@@ -323,6 +323,17 @@ config MTD_NAND_PXA3xx
platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada
platforms (7K, 8K) (NFCv2).
+config MTD_NAND_MARVELL
+ tristate "NAND controller support on Marvell boards"
+ depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+ (COMPILE_TEST && HAS_IOMEM)
+ help
+ This enables the NAND flash controller driver for Marvell boards,
+ including:
+ - PXA3xx processors (NFCv1)
+ - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+ - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
config MTD_NAND_SLC_LPC32XX
tristate "NXP LPC32xx SLC Controller"
depends on ARCH_LPC32XX
@@ -31,6 +31,7 @@ obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
+obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
new file mode 100644
@@ -0,0 +1,2384 @@
+/*
+ * Marvell NAND flash controller driver
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Copyright (C) 2017 Marvell
+ * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
+ */
+
+#include <linux/module.h>
+#include <linux/clk.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_platform.h>
+#include <linux/iopoll.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regmap.h>
+#include <asm/unaligned.h>
+
+/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
+#define FIFO_DEPTH 8
+#define FIFO_REP(x) (x / sizeof(u32))
+#define FIFO_DEPTH_32 FIFO_REP(FIFO_DEPTH)
+/* NFCv2 does not support transfers of larger chunks at a time */
+#define MAX_CHUNK_SIZE 2112
+/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
+#define POLL_PERIOD 0
+#define POLL_TIMEOUT 100000
+/* Interrupt maximum wait period in ms */
+#define IRQ_TIMEOUT 1000
+/* Latency in clock cycles between SoC pins and NFC logic */
+#define MIN_RD_DEL_CNT 3
+/* Maximum number of contiguous address cycles */
+#define MAX_ADDRESS_CYC 7
+/* System control register and bit to enable NAND on some SoCs */
+#define GENCONF_SOC_DEVICE_MUX 0x208
+#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
+
+/* NAND controller data flash control register */
+#define NDCR 0x00
+/* NAND interface timing parameter 0 register */
+#define NDTR0 0x04
+/* NAND interface timing parameter 1 register */
+#define NDTR1 0x0C
+/* NAND controller status register */
+#define NDSR 0x14
+/* NAND ECC control register */
+#define NDECCCTRL 0x28
+/* NAND controller data buffer register */
+#define NDDB 0x40
+/* NAND controller command buffer 0 register */
+#define NDCB0 0x48
+/* NAND controller command buffer 1 register */
+#define NDCB1 0x4C
+/* NAND controller command buffer 2 register */
+#define NDCB2 0x50
+/* NAND controller command buffer 3 register */
+#define NDCB3 0x54
+
+/* Data flash control register bitfields */
+#define NDCR_ALL_INT GENMASK(11, 0)
+#define NDCR_CS1_CMDDM BIT(7)
+#define NDCR_CS0_CMDDM BIT(8)
+#define NDCR_RDYM BIT(11)
+#define NDCR_ND_ARB_EN BIT(12)
+#define NDCR_RA_START BIT(15)
+#define NDCR_RD_ID_CNT(x) ((x & 0x7) << 16)
+#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
+#define NDCR_DWIDTH_M BIT(26)
+#define NDCR_DWIDTH_C BIT(27)
+#define NDCR_ND_RUN BIT(28)
+#define NDCR_ECC_EN BIT(30)
+#define NDCR_SPARE_EN BIT(31)
+
+/* NAND interface timing parameter registers bitfields */
+#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
+#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
+#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
+#define NDTR0_SEL_NRE_EDGE BIT(7)
+#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
+#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
+#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
+#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
+#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
+#define NDTR0_SELCNTR BIT(26)
+#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
+
+#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
+#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
+#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
+#define NDTR1_PRESCALE BIT(14)
+#define NDTR1_WAIT_MODE BIT(15)
+#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
+
+/* NAND controller status register bitfields */
+#define NDSR_WRCMDREQ BIT(0)
+#define NDSR_RDDREQ BIT(1)
+#define NDSR_WRDREQ BIT(2)
+#define NDSR_CORERR BIT(3)
+#define NDSR_UNCERR BIT(4)
+#define NDSR_CMDD(cs) BIT(8 - cs)
+#define NDSR_RDY(rb) BIT(11 + rb)
+#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
+
+/* NAND ECC control register bitfields */
+#define NDECCTRL_BCH_EN BIT(0)
+
+/* NAND controller command buffer registers bitfields */
+#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
+#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
+#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
+#define NDCB0_DBC BIT(19)
+#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
+#define NDCB0_CSEL BIT(24)
+#define NDCB0_RDY_BYP BIT(27)
+#define NDCB0_LEN_OVRD BIT(28)
+#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
+
+#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
+#define NDCB1_ADDRS(x) (x << 16)
+
+#define NDCB2_ADDR5(x) (((x >> 16) & 0xFF) << 0)
+
+#define NDCB3_ADDR6(x) ((x & 0xFF) << 16)
+#define NDCB3_ADDR7(x) ((x & 0xFF) << 24)
+
+/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
+#define TYPE_READ 0
+#define TYPE_WRITE 1
+#define TYPE_ERASE 2
+#define TYPE_READ_ID 3
+#define TYPE_STATUS 4
+#define TYPE_RESET 5
+#define TYPE_NAKED_CMD 6
+#define TYPE_NAKED_ADDR 7
+#define TYPE_MASK 7
+#define XTYPE_MONOLITHIC_RW 0
+#define XTYPE_LAST_NAKED_RW 1
+#define XTYPE_FINAL_COMMAND 3
+#define XTYPE_READ 4
+#define XTYPE_WRITE_DISPATCH 4
+#define XTYPE_NAKED_RW 5
+#define XTYPE_COMMAND_DISPATCH 6
+#define XTYPE_MASK 7
+
+/*
+ * Marvell ECC engine works differently than the others, in order to limit the
+ * size of the IP, hardware engineers choose to set a fixed strength at 16 bits
+ * per subpage, and depending on a the desired strength needed by the NAND chip,
+ * a particular layout mixing data/spare/ecc is defined, with a possible last
+ * chunk smaller that the others.
+ *
+ * @writesize: Full page size on which the layout applies
+ * @chunk: Desired ECC chunk size on which the layout applies
+ * @strength: Desired ECC strength (per chunk size bytes) on which the
+ * layout applies
+ * @full_chunk_cnt: Number of full-sized chunks, which is the number of
+ * repetitions of the pattern:
+ * (data_bytes + spare_bytes + ecc_bytes).
+ * @data_bytes: Number of data bytes per chunk
+ * @spare_bytes: Number of spare bytes per chunk
+ * @ecc_bytes: Number of ecc bytes per chunk
+ * @last_chunk_cnt: If there is a last chunk with a different size than
+ * the first ones, the next fields may not be empty
+ * @last_data_bytes: Number of data bytes in the last chunk
+ * @last_spare_bytes: Number of spare bytes in the last chunk
+ * @last_ecc_bytes: Number of ecc bytes in the last chunk
+ */
+struct marvell_hw_ecc_layout {
+ /* Constraints */
+ int writesize;
+ int chunk;
+ int strength;
+ /* Corresponding layout */
+ int full_chunk_cnt;
+ int data_bytes;
+ int spare_bytes;
+ int ecc_bytes;
+ int last_chunk_cnt;
+ int last_data_bytes;
+ int last_spare_bytes;
+ int last_ecc_bytes;
+};
+
+#define MARVELL_LAYOUT(ws, dc, ds, fcc, db, sb, eb, lcc, ldb, lsb, leb) \
+ { \
+ .writesize = ws, \
+ .chunk = dc, \
+ .strength = ds, \
+ .full_chunk_cnt = fcc, \
+ .data_bytes = db, \
+ .spare_bytes = sb, \
+ .ecc_bytes = eb, \
+ .last_chunk_cnt = lcc, \
+ .last_data_bytes = ldb, \
+ .last_spare_bytes = lsb, \
+ .last_ecc_bytes = leb, \
+ }
+
+/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
+static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
+ MARVELL_LAYOUT( 512, 512, 1, 1, 512, 0, 6, 0, 0, 0, 0),
+ MARVELL_LAYOUT( 2048, 512, 1, 1, 2048, 40, 24, 0, 0, 0, 0),
+ MARVELL_LAYOUT( 2048, 512, 4, 1, 2048, 32, 30, 0, 0, 0, 0),
+ MARVELL_LAYOUT( 4096, 512, 4, 2, 2048, 32, 30, 0, 0, 0, 0),
+ MARVELL_LAYOUT( 4096, 512, 8, 4, 1024, 0, 30, 1, 0, 64, 30),
+};
+
+/*
+ * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
+ * is made by a field in NDCB0 register, and in another field in NDCB2 register.
+ * The datasheet describes the logic with an error: ADDR5 field is once
+ * declared at the beginning of NDCB2, and another time at its end. Because the
+ * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
+ * to use the last bit of this field instead of the first ones.
+ *
+ * @ndcb0_csel: Value of the NDCB0 register with or without the flag
+ * selecting the wanted CE lane. This is set once when
+ * the Device Tree is probed.
+ * @rb: Ready/Busy pin for the flash chip
+ */
+struct marvell_nand_chip_sel {
+ u32 ndcb0_csel;
+ unsigned int rb;
+};
+
+/*
+ * NAND chip structure: stores NAND chip device related information
+ *
+ * @chip: Base NAND chip structure
+ * @node: Used to store NAND chips into a list
+ * @layout NAND layout when using hardware ECC
+ * @ndtr0 Timing registers 0 value for this NAND chip
+ * @ndtr1 Timing registers 1 value for this NAND chip
+ * @selected: Current active CS
+ * @nsels: Number of CS lines required by the NAND chip
+ * @sels: Array of CS lines descriptions
+ */
+struct marvell_nand_chip {
+ struct nand_chip chip;
+ struct list_head node;
+ const struct marvell_hw_ecc_layout *layout;
+ u32 ndtr0;
+ u32 ndtr1;
+ int addr_cyc;
+ int selected;
+ unsigned int nsels;
+ struct marvell_nand_chip_sel sels[0];
+};
+
+static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct marvell_nand_chip, chip);
+}
+
+static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
+ *nand)
+{
+ return &nand->sels[nand->selected];
+}
+
+enum marvell_nfc_variant {
+ MARVELL_NFC_VARIANT_PXA3XX,
+ MARVELL_NFC_VARIANT_ARMADA370,
+ MARVELL_NFC_VARIANT_ARMADA_8K,
+};
+
+/*
+ * NAND controller capabilities for distinction between compatible strings
+ *
+ * @variant: Board type
+ * @max_cs_nb: Number of Chip Select lines available
+ * @max_rb_nb: Number of Ready/Busy lines available
+ * @legacy_of_bindings Indicates if DT parsing must be done using the old
+ * fashion way
+ */
+struct marvell_nfc_caps {
+ enum marvell_nfc_variant variant;
+ unsigned int max_cs_nb;
+ unsigned int max_rb_nb;
+ bool legacy_of_bindings;
+};
+
+/*
+ * NAND controller structure: stores Marvell NAND controller information
+ *
+ * @controller: Base controller structure
+ * @dev: Parent device (used to print error messages)
+ * @regs: NAND controller registers
+ * @ecc_clk: ECC block clock, two times the NAND controller clock
+ * @complete: Completion object to wait for NAND controller events
+ * @assigned_cs: Bitmask describing already assigned CS lines
+ * @chips: List containing all the NAND chips attached to
+ * this NAND controller
+ * @caps: NAND controller capabilities for each compatible string
+ * @buf: Controller local buffer to store a part of the read
+ * buffer when the read operation was not 8 bytes aligned
+ * as is the FIFO.
+ * @buf_pos: Position in the 'buf' buffer
+ */
+struct marvell_nfc {
+ struct nand_hw_control controller;
+ struct device *dev;
+ void __iomem *regs;
+ struct clk *ecc_clk;
+ struct completion complete;
+ unsigned long assigned_cs;
+ struct list_head chips;
+ const struct marvell_nfc_caps *caps;
+
+ /*
+ * Buffer handling: @buf will be accessed byte-per-byter but also
+ * int-per-int when exchanging data with the NAND controller FIFO,
+ * 32-bit alignment is then required.
+ */
+ u8 buf[FIFO_DEPTH] __aligned(sizeof(u32));
+ int buf_pos;
+};
+
+static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
+{
+ return container_of(ctrl, struct marvell_nfc, controller);
+}
+
+/*
+ * NAND controller timings expressed in NAND Controller clock cycles
+ *
+ * @tRP: ND_nRE pulse width
+ * @tRH: ND_nRE high duration
+ * @tWP: ND_nWE pulse time
+ * @tWH: ND_nWE high duration
+ * @tCS: Enable signal setup time
+ * @tCH: Enable signal hold time
+ * @tADL: Address to write data delay
+ * @tAR: ND_ALE low to ND_nRE low delay
+ * @tWHR: ND_nWE high to ND_nRE low for status read
+ * @tRHW: ND_nRE high duration, read to write delay
+ * @tR: ND_nWE high to ND_nRE low for read
+ */
+struct marvell_nfc_timings {
+ /* NDTR0 fields */
+ unsigned int tRP;
+ unsigned int tRH;
+ unsigned int tWP;
+ unsigned int tWH;
+ unsigned int tCS;
+ unsigned int tCH;
+ unsigned int tADL;
+ /* NDTR1 fields */
+ unsigned int tAR;
+ unsigned int tWHR;
+ unsigned int tRHW;
+ unsigned int tR;
+};
+
+/*
+ * Derives a duration in numbers of clock cycles.
+ *
+ * @ps: Duration in pico-seconds
+ * @period_ns: Clock period in nano-seconds
+ *
+ * Convert the duration in nano-seconds, then divide by the period and
+ * return the number of clock periods.
+ */
+#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
+
+/*
+ * NAND driver structure filled during the parsing of the ->exec_op() subop
+ * subset of instructions.
+ *
+ * @ndcb: Array for the values of the NDCBx registers
+ * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
+ * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
+ * @rdy_delay_ns: Optional delay after waiting for the RB pin
+ * @data_delay_ns: Optional delay after the data xfer
+ * @data_instr_idx: Index of the data instruction in the subop
+ * @data_instr: Pointer to the data instruction in the subop
+ */
+struct marvell_nfc_op {
+ u32 ndcb[4];
+ unsigned int cle_ale_delay_ns;
+ unsigned int rdy_timeout_ms;
+ unsigned int rdy_delay_ns;
+ unsigned int data_delay_ns;
+ unsigned int data_instr_idx;
+ const struct nand_op_instr *data_instr;
+};
+
+/*
+ * Internal helper to conditionnally apply a delay (from the above structure,
+ * most of the time).
+ */
+static void cond_delay(unsigned int ns)
+{
+ if (!ns)
+ return;
+
+ if (ns < 10000)
+ ndelay(ns);
+ else
+ udelay(DIV_ROUND_UP(ns, 1000));
+}
+
+/*
+ * Internal helper to mimic core functions whithout having to distinguish if
+ * this is the first read operation on the page or not and hence choose the
+ * right function.
+ */
+int read_page_data(struct nand_chip *chip, unsigned int page,
+ unsigned int column, void *buf, unsigned int len)
+{
+ if (!column)
+ return nand_read_page_op(chip, page, column, buf, len);
+ else
+ return nand_change_read_column_op(chip, column, buf, len,
+ false);
+}
+
+/*
+ * The controller has many flags that could generate interrupts, most of them
+ * are disabled and polling is used. For the very slow signals, using interrupts
+ * may relax the CPU charge.
+ */
+static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+ u32 reg;
+
+ /* Writing 1 disables the interrupt */
+ reg = readl_relaxed(nfc->regs + NDCR);
+ writel_relaxed(reg | int_mask, nfc->regs + NDCR);
+}
+
+static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+ u32 reg;
+
+ /* Writing 0 enables the interrupt */
+ reg = readl_relaxed(nfc->regs + NDCR);
+ writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
+}
+
+static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+ writel_relaxed(int_mask, nfc->regs + NDSR);
+}
+
+/*
+ * The core may ask the controller to use only 8-bit accesses while usually
+ * using 16-bit accesses. Later function may blindly call this one with a
+ * boolean to indicate if 8-bit accesses must be enabled of disabled without
+ * knowing if 16-bit accesses are actually in use.
+ */
+static void marvell_nfc_force_byte_access(struct nand_chip *chip,
+ bool force_8bit)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 ndcr;
+
+ if (!(chip->options & NAND_BUSWIDTH_16))
+ return;
+
+ ndcr = readl_relaxed(nfc->regs + NDCR);
+
+ if (force_8bit)
+ ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
+ else
+ ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
+
+ writel_relaxed(ndcr, nfc->regs + NDCR);
+}
+
+/*
+ * Any time a command has to be sent to the controller, the following sequence
+ * has to be followed:
+ * - call marvell_nfc_prepare_cmd()
+ * -> activate the ND_RUN bit that will kind of 'start a job'
+ * -> wait the signal indicating the NFC is waiting for a command
+ * - send the command (cmd and address cycles)
+ * - enventually send or receive the data
+ * - call marvell_nfc_end_cmd() with the corresponding flag
+ * -> wait the flag to be triggered or cancel the job with a timeout
+ *
+ * The following functions are helpers to do this job and keep in the
+ * specialized functions the code that really does the operations.
+ */
+static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 ndcr, val;
+ int ret;
+
+ /* Deassert ND_RUN and clear NDSR before issuing any command */
+ ndcr = readl_relaxed(nfc->regs + NDCR);
+ writel_relaxed(ndcr & ~NDCR_ND_RUN, nfc->regs + NDCR);
+ writel_relaxed(readl_relaxed(nfc->regs + NDSR), nfc->regs + NDSR);
+
+ /* Assert ND_RUN bit and wait the NFC to be ready */
+ writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
+ ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
+ val & NDSR_WRCMDREQ,
+ POLL_PERIOD, POLL_TIMEOUT);
+ if (ret) {
+ dev_err(nfc->dev, "Timeout on WRCMDRE\n");
+ return -ETIMEDOUT;
+ }
+
+ /* Command may be written, clear WRCMDREQ status bit */
+ writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
+
+ return 0;
+}
+
+static void marvell_nfc_send_cmd(struct nand_chip *chip,
+ struct marvell_nfc_op *nfc_op)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+
+ writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
+ nfc->regs + NDCB0);
+ writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
+ writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
+
+ /*
+ * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
+ * fields are used.
+ */
+ if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
+ (nfc_op->ndcb[0] & NDCB0_ADDR_CYC(6)) == NDCB0_ADDR_CYC(6))
+ writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
+}
+
+static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 val;
+ int ret;
+
+ /*
+ * The command is being processed, wait for the ND_RUN bit to be
+ * cleared by the NFC. If not, we must clear it by hand.
+ */
+ ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
+ (val & NDCR_ND_RUN) == 0,
+ POLL_PERIOD, POLL_TIMEOUT);
+ if (ret) {
+ dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
+ writel_relaxed(readl_relaxed(nfc->regs + NDCR) & ~NDCR_ND_RUN,
+ nfc->regs + NDCR);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
+ const char *label)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 val;
+ int ret;
+
+ ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
+ val & flag,
+ POLL_PERIOD, POLL_TIMEOUT);
+ if (ret) {
+ dev_err(nfc->dev, "Timeout on %s\n", label);
+ return ret;
+ }
+
+ writel_relaxed(flag, nfc->regs + NDSR);
+
+ return 0;
+}
+
+static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
+
+ return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
+}
+
+static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ int ret;
+
+ /* Timeout is expressed in ms */
+ if (!timeout_ms)
+ timeout_ms = IRQ_TIMEOUT;
+
+ init_completion(&nfc->complete);
+
+ marvell_nfc_enable_int(nfc, NDCR_RDYM);
+ ret = wait_for_completion_timeout(&nfc->complete,
+ msecs_to_jiffies(timeout_ms));
+ marvell_nfc_disable_int(nfc, NDCR_RDYM);
+ marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
+
+ if (!ret)
+ dev_err(nfc->dev, "Timeout waiting for RB signal\n");
+
+ return ret ? 0 : -ETIMEDOUT;
+}
+
+static void marvell_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(nand);
+ struct marvell_nfc *nfc = to_marvell_nfc(nand->controller);
+ u32 ndcr;
+
+ if (chip < 0 || chip >= marvell_nand->nsels)
+ return;
+
+ if (chip == marvell_nand->selected)
+ return;
+
+ /*
+ * Do not change the timing registers when using the DT property
+ * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
+ * marvell_nand structure are supposedly empty.
+ */
+ if (marvell_nand->ndtr0 && marvell_nand->ndtr1) {
+ writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
+ writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
+ }
+
+ ndcr = readl_relaxed(nfc->regs + NDCR);
+
+ /* Ensure controller is not blocked in operation */
+ ndcr &= ~NDCR_ND_RUN;
+
+ /* Adapt bus width */
+ if (nand->options & NAND_BUSWIDTH_16)
+ ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
+
+ /*
+ * Page size as seen by the controller, either 512B or 2kiB. This size
+ * will be the reference for the controller when using LEN_OVRD.
+ */
+ ndcr |= NDCR_PAGE_SZ(mtd->writesize);
+
+ /* Update the control register */
+ writel_relaxed(ndcr, nfc->regs + NDCR);
+
+ /* Also reset the interrupt status register */
+ marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
+
+ marvell_nand->selected = chip;
+}
+
+static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
+{
+ struct marvell_nfc *nfc = dev_id;
+ u32 st = readl_relaxed(nfc->regs + NDSR);
+ u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
+
+ /*
+ * RDY interrupt mask is one bit in NDCR while there are two status
+ * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
+ */
+ if (st & NDSR_RDY(1))
+ st |= NDSR_RDY(0);
+
+ if (!(st & ien))
+ return IRQ_NONE;
+
+ marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
+
+ complete(&nfc->complete);
+
+ return IRQ_HANDLED;
+}
+
+/* HW ECC related functions */
+static void marvell_nfc_hw_ecc_enable(struct nand_chip *chip)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 ndcr = readl_relaxed(nfc->regs + NDCR);
+
+ if (!(ndcr & NDCR_ECC_EN)) {
+ writel_relaxed(ndcr | NDCR_ECC_EN | NDCR_SPARE_EN,
+ nfc->regs + NDCR);
+
+ /*
+ * When enabling BCH, set threshold to 0 to always know the
+ * number of corrected bitflips.
+ */
+ if (chip->ecc.algo == NAND_ECC_BCH)
+ writel_relaxed(NDECCTRL_BCH_EN, nfc->regs + NDECCCTRL);
+ }
+}
+
+static void marvell_nfc_hw_ecc_disable(struct nand_chip *chip)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ u32 ndcr = readl_relaxed(nfc->regs + NDCR);
+
+ if (ndcr & NDCR_ECC_EN) {
+ writel_relaxed(ndcr & ~(NDCR_ECC_EN | NDCR_SPARE_EN),
+ nfc->regs + NDCR);
+ if (chip->ecc.algo == NAND_ECC_BCH)
+ writel_relaxed(0, nfc->regs + NDECCCTRL);
+ }
+}
+
+static void marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
+ u8 *data, int data_len,
+ u8 *oob, int oob_len,
+ unsigned int *max_bitflips)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ int bf = 0;
+ u32 ndsr;
+
+ ndsr = readl_relaxed(nfc->regs + NDSR);
+
+ /* Check uncorrectable error flag */
+ if (ndsr & NDSR_UNCERR) {
+ writel_relaxed(ndsr, nfc->regs + NDSR);
+
+ /*
+ * Blank pages (all 0xFF) with no ECC are recognized as bad
+ * because hardware ECC engine expects non-empty ECC values
+ * in that case, so whenever an uncorrectable error occurs,
+ * check if the page is actually blank or not.
+ *
+ * It is important to check the emptyness only on oob_len,
+ * which only covers the spare bytes because after a read with
+ * ECC enabled, the ECC bytes in the buffer have been set by the
+ * ECC engine, so they are not 0xFF.
+ */
+ if (!data)
+ data_len = 0;
+ if (!oob)
+ oob_len = 0;
+ bf = nand_check_erased_ecc_chunk(data, data_len, NULL, 0,
+ oob, oob_len,
+ chip->ecc.strength);
+ if (bf < 0) {
+ mtd->ecc_stats.failed++;
+ return;
+ }
+ }
+
+ /* Check correctable error flag */
+ if (ndsr & NDSR_CORERR) {
+ writel_relaxed(ndsr, nfc->regs + NDSR);
+
+ if (chip->ecc.algo == NAND_ECC_BCH)
+ bf = NDSR_ERRCNT(ndsr);
+ else
+ bf = 1;
+ }
+
+ /*
+ * Derive max_bitflips either from the number of bitflips detected by
+ * the hardware ECC engine or by nand_check_erased_ecc_chunk().
+ */
+ mtd->ecc_stats.corrected += bf;
+ *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
+}
+
+/* Reads with HW ECC */
+static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u8 *buf, int oob_required,
+ int page)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int max_bitflips = 0, ret = 0, i;
+ u8 *data, *oob;
+ struct marvell_nfc_op nfc_op = {
+ .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
+ NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+ NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+ NDCB0_DBC |
+ NDCB0_CMD1(NAND_CMD_READ0) |
+ NDCB0_CMD2(NAND_CMD_READSTART),
+ .ndcb[1] = NDCB1_ADDRS(page),
+ .ndcb[2] = NDCB2_ADDR5(page),
+ };
+
+ /*
+ * With Hamming, OOB is not fully used (and thus not read entirely), not
+ * expected bytes could show up at the end of the OOB buffer if not
+ * explicitly erased.
+ */
+ if (oob_required)
+ memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_hw_ecc_enable(chip);
+
+ data = buf;
+ oob = chip->oob_poi;
+
+ /*
+ * Reading spare area is mandatory when using HW ECC or read operation
+ * will trigger uncorrectable ECC errors, but do not read ECC here.
+ */
+ marvell_nfc_send_cmd(chip, &nfc_op);
+
+ marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+ "RDDREQ while draining FIFO (data)");
+
+ /* Read the data... */
+ if (data)
+ ioread32_rep(nfc->regs + NDDB, data, FIFO_REP(lt->data_bytes));
+ else
+ for (i = 0; i < FIFO_REP(lt->data_bytes); i++)
+ ioread32_rep(nfc->regs + NDDB, nfc->buf, FIFO_DEPTH_32);
+
+ /* ...then the spare bytes */
+ ioread32_rep(nfc->regs + NDDB, oob, FIFO_REP(lt->spare_bytes));
+
+ marvell_nfc_hw_ecc_correct(chip, data, lt->data_bytes,
+ oob, lt->spare_bytes, &max_bitflips);
+
+ marvell_nfc_hw_ecc_disable(chip);
+
+ if (oob_required) {
+ /* Read ECC bytes without ECC enabled */
+ nand_read_page_op(chip, page,
+ lt->data_bytes + lt->spare_bytes,
+ oob + lt->spare_bytes, lt->ecc_bytes);
+ }
+
+ return max_bitflips;
+}
+
+static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
+ u8 *data, int data_len,
+ u8 *oob, int oob_len,
+ int oob_required, int page)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int i, j;
+ struct marvell_nfc_op nfc_op = {
+ .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
+ NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+ NDCB0_LEN_OVRD,
+ .ndcb[1] = NDCB1_ADDRS(page),
+ .ndcb[2] = NDCB2_ADDR5(page),
+ };
+
+ /*
+ * Reading spare area is mandatory when using HW ECC or read operation
+ * will trigger uncorrectable ECC errors, but do not read ECC here.
+ */
+ nfc_op.ndcb[3] = data_len + oob_len;
+
+ if (marvell_nfc_prepare_cmd(chip))
+ return;
+
+ if (chunk == 0)
+ nfc_op.ndcb[0] |= NDCB0_DBC |
+ NDCB0_CMD1(NAND_CMD_READ0) |
+ NDCB0_CMD2(NAND_CMD_READSTART);
+
+ /*
+ * Trigger the naked read operation only on the last chunk.
+ * Otherwise, use monolithic read.
+ */
+ if ((lt->last_chunk_cnt && chunk == lt->full_chunk_cnt) ||
+ (!lt->last_chunk_cnt && chunk == lt->full_chunk_cnt - 1))
+ nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+ else
+ nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+
+ /*
+ * According to the datasheet, when reading from NDDB
+ * with BCH enabled, after each 32 bytes reads, we
+ * have to make sure that the NDSR.RDDREQ bit is set.
+ *
+ * Drain the FIFO, 8 32-bit reads at a time, and skip
+ * the polling on the last read.
+ *
+ * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
+ *
+ */
+ for (i = 0; i < data_len; i += FIFO_DEPTH * sizeof(u32)) {
+ marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+ "RDDREQ while draining FIFO (data)");
+ if (data) {
+ ioread32_rep(nfc->regs + NDDB, data,
+ FIFO_DEPTH_32 * sizeof(u32));
+ data += FIFO_DEPTH * sizeof(u32);
+ } else {
+ for (j = 0; j < sizeof(u32); j++)
+ ioread32_rep(nfc->regs + NDDB, nfc->buf,
+ FIFO_DEPTH_32);
+ }
+ }
+
+ for (i = 0; i < oob_len; i += FIFO_DEPTH * 4) {
+ marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+ "RDDREQ while draining FIFO (OOB)");
+ ioread32_rep(nfc->regs + NDDB, oob, FIFO_DEPTH_32 * 4);
+ oob += FIFO_DEPTH * 4;
+ }
+}
+
+static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u8 *buf, int oob_required,
+ int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
+ int max_bitflips = 0;
+ u8 *data, *oob;
+ int chunk, data_len, oob_len, ecc_len;
+ /* Following sizes are used to read the ECC bytes after ECC operation */
+ int fixed_oob_size = lt->spare_bytes + lt->ecc_bytes;
+ int fixed_chunk_size = lt->data_bytes + fixed_oob_size;
+
+ /*
+ * With BCH, OOB is not fully used (and thus not read entirely), not
+ * expected bytes could show up at the end of the OOB buffer if not
+ * explicitly erased.
+ */
+ if (oob_required)
+ memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+ marvell_nfc_hw_ecc_enable(chip);
+
+ for (chunk = 0; chunk < nchunks; chunk++) {
+ if (chunk == 0) {
+ /* Init pointers to iterate through the chunks */
+ if (buf)
+ data = buf;
+ else
+ data = NULL;
+ oob = chip->oob_poi;
+ } else {
+ /* Update pointers */
+ if (data)
+ data += lt->data_bytes;
+ oob += (lt->spare_bytes + lt->ecc_bytes + 2);
+ }
+
+ /* Update length */
+ if (chunk < lt->full_chunk_cnt) {
+ data_len = lt->data_bytes;
+ oob_len = lt->spare_bytes;
+ ecc_len = lt->ecc_bytes;
+ } else {
+ data_len = lt->last_data_bytes;
+ oob_len = lt->last_spare_bytes;
+ ecc_len = lt->last_ecc_bytes;
+ }
+
+ /* Read the chunk and detect number of bitflips */
+ marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
+ oob, oob_len, oob_required,
+ page);
+
+ marvell_nfc_hw_ecc_correct(chip, data, data_len,
+ oob, oob_len, &max_bitflips);
+ }
+
+ marvell_nfc_hw_ecc_disable(chip);
+
+ if (!oob_required)
+ return max_bitflips;
+
+ /* Read ECC bytes without ECC enabled */
+ for (chunk = 0; chunk < lt->full_chunk_cnt; chunk++)
+ read_page_data(chip, page,
+ ((chunk + 1) * (fixed_chunk_size)) -
+ lt->ecc_bytes,
+ chip->oob_poi + ((chunk + 1) *
+ (fixed_oob_size + 2) -
+ (lt->ecc_bytes + 2)),
+ lt->ecc_bytes);
+
+ if (lt->last_chunk_cnt)
+ read_page_data(chip, page,
+ (lt->full_chunk_cnt * fixed_chunk_size) +
+ lt->last_data_bytes + lt->last_spare_bytes,
+ chip->oob_poi + (lt->full_chunk_cnt *
+ (fixed_oob_size + 2)) +
+ lt->last_spare_bytes,
+ lt->last_ecc_bytes);
+
+ return max_bitflips;
+}
+
+static int marvell_nfc_hw_ecc_read_oob(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ return chip->ecc.read_page(mtd, chip, NULL, true, page);
+}
+
+/* Raw reads with HW ECC */
+static int marvell_nfc_hw_ecc_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+ u8 *oob = chip->oob_poi;
+ int chunk;
+
+ if (oob_required)
+ memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+ for (chunk = 0; chunk < lt->full_chunk_cnt; chunk++) {
+ read_page_data(chip, page, chunk * chunk_size, buf,
+ lt->data_bytes);
+ buf += lt->data_bytes;
+
+ if (oob_required) {
+ nand_read_data_op(chip, oob, lt->spare_bytes +
+ lt->ecc_bytes, false);
+ /* Pad user data with 2 bytes when using BCH (30B) */
+ oob += lt->spare_bytes + lt->ecc_bytes + 2;
+ }
+ }
+
+ if (!lt->last_chunk_cnt)
+ return 0;
+
+ read_page_data(chip, page, chunk * chunk_size, buf,
+ lt->last_data_bytes);
+ if (oob_required)
+ nand_read_data_op(chip, oob, lt->last_spare_bytes +
+ lt->last_ecc_bytes, false);
+
+ return 0;
+}
+
+static int marvell_nfc_hw_ecc_read_oob_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ u8 *oob = chip->oob_poi;
+ int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+ int chunk;
+
+ for (chunk = 0; chunk < lt->full_chunk_cnt; chunk++) {
+ /* Move NAND pointer to the next chunk of OOB data */
+ read_page_data(chip, page,
+ chunk * chunk_size + lt->data_bytes,
+ oob, lt->spare_bytes + lt->ecc_bytes);
+ /* Pad user data with 2 bytes when using BCH (30B) */
+ oob += lt->spare_bytes + lt->ecc_bytes + 2;
+ }
+
+ if (lt->last_chunk_cnt)
+ nand_read_data_op(chip, oob,
+ lt->last_spare_bytes + lt->last_ecc_bytes,
+ false);
+
+ return 0;
+}
+
+/* Writes with HW ECC */
+static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required, int page)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ const u8 *data = buf, *oob = chip->oob_poi;
+ int ret, i;
+ struct marvell_nfc_op nfc_op = {
+ .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
+ NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+ NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+ NDCB0_CMD1(NAND_CMD_SEQIN),
+ .ndcb[1] = NDCB1_ADDRS(page),
+ .ndcb[2] = NDCB2_ADDR5(page),
+ };
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_hw_ecc_enable(chip);
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+
+ marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
+ "WRDREQ while loading FIFO (data)");
+
+ /* Write the data. If buf is empty, write empty bytes (0xFF) */
+ if (data) {
+ iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(lt->data_bytes));
+ } else {
+ data = nfc->buf;
+ memset(nfc->buf, 0xFF, FIFO_DEPTH);
+ for (i = 0; i < FIFO_REP(lt->data_bytes) / FIFO_DEPTH_32; i++)
+ iowrite32_rep(nfc->regs + NDDB, data, FIFO_DEPTH_32);
+ }
+
+ /* Then write the OOB data */
+ iowrite32_rep(nfc->regs + NDDB, oob, FIFO_REP(lt->spare_bytes));
+
+ ret = marvell_nfc_wait_op(chip,
+ chip->data_interface.timings.sdr.tPROG_max);
+
+ marvell_nfc_hw_ecc_disable(chip);
+
+ if (ret & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+static void marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip,
+ int chunk, const u8 *data,
+ u8 *oob, int oob_required,
+ int page)
+{
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int data_len, oob_len, i;
+ struct marvell_nfc_op nfc_op = {
+ .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
+ };
+
+ /* OOB area to write is only spare area when using HW ECC */
+ if (chunk < lt->full_chunk_cnt) {
+ data_len = lt->data_bytes;
+ oob_len = lt->spare_bytes;
+ } else {
+ data_len = lt->last_data_bytes;
+ oob_len = lt->last_spare_bytes;
+ }
+
+ nfc_op.ndcb[3] = data_len + oob_len;
+
+ /*
+ * First operation dispatches the CMD_SEQIN command, issue the address
+ * cycles and asks for the first chunk of data.
+ * Last operation dispatches the PAGEPROG command and also asks for the
+ * last chunk of data.
+ * All operations in the middle (if any) will issue a naked write and
+ * also ask for data.
+ */
+ if (chunk == 0) {
+ nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) |
+ NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+ NDCB0_CMD1(NAND_CMD_SEQIN);
+ nfc_op.ndcb[1] |= NDCB1_ADDRS(page);
+ nfc_op.ndcb[2] |= NDCB2_ADDR5(page);
+ } else if (
+ (lt->last_chunk_cnt && (chunk == lt->full_chunk_cnt)) ||
+ (!lt->last_chunk_cnt && (chunk == lt->full_chunk_cnt - 1))) {
+ nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC |
+ NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+ } else {
+ nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
+ }
+
+ /*
+ * If this is the first chunk, the previous command also embedded
+ * the write operation, no need to repeat it.
+ */
+ if (marvell_nfc_prepare_cmd(chip))
+ return;
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+
+ marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
+ "WRDREQ while loading FIFO (data)");
+
+ /* Effectively write the data to the data buffer */
+ if (data) {
+ data += chunk * lt->data_bytes;
+ iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
+ } else {
+ memset(nfc->buf, 0xFF, FIFO_DEPTH);
+ data = nfc->buf;
+ for (i = 0; i < FIFO_REP(data_len) / FIFO_DEPTH_32; i++)
+ iowrite32_rep(nfc->regs + NDDB, data, FIFO_DEPTH_32);
+ }
+
+ /* Pad user data with 2 bytes when using BCH (30B) */
+ oob += chunk * lt->spare_bytes;
+ iowrite32_rep(nfc->regs + NDDB, oob, FIFO_REP(oob_len));
+}
+
+static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required, int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
+ int chunk, ret;
+
+ marvell_nfc_hw_ecc_enable(chip);
+
+ for (chunk = 0; chunk < nchunks; chunk++) {
+ marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, buf,
+ chip->oob_poi,
+ oob_required, page);
+ /*
+ * Waiting only for CMDD or PAGED is not enough, ECC are
+ * partially written. No flag is set once the operation is
+ * really finished but the ND_RUN bit is cleared, so wait for it
+ * before stepping into the next command.
+ */
+ marvell_nfc_wait_ndrun(chip);
+ }
+
+ ret = marvell_nfc_wait_op(chip,
+ chip->data_interface.timings.sdr.tPROG_max);
+
+ marvell_nfc_hw_ecc_disable(chip);
+
+ if (ret & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+static int marvell_nfc_hw_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ return chip->ecc.write_page(mtd, chip, NULL, true, page);
+}
+
+/* Raw writes with HW ECC */
+static int marvell_nfc_hw_ecc_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required, int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
+ int oob_size = lt->spare_bytes + lt->ecc_bytes;
+ int last_oob_size = lt->last_spare_bytes + lt->last_ecc_bytes;
+ int chunk;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ for (chunk = 0; chunk < nchunks; chunk++) {
+ /*
+ * OOB are not 8-bytes aligned anyway so change the column
+ * at each cycle
+ */
+ nand_change_write_column_op(chip, chunk * (lt->data_bytes +
+ oob_size),
+ NULL, 0, false);
+
+ if (chunk < lt->full_chunk_cnt)
+ nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
+ lt->data_bytes, false);
+ else
+ nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
+ lt->last_data_bytes, false);
+
+ if (!oob_required)
+ continue;
+
+ if (chunk < lt->full_chunk_cnt)
+ nand_write_data_op(chip, chip->oob_poi +
+ (chunk * (oob_size + 2)),
+ oob_size, false);
+ else
+ nand_write_data_op(chip, chip->oob_poi +
+ (chunk * (oob_size + 2)),
+ last_oob_size, false);
+ }
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int marvell_nfc_hw_ecc_write_oob_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+ int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
+ int oob_size = lt->spare_bytes + lt->ecc_bytes;
+ int last_oob_size = lt->last_spare_bytes + lt->last_ecc_bytes;
+ int chunk;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ for (chunk = 0; chunk < nchunks; chunk++) {
+ nand_change_write_column_op(chip, lt->data_bytes +
+ (chunk * chunk_size), NULL, 0,
+ false);
+
+ if (chunk < lt->full_chunk_cnt)
+ nand_write_data_op(chip, chip->oob_poi +
+ (chunk * (oob_size + 2)),
+ oob_size, false);
+ else
+ nand_write_data_op(chip, chip->oob_poi +
+ (chunk * (oob_size + 2)),
+ last_oob_size, false);
+ }
+
+ return nand_prog_page_end_op(chip);
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void marvell_nfc_parse_instructions(const struct nand_subop *subop,
+ struct marvell_nfc_op *nfc_op)
+{
+ const struct nand_op_instr *instr = NULL;
+ bool first_cmd = true;
+ unsigned int op_id;
+ int i;
+
+ /* Reset the input structure as most of its fields will be OR'ed */
+ memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
+
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ unsigned int offset, naddrs;
+ const u8 *addrs;
+ int len = nand_subop_get_data_len(subop, op_id);
+
+ instr = &subop->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ pr_debug(" ->CMD [0x%02x]\n", instr->cmd.opcode);
+
+ if (first_cmd)
+ nfc_op->ndcb[0] |=
+ NDCB0_CMD1(instr->cmd.opcode);
+ else
+ nfc_op->ndcb[0] |=
+ NDCB0_CMD2(instr->cmd.opcode) |
+ NDCB0_DBC;
+
+ nfc_op->cle_ale_delay_ns = instr->delay_ns;
+ first_cmd = false;
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ addrs = &instr->addr.addrs[offset];
+
+ pr_debug(" ->ADDR [%d cyc]", naddrs);
+
+ nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
+
+ for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+ nfc_op->ndcb[1] |= addrs[i] << (8 * i);
+
+ if (naddrs >= 5)
+ nfc_op->ndcb[2] |= NDCB2_ADDR5(addrs[5]);
+ if (naddrs >= 6)
+ nfc_op->ndcb[3] |= NDCB3_ADDR6(addrs[6]);
+ if (naddrs == 7)
+ nfc_op->ndcb[3] |= NDCB3_ADDR7(addrs[7]);
+
+ nfc_op->cle_ale_delay_ns = instr->delay_ns;
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ pr_debug(" ->DATA_IN [%d B%s]\n", len,
+ instr->data.force_8bit ? ", force 8-bit" : "");
+
+ nfc_op->data_instr = instr;
+ nfc_op->data_instr_idx = op_id;
+ nfc_op->ndcb[0] |=
+ NDCB0_CMD_TYPE(TYPE_READ) |
+ NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+ NDCB0_LEN_OVRD;
+ nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
+ nfc_op->data_delay_ns = instr->delay_ns;
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ pr_debug(" ->DATA_OUT [%d B%s]\n", len,
+ instr->data.force_8bit ? ", force 8-bit" : "");
+
+ nfc_op->data_instr = instr;
+ nfc_op->data_instr_idx = op_id;
+ nfc_op->ndcb[0] |=
+ NDCB0_CMD_TYPE(TYPE_WRITE) |
+ NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+ NDCB0_LEN_OVRD;
+ nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
+ nfc_op->data_delay_ns = instr->delay_ns;
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ pr_debug(" ->WAITRDY [max %d ms]\n",
+ instr->waitrdy.timeout_ms);
+
+ nfc_op->rdy_timeout_ms = instr->waitrdy.timeout_ms;
+ nfc_op->rdy_delay_ns = instr->delay_ns;
+ break;
+ }
+ }
+}
+
+static void marvell_nfc_xfer_data(struct nand_chip *chip,
+ const struct nand_subop *subop,
+ struct marvell_nfc_op *nfc_op)
+{
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ unsigned int op_id = nfc_op->data_instr_idx;
+ int len = nand_subop_get_data_len(subop, op_id);
+ int offset = nand_subop_get_data_start_off(subop, op_id);
+ int last_len = len % FIFO_DEPTH;
+ int last_full_offset = round_down(len, FIFO_DEPTH);
+ const struct nand_op_instr *instr = nfc_op->data_instr;
+ u8 *in;
+ const u8 *out;
+ int i;
+
+ if (instr->data.force_8bit)
+ marvell_nfc_force_byte_access(chip, true);
+
+ if (instr->type == NAND_OP_DATA_IN_INSTR) {
+ in = &((u8 *)instr->data.in)[offset];
+
+ for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
+ ioread32_rep(nfc->regs + NDDB,
+ &((u32 *)in)[i / sizeof(u32)],
+ FIFO_DEPTH_32);
+
+ if (last_len) {
+ ioread32_rep(nfc->regs + NDDB, nfc->buf, FIFO_DEPTH_32);
+ memcpy(&in[last_full_offset], nfc->buf, last_len);
+ }
+ } else {
+ out = &((const u8 *)instr->data.out)[offset];
+
+ for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
+ iowrite32_rep(nfc->regs + NDDB,
+ &((u32 *)out)[i / sizeof(u32)],
+ FIFO_DEPTH_32);
+
+ if (last_len) {
+ memcpy(nfc->buf, &out[last_full_offset], last_len);
+ iowrite32_rep(nfc->regs + NDDB, nfc->buf,
+ FIFO_DEPTH_32);
+ }
+ }
+
+ if (instr->data.force_8bit)
+ marvell_nfc_force_byte_access(chip, false);
+}
+
+static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct marvell_nfc_op nfc_op;
+ bool reading;
+ int ret;
+
+ marvell_nfc_parse_instructions(subop, &nfc_op);
+ reading = nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR;
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+ ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
+ "RDDREQ/WRDREQ while draining raw data");
+ cond_delay(nfc_op.cle_ale_delay_ns);
+
+ if (reading) {
+ if (nfc_op.rdy_timeout_ms)
+ ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+ cond_delay(nfc_op.rdy_delay_ns);
+ }
+
+ if (ret)
+ return ret;
+
+ marvell_nfc_xfer_data(chip, subop, &nfc_op);
+ ret = marvell_nfc_wait_cmdd(chip);
+ cond_delay(nfc_op.data_delay_ns);
+
+ if (!reading) {
+ if (nfc_op.rdy_timeout_ms)
+ ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+ cond_delay(nfc_op.rdy_delay_ns);
+ }
+
+ return ret;
+}
+
+static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct marvell_nfc_op nfc_op;
+ int ret;
+
+ marvell_nfc_parse_instructions(subop, &nfc_op);
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+ ret = marvell_nfc_wait_ndrun(chip);
+ cond_delay(nfc_op.cle_ale_delay_ns);
+
+ if (nfc_op.rdy_timeout_ms)
+ ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+ cond_delay(nfc_op.rdy_delay_ns);
+
+ return ret;
+}
+
+static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct marvell_nfc_op nfc_op;
+ int ret;
+
+ marvell_nfc_parse_instructions(subop, &nfc_op);
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+ ret = marvell_nfc_wait_ndrun(chip);
+ cond_delay(nfc_op.cle_ale_delay_ns);
+
+ if (nfc_op.rdy_timeout_ms)
+ ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+ cond_delay(nfc_op.rdy_delay_ns);
+
+ return ret;
+}
+
+static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct marvell_nfc_op nfc_op;
+ int ret;
+
+ marvell_nfc_parse_instructions(subop, &nfc_op);
+
+ /*
+ * Naked access are different in that they need to be flagged as naked
+ * by the controller. Reset the controller registers fields that inform
+ * on the type and refill them according to the ongoing operation.
+ */
+ nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
+ NDCB0_CMD_XTYPE(XTYPE_MASK));
+ switch (subop->instrs[0].type) {
+ case NAND_OP_CMD_INSTR:
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
+ break;
+ case NAND_OP_ADDR_INSTR:
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
+ NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+ break;
+ case NAND_OP_DATA_OUT_INSTR:
+ nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
+ NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+ break;
+ default:
+ /* This should never happen */
+ break;
+ }
+
+ ret = marvell_nfc_prepare_cmd(chip);
+ if (ret)
+ return ret;
+
+ marvell_nfc_send_cmd(chip, &nfc_op);
+
+ if (!nfc_op.data_instr) {
+ ret = marvell_nfc_wait_ndrun(chip);
+ cond_delay(nfc_op.cle_ale_delay_ns);
+ return ret;
+ }
+
+ ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
+ "RDDREQ/WRDREQ while draining raw data");
+ if (ret)
+ return ret;
+
+ marvell_nfc_xfer_data(chip, subop, &nfc_op);
+ ret = marvell_nfc_wait_cmdd(chip);
+ cond_delay(nfc_op.data_delay_ns);
+
+ return ret;
+}
+
+static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct marvell_nfc_op nfc_op;
+ int ret;
+
+ marvell_nfc_parse_instructions(subop, &nfc_op);
+
+ ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+ cond_delay(nfc_op.rdy_delay_ns);
+
+ return ret;
+}
+
+static const struct nand_op_parser marvell_nfc_op_parser = NAND_OP_PARSER(
+ /* Monolithic read/write */
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_monolithic_access_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_monolithic_access_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ /* Isolated commands (reset, erase, begin prog,...) */
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_erase_cmd_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_reset_cmd_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ /* Naked commands */
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_naked_access_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_naked_access_exec,
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_naked_access_exec,
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_naked_access_exec,
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ marvell_nfc_naked_waitrdy_exec,
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ );
+
+static int marvell_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &marvell_nfc_op_parser,
+ op, check_only);
+}
+
+/*
+ * HW ECC layouts, identical to old pxa3xx_nand driver,
+ * to be fully backward compatible.
+ */
+static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int nchunks = lt->full_chunk_cnt;
+
+ if (section >= nchunks)
+ return -ERANGE;
+
+ oobregion->offset = ((lt->spare_bytes + lt->ecc_bytes) * section) +
+ lt->spare_bytes;
+ oobregion->length = lt->ecc_bytes;
+
+ return 0;
+}
+
+static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+ int nchunks = lt->full_chunk_cnt;
+
+ if (section >= nchunks)
+ return -ERANGE;
+
+ if (!lt->spare_bytes)
+ return 0;
+
+ oobregion->offset = section * (lt->spare_bytes + lt->ecc_bytes);
+ oobregion->length = lt->spare_bytes;
+ if (!section) {
+ /*
+ * Bootrom looks in bytes 0 & 5 for bad blocks for the
+ * 4KB page / 4bit BCH combination.
+ */
+ if (mtd->writesize == 4096 && lt->data_bytes == 2048) {
+ oobregion->offset += 6;
+ oobregion->length -= 6;
+ } else {
+ oobregion->offset += 2;
+ oobregion->length -= 2;
+ }
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
+ .ecc = marvell_nand_ooblayout_ecc,
+ .free = marvell_nand_ooblayout_free,
+};
+
+static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc,
+ struct device_node *np)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ const struct marvell_hw_ecc_layout *l;
+ int i;
+
+ to_marvell_nand(chip)->layout = NULL;
+ for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
+ l = &marvell_nfc_layouts[i];
+ if (mtd->writesize == l->writesize &&
+ ecc->size == l->chunk && ecc->strength == l->strength) {
+ to_marvell_nand(chip)->layout = l;
+ break;
+ }
+ }
+
+ if (!to_marvell_nand(chip)->layout) {
+ dev_err(nfc->dev,
+ "ECC strength %d at page size %d is not supported\n",
+ ecc->strength, mtd->writesize);
+ return -ENOTSUPP;
+ }
+
+ mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
+ ecc->steps = l->full_chunk_cnt + l->last_chunk_cnt;
+ ecc->size = l->data_bytes;
+
+ if (ecc->strength == 1) {
+ chip->ecc.algo = NAND_ECC_HAMMING;
+ ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
+ ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
+ } else {
+ chip->ecc.algo = NAND_ECC_BCH;
+ ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
+ ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
+ ecc->strength = 16;
+ }
+
+ ecc->read_oob = marvell_nfc_hw_ecc_read_oob;
+ ecc->write_oob = marvell_nfc_hw_ecc_write_oob;
+
+ ecc->read_page_raw = marvell_nfc_hw_ecc_read_page_raw;
+ ecc->write_page_raw = marvell_nfc_hw_ecc_write_page_raw;
+ ecc->read_oob_raw = marvell_nfc_hw_ecc_read_oob_raw;
+ ecc->write_oob_raw = marvell_nfc_hw_ecc_write_oob_raw;
+
+ return 0;
+}
+
+static int marvell_nand_ecc_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc,
+ struct device_node *np)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int ret;
+
+ if (!ecc->size)
+ ecc->size = chip->ecc_step_ds;
+
+ if (!ecc->strength)
+ ecc->strength = chip->ecc_strength_ds;
+
+ if (!ecc->size || !ecc->strength)
+ return -EINVAL;
+
+ switch (ecc->mode) {
+ case NAND_ECC_HW:
+ ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc, np);
+ if (ret)
+ return ret;
+ break;
+ case NAND_ECC_NONE:
+ chip->ecc.algo = 0;
+ case NAND_ECC_SOFT:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
+static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 8,
+ .len = 6,
+ .veroffs = 14,
+ .maxblocks = 8, /* Last 8 blocks in each chip */
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 8,
+ .len = 6,
+ .veroffs = 14,
+ .maxblocks = 8, /* Last 8 blocks in each chip */
+ .pattern = bbt_mirror_pattern
+};
+
+static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface
+ *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+ struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+ unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2;
+ const struct nand_sdr_timings *sdr;
+ struct marvell_nfc_timings nfc_tmg;
+ int read_delay;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ /*
+ * SDR timings are given in pico-seconds while NFC timings must be
+ * expressed in NAND controller clock cycles, which is half of the
+ * frequency of the accessible ECC clock retrieved by clk_get_rate().
+ * This is not written anywhere in the datasheet but was observed
+ * with an oscilloscope.
+ *
+ * NFC datasheet gives equations from which thoses calculations
+ * are derived, they tend to be slightly more restrictives than the
+ * given core timings and may improve the overall speed.
+ */
+ nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
+ nfc_tmg.tRH = nfc_tmg.tRP;
+ nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
+ nfc_tmg.tWH = nfc_tmg.tWP;
+ nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
+ nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
+ nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
+ /*
+ * Read delay is the time of propagation from SoC pins to NFC internal
+ * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
+ * EDO mode, an additional delay of tRH must be taken into account so
+ * the data is sampled on the falling edge instead of the rising edge.
+ */
+ read_delay = sdr->tRC_min >= 30000 ?
+ MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
+
+ nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
+ /*
+ * tWHR and tRHW are supposed to be read to write delays (and vice
+ * versa) but in some cases, ie. when doing a change column, they must
+ * be greater than that to be sure tCCS delay is respected.
+ */
+ nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
+ period_ns) - 2,
+ nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
+ period_ns);
+
+ /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */
+ nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+
+ if (chipnr < 0)
+ return 0;
+
+ marvell_nand->ndtr0 =
+ NDTR0_TRP(nfc_tmg.tRP) |
+ NDTR0_TRH(nfc_tmg.tRH) |
+ NDTR0_ETRP(nfc_tmg.tRP) |
+ NDTR0_TWP(nfc_tmg.tWP) |
+ NDTR0_TWH(nfc_tmg.tWH) |
+ NDTR0_TCS(nfc_tmg.tCS) |
+ NDTR0_TCH(nfc_tmg.tCH) |
+ NDTR0_RD_CNT_DEL(read_delay) |
+ NDTR0_SELCNTR |
+ NDTR0_TADL(nfc_tmg.tADL);
+
+ marvell_nand->ndtr1 =
+ NDTR1_TAR(nfc_tmg.tAR) |
+ NDTR1_TWHR(nfc_tmg.tWHR) |
+ NDTR1_TRHW(nfc_tmg.tRHW) |
+ NDTR1_WAIT_MODE |
+ NDTR1_TR(nfc_tmg.tR);
+
+ writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
+ writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
+
+ return 0;
+}
+
+static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
+ struct device_node *np)
+{
+ struct marvell_nand_chip *marvell_nand;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int nsels, ret, i;
+ u32 cs, rb;
+
+ /*
+ * The legacy "num-cs" property indicates the number of CS on the only
+ * chip connected to the controller (legacy bindings does not support
+ * more than one chip). CS are only incremented one by one while the RB
+ * pin is always the #0.
+ *
+ * When not using legacy bindings, a couple of "reg" and "marvell,rb"
+ * properties must be filled. For each chip, expressed as a subnode,
+ * "reg" points to the CS lines and "marvell,rb" to the RB line.
+ */
+ if (nfc->caps->legacy_of_bindings) {
+ if (!of_get_property(np, "num-cs", &nsels)) {
+ dev_err(dev, "missing num-cs property\n");
+ return -EINVAL;
+ }
+ } else {
+ if (!of_get_property(np, "reg", &nsels)) {
+ dev_err(dev, "missing reg property\n");
+ return -EINVAL;
+ }
+ }
+
+ nsels /= sizeof(u32);
+ if (!nsels) {
+ dev_err(dev, "invalid reg property size\n");
+ return -EINVAL;
+ }
+
+ /* Alloc the nand chip structure */
+ marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
+ (nsels *
+ sizeof(struct marvell_nand_chip_sel)),
+ GFP_KERNEL);
+ if (!marvell_nand) {
+ dev_err(dev, "could not allocate chip structure\n");
+ return -ENOMEM;
+ }
+
+ marvell_nand->nsels = nsels;
+ marvell_nand->selected = -1;
+
+ for (i = 0; i < nsels; i++) {
+ if (nfc->caps->legacy_of_bindings) {
+ /*
+ * Legacy bindings use the CS lines in natural
+ * order (0, 1, ...)
+ */
+ cs = i;
+ } else {
+ /* Retrieve CS id */
+ ret = of_property_read_u32_index(np, "reg", i, &cs);
+ if (ret) {
+ dev_err(dev, "could not retrieve reg property: %d\n",
+ ret);
+ return ret;
+ }
+ }
+
+ if (cs >= nfc->caps->max_cs_nb) {
+ dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
+ cs, nfc->caps->max_cs_nb);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(cs, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %d already assigned\n", cs);
+ return -EINVAL;
+ }
+
+ /*
+ * The cs variable represents the chip select id, which must be
+ * converted in bit fields for NDCB0 and NDCB2 to select the
+ * right chip. Unfortunately, due to a lack of information on
+ * the subject and incoherent documentation, the user should not
+ * use CS1 and CS3 at all as asserting them is not supported in
+ * a reliable way (due to multiplexing inside ADDR5 field).
+ */
+ switch (cs) {
+ case 0:
+ case 2:
+ marvell_nand->sels[i].ndcb0_csel = 0;
+ break;
+ case 1:
+ case 3:
+ marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Retrieve RB id */
+ if (nfc->caps->legacy_of_bindings) {
+ /* Legacy bindings always use RB #0 */
+ rb = 0;
+ } else {
+ ret = of_property_read_u32_index(np, "marvell,rb", i,
+ &rb);
+ if (ret) {
+ dev_err(dev,
+ "could not retrieve RB property: %d\n",
+ ret);
+ return ret;
+ }
+ }
+
+ if (rb >= nfc->caps->max_rb_nb) {
+ dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
+ rb, nfc->caps->max_rb_nb);
+ return -EINVAL;
+ }
+
+ marvell_nand->sels[i].rb = rb;
+ }
+
+ chip = &marvell_nand->chip;
+ chip->controller = &nfc->controller;
+ nand_set_flash_node(chip, np);
+
+ chip->exec_op = marvell_nfc_exec_op;
+ chip->select_chip = marvell_nfc_select_chip;
+ if (!of_get_property(np, "marvell,nand-keep-config", NULL))
+ chip->setup_data_interface = marvell_nfc_setup_data_interface;
+
+ mtd = nand_to_mtd(chip);
+ mtd->dev.parent = dev;
+
+ /*
+ * Default to HW ECC engine mode. If the nand-ecc-mode property is given
+ * in the DT node, this entry will be overwritten in nand_scan_ident().
+ */
+ chip->ecc.mode = NAND_ECC_HW;
+
+ ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
+ if (ret) {
+ dev_err(dev, "could not identify the nand chip\n");
+ return ret;
+ }
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH) {
+ /*
+ * We'll use a bad block table stored in-flash and don't
+ * allow writing the bad block marker to the flash.
+ */
+ chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
+ chip->bbt_td = &bbt_main_descr;
+ chip->bbt_md = &bbt_mirror_descr;
+ }
+
+ /*
+ * With RA_START bit set in NDCR, columns takes two address cycles. This
+ * means addressing a chip with more than 256 pages needs a fifth
+ * address cycle. Addressing a chip using CS 2 or 3 should also needs
+ * this additional cycle but due to insistance in the documentation and
+ * lack of hardware to test this situation, this case has been dropped
+ * and is not supported by this driver.
+ */
+ marvell_nand->addr_cyc = 4;
+ if (chip->options & NAND_ROW_ADDR_3)
+ marvell_nand->addr_cyc = 5;
+
+ ret = marvell_nand_ecc_init(mtd, &chip->ecc, np);
+ if (ret) {
+ dev_err(dev, "ECC init failed: %d\n", ret);
+ return ret;
+ }
+
+ if (chip->ecc.mode == NAND_ECC_HW) {
+ /*
+ * Subpage write not available with hardware ECC, prohibit also
+ * subpage read as in userspace subpage acces would still be
+ * allowed and subpage write, if used, would lead to numerous
+ * uncorrectable ECC errors.
+ */
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+ }
+
+ ret = nand_scan_tail(mtd);
+ if (ret) {
+ dev_err(dev, "nand_scan_tail failed: %d\n", ret);
+ return ret;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "failed to register mtd device: %d\n", ret);
+ nand_release(mtd);
+ return ret;
+ }
+
+ list_add_tail(&marvell_nand->node, &nfc->chips);
+
+ return 0;
+}
+
+static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
+{
+ struct device_node *np = dev->of_node;
+ struct device_node *nand_np;
+ int nchips = of_get_child_count(np);
+ int max_cs = nfc->caps->max_cs_nb;
+ int ret;
+
+ if (nchips > max_cs) {
+ dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
+ max_cs);
+ return -EINVAL;
+ }
+
+ /*
+ * Legacy bindings do not use child nodes to exhibit NAND chip
+ * properties and layout. Instead, NAND properties are mixed with the
+ * controller's and a single subnode presents the memory layout.
+ */
+ if (nfc->caps->legacy_of_bindings) {
+ ret = marvell_nand_chip_init(dev, nfc, np);
+ return ret;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = marvell_nand_chip_init(dev, nfc, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
+{
+ struct marvell_nand_chip *entry, *temp;
+
+ list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
+ nand_release(nand_to_mtd(&entry->chip));
+ list_del(&entry->node);
+ }
+}
+
+static int marvell_nfc_init(struct marvell_nfc *nfc)
+{
+ struct device_node *np = nfc->dev->of_node;
+ u32 enable_arbiter = 0;
+
+ /*
+ * Some SoCs like A7k/A8k need to enable manually the NAND
+ * controller to avoid being bootloader dependent. This is done
+ * through the use of a single bit in the System Functions registers.
+ */
+ if (nfc->caps->variant == MARVELL_NFC_VARIANT_ARMADA_8K) {
+ struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
+ np, "marvell,system-controller");
+ u32 reg;
+
+ if (IS_ERR(sysctrl_base))
+ return PTR_ERR(sysctrl_base);
+
+ regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®);
+ reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN;
+ regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
+ }
+
+ /* For PXA only, but other SoCs have this bit marked reserved */
+ if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
+ enable_arbiter = NDCR_ND_ARB_EN;
+
+ /*
+ * ECC operations and interruptions are only enabled when specifically
+ * needed. ECC shall not be activated in the early stages (fails probe)
+ */
+ writel_relaxed(NDCR_RA_START | NDCR_ALL_INT | enable_arbiter,
+ nfc->regs + NDCR);
+ writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
+ writel_relaxed(0, nfc->regs + NDECCCTRL);
+
+ return 0;
+}
+
+static int marvell_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct resource *r;
+ struct marvell_nfc *nfc;
+ int ret;
+ int irq;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
+ GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nfc->dev = dev;
+ nand_hw_control_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->regs = devm_ioremap_resource(dev, r);
+ if (IS_ERR(nfc->regs))
+ return PTR_ERR(nfc->regs);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "failed to retrieve irq\n");
+ return irq;
+ }
+
+ nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(nfc->ecc_clk))
+ return PTR_ERR(nfc->ecc_clk);
+
+ ret = clk_prepare_enable(nfc->ecc_clk);
+ if (ret)
+ return ret;
+
+ marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
+ marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
+ ret = devm_request_irq(dev, irq, marvell_nfc_isr,
+ 0, "marvell-nfc", nfc);
+ if (ret)
+ goto out_clk_unprepare;
+
+ /* Get NAND controller capabilities */
+ if (pdev->id_entry)
+ nfc->caps = (void *)pdev->id_entry->driver_data;
+ else
+ nfc->caps = of_device_get_match_data(&pdev->dev);
+
+ if (!nfc->caps) {
+ dev_err(dev, "Could not retrieve NFC caps\n");
+ ret = -EINVAL;
+ goto out_clk_unprepare;
+ }
+
+ /* Init the controller and then probe the chips */
+ ret = marvell_nfc_init(nfc);
+ if (ret)
+ goto out_clk_unprepare;
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = marvell_nand_chips_init(dev, nfc);
+ if (ret)
+ goto out_clk_unprepare;
+
+ return 0;
+
+out_clk_unprepare:
+ clk_disable_unprepare(nfc->ecc_clk);
+
+ return ret;
+}
+
+static int marvell_nfc_remove(struct platform_device *pdev)
+{
+ struct marvell_nfc *nfc = platform_get_drvdata(pdev);
+
+ marvell_nand_chips_cleanup(nfc);
+
+ clk_disable_unprepare(nfc->ecc_clk);
+
+ return 0;
+}
+
+static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
+ .variant = MARVELL_NFC_VARIANT_ARMADA_8K,
+ .max_cs_nb = 4,
+ .max_rb_nb = 2,
+};
+
+static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
+ .variant = MARVELL_NFC_VARIANT_ARMADA370,
+ .max_cs_nb = 4,
+ .max_rb_nb = 2,
+};
+
+static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
+ .variant = MARVELL_NFC_VARIANT_PXA3XX,
+ .max_cs_nb = 2,
+ .max_rb_nb = 1,
+};
+
+static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
+ .variant = MARVELL_NFC_VARIANT_ARMADA_8K,
+ .max_cs_nb = 4,
+ .max_rb_nb = 2,
+ .legacy_of_bindings = true,
+};
+
+static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
+ .variant = MARVELL_NFC_VARIANT_ARMADA370,
+ .max_cs_nb = 4,
+ .max_rb_nb = 2,
+ .legacy_of_bindings = true,
+};
+
+static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
+ .variant = MARVELL_NFC_VARIANT_PXA3XX,
+ .max_cs_nb = 2,
+ .max_rb_nb = 1,
+ .legacy_of_bindings = true,
+};
+
+static const struct of_device_id marvell_nfc_of_ids[] = {
+ {
+ .compatible = "marvell,armada-8k-nand-controller",
+ .data = &marvell_armada_8k_nfc_caps,
+ },
+ {
+ .compatible = "marvell,armada370-nand-controller",
+ .data = &marvell_armada370_nfc_caps,
+ },
+ {
+ .compatible = "marvell,pxa3xx-nand-controller",
+ .data = &marvell_pxa3xx_nfc_caps,
+ },
+ /* Support for old/deprecated bindings: */
+ {
+ .compatible = "marvell,armada-8k-nand",
+ .data = &marvell_armada_8k_nfc_legacy_caps,
+ },
+ {
+ .compatible = "marvell,armada370-nand",
+ .data = &marvell_armada370_nfc_legacy_caps,
+ },
+ {
+ .compatible = "marvell,pxa3xx-nand",
+ .data = &marvell_pxa3xx_nfc_legacy_caps,
+ },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, marvell_nand_match);
+
+static struct platform_driver marvell_nfc_driver = {
+ .driver = {
+ .name = "marvell-nfc",
+ .of_match_table = marvell_nfc_of_ids,
+ },
+ .probe = marvell_nfc_probe,
+ .remove = marvell_nfc_remove,
+};
+module_platform_driver(marvell_nfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Marvell NAND controller driver");
Add marvell_nand driver which aims at replacing the existing pxa3xx_nand driver. The new driver intends to be easier to understand and follows the brand new NAND framework rules by implementing hooks for every pattern the controller might support and referencing them inside a parser object that will be given to the core at each ->exec_op() call. Raw accessors are implemented, useful to test/debug memory/filesystem corruptions. Userspace binaries contained in the mtd-utils package may now be used and their output trusted. Timings may not be kept from the bootloader anymore, the timings used for instance in U-Boot were not optimal and it supposed to have NAND support (and initialized) in the bootloader. Thanks to the improved timings, implementation of ONFI mode 5 support (with EDO managed by adding a delay on data sampling), merging the commands together and optimizing writes in the command registers, the new driver may achieve faster throughputs in both directions. Measurements show an improvement of about +23% read throughput and +24% write throughput. These measurements have been done with an Armada-385-DB-AP (4kiB NAND pages forced in 4-bit strength BCH ECC correction) using the userspace tool 'flash_speed' from the MTD test suite. Besides these important topics, the new driver addresses several unsolved known issues in the old driver which: - did not work with ECC soft neither with ECC none ; - relied on naked read/write (which is unchanged) while the NFCv1 embedded in the pxa3xx platforms do not implement it, so several NAND commands did not actually ever work without any notice (like reading the ONFI PARAM_PAGE or SET/GET_FEATURES) ; - wrote the OOB data correctly, but was not able to read it correctly past the first OOB data chunk ; - did not displayed ECC bytes ; - used device tree bindings that did not allow more than one NAND chip, and did not allow to choose the correct chip select if not incrementing from 0. Plus, the Ready/Busy line used had to be 0. Old device tree bindings are still supported but deprecated. A more hierarchical view has to be used to keep the controller and the NAND chip structures clearly separated both inside the device tree and also in the driver code. Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> --- drivers/mtd/nand/Kconfig | 11 + drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/marvell_nand.c | 2384 +++++++++++++++++++++++++++++++++++++++ 3 files changed, 2396 insertions(+) create mode 100644 drivers/mtd/nand/marvell_nand.c