diff mbox series

crypto: arm/chacha20 - faster 8-bit rotations and other optimizations

Message ID 20180831080140.20553-1-ebiggers@kernel.org (mailing list archive)
State Superseded
Delegated to: Herbert Xu
Headers show
Series crypto: arm/chacha20 - faster 8-bit rotations and other optimizations | expand

Commit Message

Eric Biggers Aug. 31, 2018, 8:01 a.m. UTC
From: Eric Biggers <ebiggers@google.com>

Optimize ChaCha20 NEON performance by:

- Implementing the 8-bit rotations using the 'vtbl.8' instruction.
- Streamlining the part that adds the original state and XORs the data.
- Making some other small tweaks.

On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
about 11.9 cycles per byte to 11.3.

There is a tradeoff involved with the 'vtbl.8' rotation method since
there is at least one CPU where it's not fastest.  But it seems to be a
better default; see the added comment.

Signed-off-by: Eric Biggers <ebiggers@google.com>
---
 arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
 1 file changed, 147 insertions(+), 142 deletions(-)

Comments

Ard Biesheuvel Aug. 31, 2018, 3:56 p.m. UTC | #1
Hi Eric,

On 31 August 2018 at 10:01, Eric Biggers <ebiggers@kernel.org> wrote:
> From: Eric Biggers <ebiggers@google.com>
>
> Optimize ChaCha20 NEON performance by:
>
> - Implementing the 8-bit rotations using the 'vtbl.8' instruction.
> - Streamlining the part that adds the original state and XORs the data.
> - Making some other small tweaks.
>
> On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
> about 11.9 cycles per byte to 11.3.
>
> There is a tradeoff involved with the 'vtbl.8' rotation method since
> there is at least one CPU where it's not fastest.  But it seems to be a
> better default; see the added comment.
>
> Signed-off-by: Eric Biggers <ebiggers@google.com>
> ---
>  arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
>  1 file changed, 147 insertions(+), 142 deletions(-)
>
> diff --git a/arch/arm/crypto/chacha20-neon-core.S b/arch/arm/crypto/chacha20-neon-core.S
> index 3fecb2124c35a..d381cebaba31d 100644
> --- a/arch/arm/crypto/chacha20-neon-core.S
> +++ b/arch/arm/crypto/chacha20-neon-core.S
> @@ -18,6 +18,33 @@
>   * (at your option) any later version.
>   */
>
> + /*
> +  * NEON doesn't have a rotate instruction.  The alternatives are, more or less:
> +  *
> +  * (a)  vshl.u32 + vsri.u32           (needs temporary register)
> +  * (b)  vshl.u32 + vshr.u32 + vorr    (needs temporary register)
> +  * (c)  vrev32.16                     (16-bit rotations only)
> +  * (d)  vtbl.8 + vtbl.8               (multiple of 8 bits rotations only,
> +  *                                     needs index vector)
> +  *
> +  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
> +  * rotations, the only choices are (a) and (b).  We use (a) since it takes
> +  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
> +  *
> +  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
> +  * and doesn't need a temporary register.
> +  *
> +  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this sequence
> +  * is twice as fast as (a), even when doing (a) on multiple registers
> +  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
> +  * parallelizes better when temporary registers are scarce.
> +  *
> +  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
> +  * (a), so the need to load the rotation table actually makes the vtbl method
> +  * slightly slower overall on that CPU.  Still, it seems to be a good
> +  * compromise to get a significant speed boost on some CPUs.
> +  */
> +

Thanks for sharing these results. I have been working on 32-bit ARM
code under the assumption that the A53 pipeline more or less resembles
the A7 one, but this is obviously not the case looking at your
results. My contributions to arch/arm/crypto mainly involved Crypto
Extensions code, which the A7 does not support in the first place, so
it does not really matter, but I will keep this in mind going forward.

>  #include <linux/linkage.h>
>
>         .text
> @@ -46,6 +73,9 @@ ENTRY(chacha20_block_xor_neon)
>         vmov            q10, q2
>         vmov            q11, q3
>
> +       ldr             ip, =.Lrol8_table
> +       vld1.8          {d10}, [ip, :64]
> +

I usually try to avoid the =literal ldr notation, because it involves
an additional load via the D-cache. Could you use a 64-bit literal
instead of a byte array and use vldr instead? Or switch to adr? (and
move the literal in range, I suppose)

>         mov             r3, #10
>
>  .Ldoubleround:
> @@ -63,9 +93,9 @@ ENTRY(chacha20_block_xor_neon)
>
>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>         vadd.i32        q0, q0, q1
> -       veor            q4, q3, q0
> -       vshl.u32        q3, q4, #8
> -       vsri.u32        q3, q4, #24
> +       veor            q3, q3, q0
> +       vtbl.8          d6, {d6}, d10
> +       vtbl.8          d7, {d7}, d10
>
>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>         vadd.i32        q2, q2, q3
> @@ -94,9 +124,9 @@ ENTRY(chacha20_block_xor_neon)
>
>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>         vadd.i32        q0, q0, q1
> -       veor            q4, q3, q0
> -       vshl.u32        q3, q4, #8
> -       vsri.u32        q3, q4, #24
> +       veor            q3, q3, q0
> +       vtbl.8          d6, {d6}, d10
> +       vtbl.8          d7, {d7}, d10
>
>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>         vadd.i32        q2, q2, q3
> @@ -143,11 +173,11 @@ ENDPROC(chacha20_block_xor_neon)
>
>         .align          5
>  ENTRY(chacha20_4block_xor_neon)
> -       push            {r4-r6, lr}
> -       mov             ip, sp                  // preserve the stack pointer
> -       sub             r3, sp, #0x20           // allocate a 32 byte buffer
> -       bic             r3, r3, #0x1f           // aligned to 32 bytes
> -       mov             sp, r3
> +       push            {r4}

The ARM EABI mandates 8 byte stack alignment, and if you take an
interrupt right at this point, you will enter the interrupt handler
with a misaligned stack. Whether this could actually cause any
problems is a different question, but it is better to keep it 8-byte
aligned to be sure.

I'd suggest you just push r4 and lr, so you can return from the
function by popping r4 and pc, as is customary on ARM.

> +       mov             r4, sp                  // preserve the stack pointer
> +       sub             ip, sp, #0x20           // allocate a 32 byte buffer
> +       bic             ip, ip, #0x1f           // aligned to 32 bytes
> +       mov             sp, ip
>

Is there a reason for preferring ip over r3 for preserving the
original value of sp?

>         // r0: Input state matrix, s
>         // r1: 4 data blocks output, o
> @@ -157,25 +187,24 @@ ENTRY(chacha20_4block_xor_neon)
>         // This function encrypts four consecutive ChaCha20 blocks by loading
>         // the state matrix in NEON registers four times. The algorithm performs
>         // each operation on the corresponding word of each state matrix, hence
> -       // requires no word shuffling. For final XORing step we transpose the
> -       // matrix by interleaving 32- and then 64-bit words, which allows us to
> -       // do XOR in NEON registers.
> +       // requires no word shuffling. The words are re-interleaved before the
> +       // final addition of the original state and the XORing step.
>         //
>
> -       // x0..15[0-3] = s0..3[0..3]
> -       add             r3, r0, #0x20
> +       // x0..15[0-3] = s0..15[0-3]
> +       add             ip, r0, #0x20
>         vld1.32         {q0-q1}, [r0]
> -       vld1.32         {q2-q3}, [r3]
> +       vld1.32         {q2-q3}, [ip]
>
> -       adr             r3, CTRINC
> +       adr             ip, .Lctrinc1
>         vdup.32         q15, d7[1]
>         vdup.32         q14, d7[0]
> -       vld1.32         {q11}, [r3, :128]
> +       vld1.32         {q4}, [ip, :128]
>         vdup.32         q13, d6[1]
>         vdup.32         q12, d6[0]
> -       vadd.i32        q12, q12, q11           // x12 += counter values 0-3
>         vdup.32         q11, d5[1]
>         vdup.32         q10, d5[0]
> +       vadd.u32        q12, q12, q4            // x12 += counter values 0-3
>         vdup.32         q9, d4[1]
>         vdup.32         q8, d4[0]
>         vdup.32         q7, d3[1]
> @@ -187,6 +216,7 @@ ENTRY(chacha20_4block_xor_neon)
>         vdup.32         q1, d0[1]
>         vdup.32         q0, d0[0]
>
> +       adr             ip, .Lrol8_table
>         mov             r3, #10
>
>  .Ldoubleround4:
> @@ -238,24 +268,25 @@ ENTRY(chacha20_4block_xor_neon)
>         // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
>         // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
>         // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
> +       vld1.8          {d16}, [ip, :64]
>         vadd.i32        q0, q0, q4
>         vadd.i32        q1, q1, q5
>         vadd.i32        q2, q2, q6
>         vadd.i32        q3, q3, q7
>
> -       veor            q8, q12, q0
> -       veor            q9, q13, q1
> -       vshl.u32        q12, q8, #8
> -       vshl.u32        q13, q9, #8
> -       vsri.u32        q12, q8, #24
> -       vsri.u32        q13, q9, #24
> +       veor            q12, q12, q0
> +       veor            q13, q13, q1
> +       veor            q14, q14, q2
> +       veor            q15, q15, q3
>
> -       veor            q8, q14, q2
> -       veor            q9, q15, q3
> -       vshl.u32        q14, q8, #8
> -       vshl.u32        q15, q9, #8
> -       vsri.u32        q14, q8, #24
> -       vsri.u32        q15, q9, #24
> +       vtbl.8          d24, {d24}, d16
> +       vtbl.8          d25, {d25}, d16
> +       vtbl.8          d26, {d26}, d16
> +       vtbl.8          d27, {d27}, d16
> +       vtbl.8          d28, {d28}, d16
> +       vtbl.8          d29, {d29}, d16
> +       vtbl.8          d30, {d30}, d16
> +       vtbl.8          d31, {d31}, d16
>
>         vld1.32         {q8-q9}, [sp, :256]
>
> @@ -334,24 +365,25 @@ ENTRY(chacha20_4block_xor_neon)
>         // x1 += x6, x12 = rotl32(x12 ^ x1, 8)
>         // x2 += x7, x13 = rotl32(x13 ^ x2, 8)
>         // x3 += x4, x14 = rotl32(x14 ^ x3, 8)
> +       vld1.8          {d16}, [ip, :64]
>         vadd.i32        q0, q0, q5
>         vadd.i32        q1, q1, q6
>         vadd.i32        q2, q2, q7
>         vadd.i32        q3, q3, q4
>
> -       veor            q8, q15, q0
> -       veor            q9, q12, q1
> -       vshl.u32        q15, q8, #8
> -       vshl.u32        q12, q9, #8
> -       vsri.u32        q15, q8, #24
> -       vsri.u32        q12, q9, #24
> +       veor            q15, q15, q0
> +       veor            q12, q12, q1
> +       veor            q13, q13, q2
> +       veor            q14, q14, q3
>
> -       veor            q8, q13, q2
> -       veor            q9, q14, q3
> -       vshl.u32        q13, q8, #8
> -       vshl.u32        q14, q9, #8
> -       vsri.u32        q13, q8, #24
> -       vsri.u32        q14, q9, #24
> +       vtbl.8          d30, {d30}, d16
> +       vtbl.8          d31, {d31}, d16
> +       vtbl.8          d24, {d24}, d16
> +       vtbl.8          d25, {d25}, d16
> +       vtbl.8          d26, {d26}, d16
> +       vtbl.8          d27, {d27}, d16
> +       vtbl.8          d28, {d28}, d16
> +       vtbl.8          d29, {d29}, d16
>
>         vld1.32         {q8-q9}, [sp, :256]
>
> @@ -381,104 +413,74 @@ ENTRY(chacha20_4block_xor_neon)
>         vsri.u32        q6, q9, #25
>
>         subs            r3, r3, #1
> -       beq             0f
> -
> -       vld1.32         {q8-q9}, [sp, :256]
> -       b               .Ldoubleround4
> -
> -       // x0[0-3] += s0[0]
> -       // x1[0-3] += s0[1]
> -       // x2[0-3] += s0[2]
> -       // x3[0-3] += s0[3]
> -0:     ldmia           r0!, {r3-r6}
> -       vdup.32         q8, r3
> -       vdup.32         q9, r4
> -       vadd.i32        q0, q0, q8
> -       vadd.i32        q1, q1, q9
> -       vdup.32         q8, r5
> -       vdup.32         q9, r6
> -       vadd.i32        q2, q2, q8
> -       vadd.i32        q3, q3, q9
> -
> -       // x4[0-3] += s1[0]
> -       // x5[0-3] += s1[1]
> -       // x6[0-3] += s1[2]
> -       // x7[0-3] += s1[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q8, r3
> -       vdup.32         q9, r4
> -       vadd.i32        q4, q4, q8
> -       vadd.i32        q5, q5, q9
> -       vdup.32         q8, r5
> -       vdup.32         q9, r6
> -       vadd.i32        q6, q6, q8
> -       vadd.i32        q7, q7, q9
> -
> -       // interleave 32-bit words in state n, n+1
> -       vzip.32         q0, q1
> -       vzip.32         q2, q3
> -       vzip.32         q4, q5
> -       vzip.32         q6, q7
> -
> -       // interleave 64-bit words in state n, n+2
> -       vswp            d1, d4
> -       vswp            d3, d6
> -       vswp            d9, d12
> -       vswp            d11, d14
> -
> -       // xor with corresponding input, write to output
> -       vld1.8          {q8-q9}, [r2]!
> -       veor            q8, q8, q0
> -       veor            q9, q9, q4
> -       vst1.8          {q8-q9}, [r1]!
> -
>         vld1.32         {q8-q9}, [sp, :256]
> -
> -       // x8[0-3] += s2[0]
> -       // x9[0-3] += s2[1]
> -       // x10[0-3] += s2[2]
> -       // x11[0-3] += s2[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q0, r3
> -       vdup.32         q4, r4
> -       vadd.i32        q8, q8, q0
> -       vadd.i32        q9, q9, q4
> -       vdup.32         q0, r5
> -       vdup.32         q4, r6
> -       vadd.i32        q10, q10, q0
> -       vadd.i32        q11, q11, q4
> -
> -       // x12[0-3] += s3[0]
> -       // x13[0-3] += s3[1]
> -       // x14[0-3] += s3[2]
> -       // x15[0-3] += s3[3]
> -       ldmia           r0!, {r3-r6}
> -       vdup.32         q0, r3
> -       vdup.32         q4, r4
> -       adr             r3, CTRINC
> -       vadd.i32        q12, q12, q0
> -       vld1.32         {q0}, [r3, :128]
> -       vadd.i32        q13, q13, q4
> -       vadd.i32        q12, q12, q0            // x12 += counter values 0-3
> -
> -       vdup.32         q0, r5
> -       vdup.32         q4, r6
> -       vadd.i32        q14, q14, q0
> -       vadd.i32        q15, q15, q4
> -
> -       // interleave 32-bit words in state n, n+1
> -       vzip.32         q8, q9
> -       vzip.32         q10, q11
> -       vzip.32         q12, q13
> -       vzip.32         q14, q15
> -
> -       // interleave 64-bit words in state n, n+2
> -       vswp            d17, d20
> -       vswp            d19, d22
> -       vswp            d25, d28
> +       bne             .Ldoubleround4
> +
> +       // re-interleave the 32-bit words of the four blocks
> +       vzip.32         q14, q15        // => (14 15 14 15) (14 15 14 15)
> +       vzip.32         q12, q13        // => (12 13 12 13) (12 13 12 13)
> +       vzip.32         q10, q11        // => (10 11 10 11) (10 11 10 11)
> +       vzip.32         q8, q9          // => (8 9 8 9) (8 9 8 9)
> +       vzip.32         q6, q7          // => (6 7 6 7) (6 7 6 7)
> +       vzip.32         q4, q5          // => (4 5 4 5) (4 5 4 5)
> +       vzip.32         q2, q3          // => (2 3 2 3) (2 3 2 3)
> +       vzip.32         q0, q1          // => (0 1 0 1) (0 1 0 1)
>         vswp            d27, d30
> +       vswp            d25, d28
> +       vswp            d19, d22
> +       vswp            d17, d20
> +       vswp            d11, d14
> +         vst1.32       {q14-q15}, [sp, :256]   // free up two registers
> +       vswp            d9, d12
> +       vswp            d3, d6
> +         vld1.32       {q14-q15}, [r0]!        // load s0..7
> +       vswp            d1, d4
>
> -       vmov            q4, q1
> +       // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
> +       // after XORing the first 32 bytes.
> +       vswp            q1, q4
> +
> +       // blocks are: (q0 q1 q8 q12) (q2 q6 q10 q14) (q4 q5 q9 q13) (q3 q7 q11 q15)
> +
> +       // x0..3[0-3] += s0..3[0-3]     (add orig state to 1st row of each block)
> +       vadd.u32        q0, q0, q14
> +       vadd.u32        q2, q2, q14
> +       vadd.u32        q4, q4, q14
> +       vadd.u32        q3, q3, q14
> +
> +       // x4..7[0-3] += s4..7[0-3]     (add orig state to 2nd row of each block)
> +       vadd.u32        q1, q1, q15
> +       vadd.u32        q6, q6, q15
> +       vadd.u32        q5, q5, q15
> +       vadd.u32        q7, q7, q15
> +
> +       // XOR first 32 bytes using keystream from first two rows of first block
> +       vld1.8          {q14-q15}, [r2]!
> +       veor            q14, q14, q0
> +       veor            q15, q15, q1
> +         vld1.32       {q0-q1}, [r0]           // load s8..s15
> +       vst1.8          {q14-q15}, [r1]!
> +
> +       // x8..11[0-3] += s8..11[0-3]   (add orig state to 3rd row of each block)
> +       vadd.u32        q8,  q8,  q0
> +       vadd.u32        q10, q10, q0
> +         vld1.32       {q14-q15}, [sp, :256]
> +       vadd.u32        q9,  q9,  q0
> +         adr           ip, .Lctrinc2
> +       vadd.u32        q11, q11, q0
> +
> +       // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
> +       vld1.32         {q0}, [ip, :128]        // load (1, 0, 2, 0)

Would something like

        vmov.i32        d0, #1
        vmovl.u32       q0, d0
        vadd.u64        d1, d1

(untested) work as well?

> +       vadd.u32        q15, q15, q1
> +       vadd.u32        q13, q13, q1
> +       vadd.u32        q14, q14, q1
> +       vadd.u32        q12, q12, q1
> +       vadd.u32        d30, d30, d1            // x12[3] += 2
> +       vadd.u32        d26, d26, d1            // x12[2] += 2
> +       vadd.u32        d28, d28, d0            // x12[1] += 1
> +       vadd.u32        d30, d30, d0            // x12[3] += 1
> +
> +       // XOR the rest of the data with the keystream
>
>         vld1.8          {q0-q1}, [r2]!
>         veor            q0, q0, q8
> @@ -511,13 +513,16 @@ ENTRY(chacha20_4block_xor_neon)
>         vst1.8          {q0-q1}, [r1]!
>
>         vld1.8          {q0-q1}, [r2]
> +         mov           sp, r4          // restore original stack pointer
>         veor            q0, q0, q11
>         veor            q1, q1, q15
>         vst1.8          {q0-q1}, [r1]
>
> -       mov             sp, ip
> -       pop             {r4-r6, pc}
> +       pop             {r4}
> +       bx              lr
>  ENDPROC(chacha20_4block_xor_neon)
>
>         .align          4
> -CTRINC:        .word           0, 1, 2, 3
> +.Lctrinc1:     .word   0, 1, 2, 3
> +.Lctrinc2:     .word   1, 0, 2, 0
> +.Lrol8_table:  .byte   3, 0, 1, 2, 7, 4, 5, 6
> --
> 2.18.0
>
Ard Biesheuvel Aug. 31, 2018, 4:51 p.m. UTC | #2
On 31 August 2018 at 17:56, Ard Biesheuvel <ard.biesheuvel@linaro.org> wrote:
> Hi Eric,
>
> On 31 August 2018 at 10:01, Eric Biggers <ebiggers@kernel.org> wrote:
>> From: Eric Biggers <ebiggers@google.com>
>>
>> Optimize ChaCha20 NEON performance by:
>>
>> - Implementing the 8-bit rotations using the 'vtbl.8' instruction.
>> - Streamlining the part that adds the original state and XORs the data.
>> - Making some other small tweaks.
>>
>> On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
>> about 11.9 cycles per byte to 11.3.
>>
>> There is a tradeoff involved with the 'vtbl.8' rotation method since
>> there is at least one CPU where it's not fastest.  But it seems to be a
>> better default; see the added comment.
>>
>> Signed-off-by: Eric Biggers <ebiggers@google.com>
>> ---
>>  arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
>>  1 file changed, 147 insertions(+), 142 deletions(-)
>>
>> diff --git a/arch/arm/crypto/chacha20-neon-core.S b/arch/arm/crypto/chacha20-neon-core.S
>> index 3fecb2124c35a..d381cebaba31d 100644
>> --- a/arch/arm/crypto/chacha20-neon-core.S
>> +++ b/arch/arm/crypto/chacha20-neon-core.S
>> @@ -18,6 +18,33 @@
>>   * (at your option) any later version.
>>   */
>>
>> + /*
>> +  * NEON doesn't have a rotate instruction.  The alternatives are, more or less:
>> +  *
>> +  * (a)  vshl.u32 + vsri.u32           (needs temporary register)
>> +  * (b)  vshl.u32 + vshr.u32 + vorr    (needs temporary register)
>> +  * (c)  vrev32.16                     (16-bit rotations only)
>> +  * (d)  vtbl.8 + vtbl.8               (multiple of 8 bits rotations only,
>> +  *                                     needs index vector)
>> +  *
>> +  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
>> +  * rotations, the only choices are (a) and (b).  We use (a) since it takes
>> +  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
>> +  *
>> +  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
>> +  * and doesn't need a temporary register.
>> +  *
>> +  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this sequence
>> +  * is twice as fast as (a), even when doing (a) on multiple registers
>> +  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
>> +  * parallelizes better when temporary registers are scarce.
>> +  *
>> +  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
>> +  * (a), so the need to load the rotation table actually makes the vtbl method
>> +  * slightly slower overall on that CPU.  Still, it seems to be a good
>> +  * compromise to get a significant speed boost on some CPUs.
>> +  */
>> +
>
> Thanks for sharing these results. I have been working on 32-bit ARM
> code under the assumption that the A53 pipeline more or less resembles
> the A7 one, but this is obviously not the case looking at your
> results. My contributions to arch/arm/crypto mainly involved Crypto
> Extensions code, which the A7 does not support in the first place, so
> it does not really matter, but I will keep this in mind going forward.
>
>>  #include <linux/linkage.h>
>>
>>         .text
>> @@ -46,6 +73,9 @@ ENTRY(chacha20_block_xor_neon)
>>         vmov            q10, q2
>>         vmov            q11, q3
>>
>> +       ldr             ip, =.Lrol8_table
>> +       vld1.8          {d10}, [ip, :64]
>> +
>
> I usually try to avoid the =literal ldr notation, because it involves
> an additional load via the D-cache. Could you use a 64-bit literal
> instead of a byte array and use vldr instead? Or switch to adr? (and
> move the literal in range, I suppose)
>
>>         mov             r3, #10
>>
>>  .Ldoubleround:
>> @@ -63,9 +93,9 @@ ENTRY(chacha20_block_xor_neon)
>>
>>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>>         vadd.i32        q0, q0, q1
>> -       veor            q4, q3, q0
>> -       vshl.u32        q3, q4, #8
>> -       vsri.u32        q3, q4, #24
>> +       veor            q3, q3, q0
>> +       vtbl.8          d6, {d6}, d10
>> +       vtbl.8          d7, {d7}, d10
>>
>>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>>         vadd.i32        q2, q2, q3
>> @@ -94,9 +124,9 @@ ENTRY(chacha20_block_xor_neon)
>>
>>         // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
>>         vadd.i32        q0, q0, q1
>> -       veor            q4, q3, q0
>> -       vshl.u32        q3, q4, #8
>> -       vsri.u32        q3, q4, #24
>> +       veor            q3, q3, q0
>> +       vtbl.8          d6, {d6}, d10
>> +       vtbl.8          d7, {d7}, d10
>>
>>         // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
>>         vadd.i32        q2, q2, q3
>> @@ -143,11 +173,11 @@ ENDPROC(chacha20_block_xor_neon)
>>
>>         .align          5
>>  ENTRY(chacha20_4block_xor_neon)
>> -       push            {r4-r6, lr}
>> -       mov             ip, sp                  // preserve the stack pointer
>> -       sub             r3, sp, #0x20           // allocate a 32 byte buffer
>> -       bic             r3, r3, #0x1f           // aligned to 32 bytes
>> -       mov             sp, r3
>> +       push            {r4}
>
> The ARM EABI mandates 8 byte stack alignment, and if you take an
> interrupt right at this point, you will enter the interrupt handler
> with a misaligned stack. Whether this could actually cause any
> problems is a different question, but it is better to keep it 8-byte
> aligned to be sure.
>
> I'd suggest you just push r4 and lr, so you can return from the
> function by popping r4 and pc, as is customary on ARM.
>
>> +       mov             r4, sp                  // preserve the stack pointer
>> +       sub             ip, sp, #0x20           // allocate a 32 byte buffer
>> +       bic             ip, ip, #0x1f           // aligned to 32 bytes
>> +       mov             sp, ip
>>
>
> Is there a reason for preferring ip over r3 for preserving the
> original value of sp?
>
>>         // r0: Input state matrix, s
>>         // r1: 4 data blocks output, o
>> @@ -157,25 +187,24 @@ ENTRY(chacha20_4block_xor_neon)
>>         // This function encrypts four consecutive ChaCha20 blocks by loading
>>         // the state matrix in NEON registers four times. The algorithm performs
>>         // each operation on the corresponding word of each state matrix, hence
>> -       // requires no word shuffling. For final XORing step we transpose the
>> -       // matrix by interleaving 32- and then 64-bit words, which allows us to
>> -       // do XOR in NEON registers.
>> +       // requires no word shuffling. The words are re-interleaved before the
>> +       // final addition of the original state and the XORing step.
>>         //
>>
>> -       // x0..15[0-3] = s0..3[0..3]
>> -       add             r3, r0, #0x20
>> +       // x0..15[0-3] = s0..15[0-3]
>> +       add             ip, r0, #0x20
>>         vld1.32         {q0-q1}, [r0]
>> -       vld1.32         {q2-q3}, [r3]
>> +       vld1.32         {q2-q3}, [ip]
>>
>> -       adr             r3, CTRINC
>> +       adr             ip, .Lctrinc1
>>         vdup.32         q15, d7[1]
>>         vdup.32         q14, d7[0]
>> -       vld1.32         {q11}, [r3, :128]
>> +       vld1.32         {q4}, [ip, :128]
>>         vdup.32         q13, d6[1]
>>         vdup.32         q12, d6[0]
>> -       vadd.i32        q12, q12, q11           // x12 += counter values 0-3
>>         vdup.32         q11, d5[1]
>>         vdup.32         q10, d5[0]
>> +       vadd.u32        q12, q12, q4            // x12 += counter values 0-3
>>         vdup.32         q9, d4[1]
>>         vdup.32         q8, d4[0]
>>         vdup.32         q7, d3[1]
>> @@ -187,6 +216,7 @@ ENTRY(chacha20_4block_xor_neon)
>>         vdup.32         q1, d0[1]
>>         vdup.32         q0, d0[0]
>>
>> +       adr             ip, .Lrol8_table
>>         mov             r3, #10
>>
>>  .Ldoubleround4:
>> @@ -238,24 +268,25 @@ ENTRY(chacha20_4block_xor_neon)
>>         // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
>>         // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
>>         // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
>> +       vld1.8          {d16}, [ip, :64]

Also, would it perhaps be more efficient to keep the rotation vector
in a pair of GPRs, and use something like

vmov d16, r4, r5

here?


>>         vadd.i32        q0, q0, q4
>>         vadd.i32        q1, q1, q5
>>         vadd.i32        q2, q2, q6
>>         vadd.i32        q3, q3, q7
>>
>> -       veor            q8, q12, q0
>> -       veor            q9, q13, q1
>> -       vshl.u32        q12, q8, #8
>> -       vshl.u32        q13, q9, #8
>> -       vsri.u32        q12, q8, #24
>> -       vsri.u32        q13, q9, #24
>> +       veor            q12, q12, q0
>> +       veor            q13, q13, q1
>> +       veor            q14, q14, q2
>> +       veor            q15, q15, q3
>>
>> -       veor            q8, q14, q2
>> -       veor            q9, q15, q3
>> -       vshl.u32        q14, q8, #8
>> -       vshl.u32        q15, q9, #8
>> -       vsri.u32        q14, q8, #24
>> -       vsri.u32        q15, q9, #24
>> +       vtbl.8          d24, {d24}, d16
>> +       vtbl.8          d25, {d25}, d16
>> +       vtbl.8          d26, {d26}, d16
>> +       vtbl.8          d27, {d27}, d16
>> +       vtbl.8          d28, {d28}, d16
>> +       vtbl.8          d29, {d29}, d16
>> +       vtbl.8          d30, {d30}, d16
>> +       vtbl.8          d31, {d31}, d16
>>
>>         vld1.32         {q8-q9}, [sp, :256]
>>
>> @@ -334,24 +365,25 @@ ENTRY(chacha20_4block_xor_neon)
>>         // x1 += x6, x12 = rotl32(x12 ^ x1, 8)
>>         // x2 += x7, x13 = rotl32(x13 ^ x2, 8)
>>         // x3 += x4, x14 = rotl32(x14 ^ x3, 8)
>> +       vld1.8          {d16}, [ip, :64]
>>         vadd.i32        q0, q0, q5
>>         vadd.i32        q1, q1, q6
>>         vadd.i32        q2, q2, q7
>>         vadd.i32        q3, q3, q4
>>
>> -       veor            q8, q15, q0
>> -       veor            q9, q12, q1
>> -       vshl.u32        q15, q8, #8
>> -       vshl.u32        q12, q9, #8
>> -       vsri.u32        q15, q8, #24
>> -       vsri.u32        q12, q9, #24
>> +       veor            q15, q15, q0
>> +       veor            q12, q12, q1
>> +       veor            q13, q13, q2
>> +       veor            q14, q14, q3
>>
>> -       veor            q8, q13, q2
>> -       veor            q9, q14, q3
>> -       vshl.u32        q13, q8, #8
>> -       vshl.u32        q14, q9, #8
>> -       vsri.u32        q13, q8, #24
>> -       vsri.u32        q14, q9, #24
>> +       vtbl.8          d30, {d30}, d16
>> +       vtbl.8          d31, {d31}, d16
>> +       vtbl.8          d24, {d24}, d16
>> +       vtbl.8          d25, {d25}, d16
>> +       vtbl.8          d26, {d26}, d16
>> +       vtbl.8          d27, {d27}, d16
>> +       vtbl.8          d28, {d28}, d16
>> +       vtbl.8          d29, {d29}, d16
>>
>>         vld1.32         {q8-q9}, [sp, :256]
>>
>> @@ -381,104 +413,74 @@ ENTRY(chacha20_4block_xor_neon)
>>         vsri.u32        q6, q9, #25
>>
>>         subs            r3, r3, #1
>> -       beq             0f
>> -
>> -       vld1.32         {q8-q9}, [sp, :256]
>> -       b               .Ldoubleround4
>> -
>> -       // x0[0-3] += s0[0]
>> -       // x1[0-3] += s0[1]
>> -       // x2[0-3] += s0[2]
>> -       // x3[0-3] += s0[3]
>> -0:     ldmia           r0!, {r3-r6}
>> -       vdup.32         q8, r3
>> -       vdup.32         q9, r4
>> -       vadd.i32        q0, q0, q8
>> -       vadd.i32        q1, q1, q9
>> -       vdup.32         q8, r5
>> -       vdup.32         q9, r6
>> -       vadd.i32        q2, q2, q8
>> -       vadd.i32        q3, q3, q9
>> -
>> -       // x4[0-3] += s1[0]
>> -       // x5[0-3] += s1[1]
>> -       // x6[0-3] += s1[2]
>> -       // x7[0-3] += s1[3]
>> -       ldmia           r0!, {r3-r6}
>> -       vdup.32         q8, r3
>> -       vdup.32         q9, r4
>> -       vadd.i32        q4, q4, q8
>> -       vadd.i32        q5, q5, q9
>> -       vdup.32         q8, r5
>> -       vdup.32         q9, r6
>> -       vadd.i32        q6, q6, q8
>> -       vadd.i32        q7, q7, q9
>> -
>> -       // interleave 32-bit words in state n, n+1
>> -       vzip.32         q0, q1
>> -       vzip.32         q2, q3
>> -       vzip.32         q4, q5
>> -       vzip.32         q6, q7
>> -
>> -       // interleave 64-bit words in state n, n+2
>> -       vswp            d1, d4
>> -       vswp            d3, d6
>> -       vswp            d9, d12
>> -       vswp            d11, d14
>> -
>> -       // xor with corresponding input, write to output
>> -       vld1.8          {q8-q9}, [r2]!
>> -       veor            q8, q8, q0
>> -       veor            q9, q9, q4
>> -       vst1.8          {q8-q9}, [r1]!
>> -
>>         vld1.32         {q8-q9}, [sp, :256]
>> -
>> -       // x8[0-3] += s2[0]
>> -       // x9[0-3] += s2[1]
>> -       // x10[0-3] += s2[2]
>> -       // x11[0-3] += s2[3]
>> -       ldmia           r0!, {r3-r6}
>> -       vdup.32         q0, r3
>> -       vdup.32         q4, r4
>> -       vadd.i32        q8, q8, q0
>> -       vadd.i32        q9, q9, q4
>> -       vdup.32         q0, r5
>> -       vdup.32         q4, r6
>> -       vadd.i32        q10, q10, q0
>> -       vadd.i32        q11, q11, q4
>> -
>> -       // x12[0-3] += s3[0]
>> -       // x13[0-3] += s3[1]
>> -       // x14[0-3] += s3[2]
>> -       // x15[0-3] += s3[3]
>> -       ldmia           r0!, {r3-r6}
>> -       vdup.32         q0, r3
>> -       vdup.32         q4, r4
>> -       adr             r3, CTRINC
>> -       vadd.i32        q12, q12, q0
>> -       vld1.32         {q0}, [r3, :128]
>> -       vadd.i32        q13, q13, q4
>> -       vadd.i32        q12, q12, q0            // x12 += counter values 0-3
>> -
>> -       vdup.32         q0, r5
>> -       vdup.32         q4, r6
>> -       vadd.i32        q14, q14, q0
>> -       vadd.i32        q15, q15, q4
>> -
>> -       // interleave 32-bit words in state n, n+1
>> -       vzip.32         q8, q9
>> -       vzip.32         q10, q11
>> -       vzip.32         q12, q13
>> -       vzip.32         q14, q15
>> -
>> -       // interleave 64-bit words in state n, n+2
>> -       vswp            d17, d20
>> -       vswp            d19, d22
>> -       vswp            d25, d28
>> +       bne             .Ldoubleround4
>> +
>> +       // re-interleave the 32-bit words of the four blocks
>> +       vzip.32         q14, q15        // => (14 15 14 15) (14 15 14 15)
>> +       vzip.32         q12, q13        // => (12 13 12 13) (12 13 12 13)
>> +       vzip.32         q10, q11        // => (10 11 10 11) (10 11 10 11)
>> +       vzip.32         q8, q9          // => (8 9 8 9) (8 9 8 9)
>> +       vzip.32         q6, q7          // => (6 7 6 7) (6 7 6 7)
>> +       vzip.32         q4, q5          // => (4 5 4 5) (4 5 4 5)
>> +       vzip.32         q2, q3          // => (2 3 2 3) (2 3 2 3)
>> +       vzip.32         q0, q1          // => (0 1 0 1) (0 1 0 1)
>>         vswp            d27, d30
>> +       vswp            d25, d28
>> +       vswp            d19, d22
>> +       vswp            d17, d20
>> +       vswp            d11, d14
>> +         vst1.32       {q14-q15}, [sp, :256]   // free up two registers
>> +       vswp            d9, d12
>> +       vswp            d3, d6
>> +         vld1.32       {q14-q15}, [r0]!        // load s0..7
>> +       vswp            d1, d4
>>
>> -       vmov            q4, q1
>> +       // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
>> +       // after XORing the first 32 bytes.
>> +       vswp            q1, q4
>> +
>> +       // blocks are: (q0 q1 q8 q12) (q2 q6 q10 q14) (q4 q5 q9 q13) (q3 q7 q11 q15)
>> +
>> +       // x0..3[0-3] += s0..3[0-3]     (add orig state to 1st row of each block)
>> +       vadd.u32        q0, q0, q14
>> +       vadd.u32        q2, q2, q14
>> +       vadd.u32        q4, q4, q14
>> +       vadd.u32        q3, q3, q14
>> +
>> +       // x4..7[0-3] += s4..7[0-3]     (add orig state to 2nd row of each block)
>> +       vadd.u32        q1, q1, q15
>> +       vadd.u32        q6, q6, q15
>> +       vadd.u32        q5, q5, q15
>> +       vadd.u32        q7, q7, q15
>> +
>> +       // XOR first 32 bytes using keystream from first two rows of first block
>> +       vld1.8          {q14-q15}, [r2]!
>> +       veor            q14, q14, q0
>> +       veor            q15, q15, q1
>> +         vld1.32       {q0-q1}, [r0]           // load s8..s15
>> +       vst1.8          {q14-q15}, [r1]!
>> +
>> +       // x8..11[0-3] += s8..11[0-3]   (add orig state to 3rd row of each block)
>> +       vadd.u32        q8,  q8,  q0
>> +       vadd.u32        q10, q10, q0
>> +         vld1.32       {q14-q15}, [sp, :256]
>> +       vadd.u32        q9,  q9,  q0
>> +         adr           ip, .Lctrinc2
>> +       vadd.u32        q11, q11, q0
>> +
>> +       // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
>> +       vld1.32         {q0}, [ip, :128]        // load (1, 0, 2, 0)
>
> Would something like
>
>         vmov.i32        d0, #1
>         vmovl.u32       q0, d0
>         vadd.u64        d1, d1
>
> (untested) work as well?
>
>> +       vadd.u32        q15, q15, q1
>> +       vadd.u32        q13, q13, q1
>> +       vadd.u32        q14, q14, q1
>> +       vadd.u32        q12, q12, q1
>> +       vadd.u32        d30, d30, d1            // x12[3] += 2
>> +       vadd.u32        d26, d26, d1            // x12[2] += 2
>> +       vadd.u32        d28, d28, d0            // x12[1] += 1
>> +       vadd.u32        d30, d30, d0            // x12[3] += 1
>> +
>> +       // XOR the rest of the data with the keystream
>>
>>         vld1.8          {q0-q1}, [r2]!
>>         veor            q0, q0, q8
>> @@ -511,13 +513,16 @@ ENTRY(chacha20_4block_xor_neon)
>>         vst1.8          {q0-q1}, [r1]!
>>
>>         vld1.8          {q0-q1}, [r2]
>> +         mov           sp, r4          // restore original stack pointer
>>         veor            q0, q0, q11
>>         veor            q1, q1, q15
>>         vst1.8          {q0-q1}, [r1]
>>
>> -       mov             sp, ip
>> -       pop             {r4-r6, pc}
>> +       pop             {r4}
>> +       bx              lr
>>  ENDPROC(chacha20_4block_xor_neon)
>>
>>         .align          4
>> -CTRINC:        .word           0, 1, 2, 3
>> +.Lctrinc1:     .word   0, 1, 2, 3
>> +.Lctrinc2:     .word   1, 0, 2, 0
>> +.Lrol8_table:  .byte   3, 0, 1, 2, 7, 4, 5, 6
>> --
>> 2.18.0
>>
Eric Biggers Sept. 1, 2018, 6:39 a.m. UTC | #3
Hi Ard,

On Fri, Aug 31, 2018 at 05:56:24PM +0200, Ard Biesheuvel wrote:
> Hi Eric,
> 
> On 31 August 2018 at 10:01, Eric Biggers <ebiggers@kernel.org> wrote:
> > From: Eric Biggers <ebiggers@google.com>
> >
> > Optimize ChaCha20 NEON performance by:
> >
> > - Implementing the 8-bit rotations using the 'vtbl.8' instruction.
> > - Streamlining the part that adds the original state and XORs the data.
> > - Making some other small tweaks.
> >
> > On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
> > about 11.9 cycles per byte to 11.3.
> >
> > There is a tradeoff involved with the 'vtbl.8' rotation method since
> > there is at least one CPU where it's not fastest.  But it seems to be a
> > better default; see the added comment.
> >
> > Signed-off-by: Eric Biggers <ebiggers@google.com>
> > ---
> >  arch/arm/crypto/chacha20-neon-core.S | 289 ++++++++++++++-------------
> >  1 file changed, 147 insertions(+), 142 deletions(-)
> >
> > diff --git a/arch/arm/crypto/chacha20-neon-core.S b/arch/arm/crypto/chacha20-neon-core.S
> > index 3fecb2124c35a..d381cebaba31d 100644
> > --- a/arch/arm/crypto/chacha20-neon-core.S
> > +++ b/arch/arm/crypto/chacha20-neon-core.S
> > @@ -18,6 +18,33 @@
> >   * (at your option) any later version.
> >   */
> >
> > + /*
> > +  * NEON doesn't have a rotate instruction.  The alternatives are, more or less:
> > +  *
> > +  * (a)  vshl.u32 + vsri.u32           (needs temporary register)
> > +  * (b)  vshl.u32 + vshr.u32 + vorr    (needs temporary register)
> > +  * (c)  vrev32.16                     (16-bit rotations only)
> > +  * (d)  vtbl.8 + vtbl.8               (multiple of 8 bits rotations only,
> > +  *                                     needs index vector)
> > +  *
> > +  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
> > +  * rotations, the only choices are (a) and (b).  We use (a) since it takes
> > +  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
> > +  *
> > +  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
> > +  * and doesn't need a temporary register.
> > +  *
> > +  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this sequence
> > +  * is twice as fast as (a), even when doing (a) on multiple registers
> > +  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
> > +  * parallelizes better when temporary registers are scarce.
> > +  *
> > +  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
> > +  * (a), so the need to load the rotation table actually makes the vtbl method
> > +  * slightly slower overall on that CPU.  Still, it seems to be a good
> > +  * compromise to get a significant speed boost on some CPUs.
> > +  */
> > +
> 
> Thanks for sharing these results. I have been working on 32-bit ARM
> code under the assumption that the A53 pipeline more or less resembles
> the A7 one, but this is obviously not the case looking at your
> results. My contributions to arch/arm/crypto mainly involved Crypto
> Extensions code, which the A7 does not support in the first place, so
> it does not really matter, but I will keep this in mind going forward.
> 
> >  #include <linux/linkage.h>
> >
> >         .text
> > @@ -46,6 +73,9 @@ ENTRY(chacha20_block_xor_neon)
> >         vmov            q10, q2
> >         vmov            q11, q3
> >
> > +       ldr             ip, =.Lrol8_table
> > +       vld1.8          {d10}, [ip, :64]
> > +
> 
> I usually try to avoid the =literal ldr notation, because it involves
> an additional load via the D-cache. Could you use a 64-bit literal
> instead of a byte array and use vldr instead? Or switch to adr? (and
> move the literal in range, I suppose)

'adr' works if I move rol8_table to between chacha20_block_xor_neon() and
chacha20_4block_xor_neon().

> >  ENTRY(chacha20_4block_xor_neon)
> > -       push            {r4-r6, lr}
> > -       mov             ip, sp                  // preserve the stack pointer
> > -       sub             r3, sp, #0x20           // allocate a 32 byte buffer
> > -       bic             r3, r3, #0x1f           // aligned to 32 bytes
> > -       mov             sp, r3
> > +       push            {r4}
> 
> The ARM EABI mandates 8 byte stack alignment, and if you take an
> interrupt right at this point, you will enter the interrupt handler
> with a misaligned stack. Whether this could actually cause any
> problems is a different question, but it is better to keep it 8-byte
> aligned to be sure.
> 
> I'd suggest you just push r4 and lr, so you can return from the
> function by popping r4 and pc, as is customary on ARM.

Are you sure that's an actual constraint?  That would imply you could never
push/pop an odd number of ARM registers to/from the stack... but if I
disassemble an ARM kernel, such pushes/pops occur frequently in generated code.
So 8-byte alignment must only be required when a subroutine is called.

If I understand the interrupt handling code correctly, the kernel stack is being
aligned in the svc_entry macro from __irq_svc in arch/arm/kernel/entry-armv.S:

		.macro  svc_entry, stack_hole=0, trace=1, uaccess=1
	 UNWIND(.fnstart                )
	 UNWIND(.save {r0 - pc}         )
		sub     sp, sp, #(SVC_REGS_SIZE + \stack_hole - 4)
	#ifdef CONFIG_THUMB2_KERNEL
	 SPFIX( str     r0, [sp]        )       @ temporarily saved
	 SPFIX( mov     r0, sp          )
	 SPFIX( tst     r0, #4          )       @ test original stack alignment
	 SPFIX( ldr     r0, [sp]        )       @ restored
	#else
	 SPFIX( tst     sp, #4          )
	#endif
	 SPFIX( subeq   sp, sp, #4      )

So 'sp' must always be 4-byte aligned, but not necessarily 8-byte aligned.

Anyway, it may be a moot point as I'm planning to use r5 in the v2 patch, so
I'll just be pushing {r4-r5} anyway...

> 
> > +       mov             r4, sp                  // preserve the stack pointer
> > +       sub             ip, sp, #0x20           // allocate a 32 byte buffer
> > +       bic             ip, ip, #0x1f           // aligned to 32 bytes
> > +       mov             sp, ip
> >
> 
> Is there a reason for preferring ip over r3 for preserving the
> original value of sp?

You mean preferring r4 over ip?  It's mostly arbitrary which register is
assigned to what; I just like using 'ip' for shorter-lived temporary stuff.

> > +
> > +       // x8..11[0-3] += s8..11[0-3]   (add orig state to 3rd row of each block)
> > +       vadd.u32        q8,  q8,  q0
> > +       vadd.u32        q10, q10, q0
> > +         vld1.32       {q14-q15}, [sp, :256]
> > +       vadd.u32        q9,  q9,  q0
> > +         adr           ip, .Lctrinc2
> > +       vadd.u32        q11, q11, q0
> > +
> > +       // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
> > +       vld1.32         {q0}, [ip, :128]        // load (1, 0, 2, 0)
> 
> Would something like
> 
>         vmov.i32        d0, #1
>         vmovl.u32       q0, d0
>         vadd.u64        d1, d1
> 
> (untested) work as well?
> 
> > +       vadd.u32        q15, q15, q1
> > +       vadd.u32        q13, q13, q1
> > +       vadd.u32        q14, q14, q1
> > +       vadd.u32        q12, q12, q1
> > +       vadd.u32        d30, d30, d1            // x12[3] += 2
> > +       vadd.u32        d26, d26, d1            // x12[2] += 2
> > +       vadd.u32        d28, d28, d0            // x12[1] += 1
> > +       vadd.u32        d30, d30, d0            // x12[3] += 1
> > +

Well, or:

	vmov.u64      d0, #0x00000000ffffffff
        vadd.u32      d1, d0, d0

And then subtract instead of add.  But actually there's a better way: load
{0, 1, 2, 3} (i.e. the original 'CTRINC') and add it to q12 *before*
re-interleaving q12-15.  That avoids unnecessary additions.
I'll send a new patch with that.

- Eric
Eric Biggers Sept. 1, 2018, 6:42 a.m. UTC | #4
On Fri, Aug 31, 2018 at 06:51:34PM +0200, Ard Biesheuvel wrote:
> >>
> >> +       adr             ip, .Lrol8_table
> >>         mov             r3, #10
> >>
> >>  .Ldoubleround4:
> >> @@ -238,24 +268,25 @@ ENTRY(chacha20_4block_xor_neon)
> >>         // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
> >>         // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
> >>         // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
> >> +       vld1.8          {d16}, [ip, :64]
> 
> Also, would it perhaps be more efficient to keep the rotation vector
> in a pair of GPRs, and use something like
> 
> vmov d16, r4, r5
> 
> here?
> 

I tried that, but it doesn't help on either Cortex-A7 or Cortex-A53.
In fact it's very slightly worse.

- Eric
diff mbox series

Patch

diff --git a/arch/arm/crypto/chacha20-neon-core.S b/arch/arm/crypto/chacha20-neon-core.S
index 3fecb2124c35a..d381cebaba31d 100644
--- a/arch/arm/crypto/chacha20-neon-core.S
+++ b/arch/arm/crypto/chacha20-neon-core.S
@@ -18,6 +18,33 @@ 
  * (at your option) any later version.
  */
 
+ /*
+  * NEON doesn't have a rotate instruction.  The alternatives are, more or less:
+  *
+  * (a)  vshl.u32 + vsri.u32		(needs temporary register)
+  * (b)  vshl.u32 + vshr.u32 + vorr	(needs temporary register)
+  * (c)  vrev32.16			(16-bit rotations only)
+  * (d)  vtbl.8 + vtbl.8		(multiple of 8 bits rotations only,
+  *					 needs index vector)
+  *
+  * ChaCha20 has 16, 12, 8, and 7-bit rotations.  For the 12 and 7-bit
+  * rotations, the only choices are (a) and (b).  We use (a) since it takes
+  * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
+  *
+  * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
+  * and doesn't need a temporary register.
+  *
+  * For the 8-bit rotation, we use vtbl.8 + vtbl.8.  On Cortex-A7, this sequence
+  * is twice as fast as (a), even when doing (a) on multiple registers
+  * simultaneously to eliminate the stall between vshl and vsri.  Also, it
+  * parallelizes better when temporary registers are scarce.
+  *
+  * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
+  * (a), so the need to load the rotation table actually makes the vtbl method
+  * slightly slower overall on that CPU.  Still, it seems to be a good
+  * compromise to get a significant speed boost on some CPUs.
+  */
+
 #include <linux/linkage.h>
 
 	.text
@@ -46,6 +73,9 @@  ENTRY(chacha20_block_xor_neon)
 	vmov		q10, q2
 	vmov		q11, q3
 
+	ldr		ip, =.Lrol8_table
+	vld1.8		{d10}, [ip, :64]
+
 	mov		r3, #10
 
 .Ldoubleround:
@@ -63,9 +93,9 @@  ENTRY(chacha20_block_xor_neon)
 
 	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
 	vadd.i32	q0, q0, q1
-	veor		q4, q3, q0
-	vshl.u32	q3, q4, #8
-	vsri.u32	q3, q4, #24
+	veor		q3, q3, q0
+	vtbl.8		d6, {d6}, d10
+	vtbl.8		d7, {d7}, d10
 
 	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
 	vadd.i32	q2, q2, q3
@@ -94,9 +124,9 @@  ENTRY(chacha20_block_xor_neon)
 
 	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
 	vadd.i32	q0, q0, q1
-	veor		q4, q3, q0
-	vshl.u32	q3, q4, #8
-	vsri.u32	q3, q4, #24
+	veor		q3, q3, q0
+	vtbl.8		d6, {d6}, d10
+	vtbl.8		d7, {d7}, d10
 
 	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
 	vadd.i32	q2, q2, q3
@@ -143,11 +173,11 @@  ENDPROC(chacha20_block_xor_neon)
 
 	.align		5
 ENTRY(chacha20_4block_xor_neon)
-	push		{r4-r6, lr}
-	mov		ip, sp			// preserve the stack pointer
-	sub		r3, sp, #0x20		// allocate a 32 byte buffer
-	bic		r3, r3, #0x1f		// aligned to 32 bytes
-	mov		sp, r3
+	push		{r4}
+	mov		r4, sp			// preserve the stack pointer
+	sub		ip, sp, #0x20		// allocate a 32 byte buffer
+	bic		ip, ip, #0x1f		// aligned to 32 bytes
+	mov		sp, ip
 
 	// r0: Input state matrix, s
 	// r1: 4 data blocks output, o
@@ -157,25 +187,24 @@  ENTRY(chacha20_4block_xor_neon)
 	// This function encrypts four consecutive ChaCha20 blocks by loading
 	// the state matrix in NEON registers four times. The algorithm performs
 	// each operation on the corresponding word of each state matrix, hence
-	// requires no word shuffling. For final XORing step we transpose the
-	// matrix by interleaving 32- and then 64-bit words, which allows us to
-	// do XOR in NEON registers.
+	// requires no word shuffling. The words are re-interleaved before the
+	// final addition of the original state and the XORing step.
 	//
 
-	// x0..15[0-3] = s0..3[0..3]
-	add		r3, r0, #0x20
+	// x0..15[0-3] = s0..15[0-3]
+	add		ip, r0, #0x20
 	vld1.32		{q0-q1}, [r0]
-	vld1.32		{q2-q3}, [r3]
+	vld1.32		{q2-q3}, [ip]
 
-	adr		r3, CTRINC
+	adr		ip, .Lctrinc1
 	vdup.32		q15, d7[1]
 	vdup.32		q14, d7[0]
-	vld1.32		{q11}, [r3, :128]
+	vld1.32		{q4}, [ip, :128]
 	vdup.32		q13, d6[1]
 	vdup.32		q12, d6[0]
-	vadd.i32	q12, q12, q11		// x12 += counter values 0-3
 	vdup.32		q11, d5[1]
 	vdup.32		q10, d5[0]
+	vadd.u32	q12, q12, q4		// x12 += counter values 0-3
 	vdup.32		q9, d4[1]
 	vdup.32		q8, d4[0]
 	vdup.32		q7, d3[1]
@@ -187,6 +216,7 @@  ENTRY(chacha20_4block_xor_neon)
 	vdup.32		q1, d0[1]
 	vdup.32		q0, d0[0]
 
+	adr		ip, .Lrol8_table
 	mov		r3, #10
 
 .Ldoubleround4:
@@ -238,24 +268,25 @@  ENTRY(chacha20_4block_xor_neon)
 	// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
 	// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
 	// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
+	vld1.8		{d16}, [ip, :64]
 	vadd.i32	q0, q0, q4
 	vadd.i32	q1, q1, q5
 	vadd.i32	q2, q2, q6
 	vadd.i32	q3, q3, q7
 
-	veor		q8, q12, q0
-	veor		q9, q13, q1
-	vshl.u32	q12, q8, #8
-	vshl.u32	q13, q9, #8
-	vsri.u32	q12, q8, #24
-	vsri.u32	q13, q9, #24
+	veor		q12, q12, q0
+	veor		q13, q13, q1
+	veor		q14, q14, q2
+	veor		q15, q15, q3
 
-	veor		q8, q14, q2
-	veor		q9, q15, q3
-	vshl.u32	q14, q8, #8
-	vshl.u32	q15, q9, #8
-	vsri.u32	q14, q8, #24
-	vsri.u32	q15, q9, #24
+	vtbl.8		d24, {d24}, d16
+	vtbl.8		d25, {d25}, d16
+	vtbl.8		d26, {d26}, d16
+	vtbl.8		d27, {d27}, d16
+	vtbl.8		d28, {d28}, d16
+	vtbl.8		d29, {d29}, d16
+	vtbl.8		d30, {d30}, d16
+	vtbl.8		d31, {d31}, d16
 
 	vld1.32		{q8-q9}, [sp, :256]
 
@@ -334,24 +365,25 @@  ENTRY(chacha20_4block_xor_neon)
 	// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
 	// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
 	// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
+	vld1.8		{d16}, [ip, :64]
 	vadd.i32	q0, q0, q5
 	vadd.i32	q1, q1, q6
 	vadd.i32	q2, q2, q7
 	vadd.i32	q3, q3, q4
 
-	veor		q8, q15, q0
-	veor		q9, q12, q1
-	vshl.u32	q15, q8, #8
-	vshl.u32	q12, q9, #8
-	vsri.u32	q15, q8, #24
-	vsri.u32	q12, q9, #24
+	veor		q15, q15, q0
+	veor		q12, q12, q1
+	veor		q13, q13, q2
+	veor		q14, q14, q3
 
-	veor		q8, q13, q2
-	veor		q9, q14, q3
-	vshl.u32	q13, q8, #8
-	vshl.u32	q14, q9, #8
-	vsri.u32	q13, q8, #24
-	vsri.u32	q14, q9, #24
+	vtbl.8		d30, {d30}, d16
+	vtbl.8		d31, {d31}, d16
+	vtbl.8		d24, {d24}, d16
+	vtbl.8		d25, {d25}, d16
+	vtbl.8		d26, {d26}, d16
+	vtbl.8		d27, {d27}, d16
+	vtbl.8		d28, {d28}, d16
+	vtbl.8		d29, {d29}, d16
 
 	vld1.32		{q8-q9}, [sp, :256]
 
@@ -381,104 +413,74 @@  ENTRY(chacha20_4block_xor_neon)
 	vsri.u32	q6, q9, #25
 
 	subs		r3, r3, #1
-	beq		0f
-
-	vld1.32		{q8-q9}, [sp, :256]
-	b		.Ldoubleround4
-
-	// x0[0-3] += s0[0]
-	// x1[0-3] += s0[1]
-	// x2[0-3] += s0[2]
-	// x3[0-3] += s0[3]
-0:	ldmia		r0!, {r3-r6}
-	vdup.32		q8, r3
-	vdup.32		q9, r4
-	vadd.i32	q0, q0, q8
-	vadd.i32	q1, q1, q9
-	vdup.32		q8, r5
-	vdup.32		q9, r6
-	vadd.i32	q2, q2, q8
-	vadd.i32	q3, q3, q9
-
-	// x4[0-3] += s1[0]
-	// x5[0-3] += s1[1]
-	// x6[0-3] += s1[2]
-	// x7[0-3] += s1[3]
-	ldmia		r0!, {r3-r6}
-	vdup.32		q8, r3
-	vdup.32		q9, r4
-	vadd.i32	q4, q4, q8
-	vadd.i32	q5, q5, q9
-	vdup.32		q8, r5
-	vdup.32		q9, r6
-	vadd.i32	q6, q6, q8
-	vadd.i32	q7, q7, q9
-
-	// interleave 32-bit words in state n, n+1
-	vzip.32		q0, q1
-	vzip.32		q2, q3
-	vzip.32		q4, q5
-	vzip.32		q6, q7
-
-	// interleave 64-bit words in state n, n+2
-	vswp		d1, d4
-	vswp		d3, d6
-	vswp		d9, d12
-	vswp		d11, d14
-
-	// xor with corresponding input, write to output
-	vld1.8		{q8-q9}, [r2]!
-	veor		q8, q8, q0
-	veor		q9, q9, q4
-	vst1.8		{q8-q9}, [r1]!
-
 	vld1.32		{q8-q9}, [sp, :256]
-
-	// x8[0-3] += s2[0]
-	// x9[0-3] += s2[1]
-	// x10[0-3] += s2[2]
-	// x11[0-3] += s2[3]
-	ldmia		r0!, {r3-r6}
-	vdup.32		q0, r3
-	vdup.32		q4, r4
-	vadd.i32	q8, q8, q0
-	vadd.i32	q9, q9, q4
-	vdup.32		q0, r5
-	vdup.32		q4, r6
-	vadd.i32	q10, q10, q0
-	vadd.i32	q11, q11, q4
-
-	// x12[0-3] += s3[0]
-	// x13[0-3] += s3[1]
-	// x14[0-3] += s3[2]
-	// x15[0-3] += s3[3]
-	ldmia		r0!, {r3-r6}
-	vdup.32		q0, r3
-	vdup.32		q4, r4
-	adr		r3, CTRINC
-	vadd.i32	q12, q12, q0
-	vld1.32		{q0}, [r3, :128]
-	vadd.i32	q13, q13, q4
-	vadd.i32	q12, q12, q0		// x12 += counter values 0-3
-
-	vdup.32		q0, r5
-	vdup.32		q4, r6
-	vadd.i32	q14, q14, q0
-	vadd.i32	q15, q15, q4
-
-	// interleave 32-bit words in state n, n+1
-	vzip.32		q8, q9
-	vzip.32		q10, q11
-	vzip.32		q12, q13
-	vzip.32		q14, q15
-
-	// interleave 64-bit words in state n, n+2
-	vswp		d17, d20
-	vswp		d19, d22
-	vswp		d25, d28
+	bne		.Ldoubleround4
+
+	// re-interleave the 32-bit words of the four blocks
+	vzip.32		q14, q15	// => (14 15 14 15) (14 15 14 15)
+	vzip.32		q12, q13	// => (12 13 12 13) (12 13 12 13)
+	vzip.32		q10, q11	// => (10 11 10 11) (10 11 10 11)
+	vzip.32		q8, q9		// => (8 9 8 9) (8 9 8 9)
+	vzip.32		q6, q7		// => (6 7 6 7) (6 7 6 7)
+	vzip.32		q4, q5		// => (4 5 4 5) (4 5 4 5)
+	vzip.32		q2, q3		// => (2 3 2 3) (2 3 2 3)
+	vzip.32		q0, q1		// => (0 1 0 1) (0 1 0 1)
 	vswp		d27, d30
+	vswp		d25, d28
+	vswp		d19, d22
+	vswp		d17, d20
+	vswp		d11, d14
+	  vst1.32	{q14-q15}, [sp, :256]	// free up two registers
+	vswp		d9, d12
+	vswp		d3, d6
+	  vld1.32	{q14-q15}, [r0]!	// load s0..7
+	vswp		d1, d4
 
-	vmov		q4, q1
+	// Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
+	// after XORing the first 32 bytes.
+	vswp		q1, q4
+
+	// blocks are: (q0 q1 q8 q12) (q2 q6 q10 q14) (q4 q5 q9 q13) (q3 q7 q11 q15)
+
+	// x0..3[0-3] += s0..3[0-3]	(add orig state to 1st row of each block)
+	vadd.u32	q0, q0, q14
+	vadd.u32	q2, q2, q14
+	vadd.u32	q4, q4, q14
+	vadd.u32	q3, q3, q14
+
+	// x4..7[0-3] += s4..7[0-3]	(add orig state to 2nd row of each block)
+	vadd.u32	q1, q1, q15
+	vadd.u32	q6, q6, q15
+	vadd.u32	q5, q5, q15
+	vadd.u32	q7, q7, q15
+
+	// XOR first 32 bytes using keystream from first two rows of first block
+	vld1.8		{q14-q15}, [r2]!
+	veor		q14, q14, q0
+	veor		q15, q15, q1
+	  vld1.32	{q0-q1}, [r0]		// load s8..s15
+	vst1.8		{q14-q15}, [r1]!
+
+	// x8..11[0-3] += s8..11[0-3]	(add orig state to 3rd row of each block)
+	vadd.u32	q8,  q8,  q0
+	vadd.u32	q10, q10, q0
+	  vld1.32	{q14-q15}, [sp, :256]
+	vadd.u32	q9,  q9,  q0
+	  adr		ip, .Lctrinc2
+	vadd.u32	q11, q11, q0
+
+	// x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
+	vld1.32		{q0}, [ip, :128]	// load (1, 0, 2, 0)
+	vadd.u32	q15, q15, q1
+	vadd.u32	q13, q13, q1
+	vadd.u32	q14, q14, q1
+	vadd.u32	q12, q12, q1
+	vadd.u32	d30, d30, d1		// x12[3] += 2
+	vadd.u32	d26, d26, d1		// x12[2] += 2
+	vadd.u32	d28, d28, d0		// x12[1] += 1
+	vadd.u32	d30, d30, d0		// x12[3] += 1
+
+	// XOR the rest of the data with the keystream
 
 	vld1.8		{q0-q1}, [r2]!
 	veor		q0, q0, q8
@@ -511,13 +513,16 @@  ENTRY(chacha20_4block_xor_neon)
 	vst1.8		{q0-q1}, [r1]!
 
 	vld1.8		{q0-q1}, [r2]
+	  mov		sp, r4		// restore original stack pointer
 	veor		q0, q0, q11
 	veor		q1, q1, q15
 	vst1.8		{q0-q1}, [r1]
 
-	mov		sp, ip
-	pop		{r4-r6, pc}
+	pop		{r4}
+	bx		lr
 ENDPROC(chacha20_4block_xor_neon)
 
 	.align		4
-CTRINC:	.word		0, 1, 2, 3
+.Lctrinc1:	.word	0, 1, 2, 3
+.Lctrinc2:	.word	1, 0, 2, 0
+.Lrol8_table:	.byte	3, 0, 1, 2, 7, 4, 5, 6