ of_property_read_string(dev->of_node,
+ "interrupt-names",
+ &name);
+ }
+
+ if (irq >= 0) {
+ ret = devm_request_irq(&pdev->dev, irq,
+ qspi_irq_tab[val].irq_handler, 0,
+ name,
+ &qspi->dev_ids[val]);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "unable to allocate IRQ\n");
+ goto err2;
+ }
+
+ qspi->dev_ids[val].dev = qspi;
+ qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
+ num_ints++;
+ dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
+ qspi_irq_tab[val].irq_name,
+ irq);
+ }
+ }
+
+ if (!num_ints) {
+ dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
+ goto err2;
+ }
+
+ if (!qspi->use_l2_intc)
+ bcm_qspi_enable_interrupt(qspi, INTR_MSPI_DONE_MASK);
+
+ qspi->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(qspi->clk)) {
+ dev_warn(dev, "unable to get clock, using defaults\n");
+ qspi->clk = NULL;
+ }
+
+ if (qspi->clk) {
+ ret = clk_prepare_enable(qspi->clk);
+ if (ret) {
+ dev_err(dev, "failed to prepare clock\n");
+ goto err2;
+ }
+ qspi->base_clk = clk_get_rate(qspi->clk);
+ } else {
+ qspi->base_clk = MSPI_BASE_FREQ;
+ }
+
+ qspi->max_speed_hz = qspi->base_clk/(QSPI_SPBR_MIN * 2);
+
+ bcm_qspi_hw_init(qspi);
+ init_completion(&qspi->mspi_done);
+ init_completion(&qspi->bspi_done);
+ qspi->curr_cs = -1;
+
+ platform_set_drvdata(pdev, qspi);
+ bcm_qspi_get_bspi_cs(qspi);
+
+ qspi->xfer_mode.width = -1;
+ qspi->xfer_mode.addrlen = -1;
+ qspi->xfer_mode.hp = -1;
+
+ ret = devm_spi_register_master(&pdev->dev, master);
+ if (ret < 0) {
+ dev_err(dev, "can't register master\n");
+ goto err1;
+ }
+
+ return 0;
+
+err1:
+ bcm_qspi_hw_uninit(qspi);
+ if (qspi->clk)
+ clk_disable_unprepare(qspi->clk);
+err2:
+ spi_master_put(master);
+ kfree(qspi->dev_ids);
+ return ret;
+}
+
+static int bcm_qspi_remove(struct platform_device *pdev)
+{
+ struct bcm_qspi *qspi = platform_get_drvdata(pdev);
+
+ platform_set_drvdata(pdev, NULL);
+ bcm_qspi_hw_uninit(qspi);
+ if (qspi->clk)
+ clk_disable_unprepare(qspi->clk);
+ kfree(qspi->dev_ids);
+ spi_unregister_master(qspi->master);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int bcm_qspi_suspend(struct device *dev)
+{
+ struct bcm_qspi *qspi = dev_get_drvdata(dev);
+
+ if (qspi->hif_spi_mode && !qspi->use_l2_intc)
+ qspi->s3_intr2_mask = bcm_qspi_read(qspi, INTR,
+ HIF_SPI_INTR2_CPU_MASK_STATUS);
+ if (qspi->clk)
+ clk_disable(qspi->clk);
+ return 0;
+};
+
+static int bcm_qspi_resume(struct device *dev)
+{
+ struct bcm_qspi *qspi = dev_get_drvdata(dev);
+ int curr_cs = qspi->curr_cs;
+ int ret = 0;
+
+ if (qspi->hif_spi_mode && !qspi->use_l2_intc) {
+ bcm_qspi_write(qspi, INTR, HIF_SPI_INTR2_CPU_MASK_CLEAR,
+ ~qspi->s3_intr2_mask);
+ bcm_qspi_read(qspi, INTR, HIF_SPI_INTR2_CPU_MASK_CLEAR);
+ }
+ bcm_qspi_hw_init(qspi);
+ bcm_qspi_bspi_set_mode(qspi, -1, -1, -1);
+ qspi->curr_cs = -1;
+ bcm_qspi_chip_select(qspi, curr_cs);
+
+ if (qspi->clk)
+ ret = clk_enable(qspi->clk);
+
+ return ret;
+}
+#endif /* CONFIG_PM_SLEEP */
+
+static SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
+
+static const struct of_device_id bcm_qspi_of_match[] = {
+ { .compatible = "brcm,spi-bcm-qspi" },
+ { .compatible = "brcm,qspi-brcmstb" },
+ { .compatible = "brcm,spi-brcmstb-mspi"},
+ {},
+};
+MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
+
+static struct platform_driver bcm_qspi_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .bus = &platform_bus_type,
+ .owner = THIS_MODULE,
+ .pm = &bcm_qspi_pm_ops,
+ .of_match_table = bcm_qspi_of_match,
+ },
+ .probe = bcm_qspi_probe,
+ .remove = bcm_qspi_remove,
+};
+module_platform_driver(bcm_qspi_driver);
+
+MODULE_AUTHOR("Kamal Dasu");
+MODULE_DESCRIPTION("BCM QSPI driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:" DRIVER_NAME);