diff mbox series

[v27,5/8] target/avr: Add limited support for USART and 16 bit timer peripherals

Message ID 20190719082647.18113-6-mrolnik@gmail.com (mailing list archive)
State New, archived
Headers show
Series QEMU AVR 8 bit cores | expand

Commit Message

Michael Rolnik July 19, 2019, 8:26 a.m. UTC
From: Sarah Harris <S.E.Harris@kent.ac.uk>

These were designed to facilitate testing but should provide enough function to be useful in other contexts.
Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a standard way to handle electrical connections (like GPIO pins).

Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
 hw/char/Kconfig                |   3 +
 hw/char/Makefile.objs          |   1 +
 hw/char/avr_usart.c            | 322 ++++++++++++++++++
 hw/misc/Kconfig                |   3 +
 hw/misc/Makefile.objs          |   2 +
 hw/misc/avr_mask.c             | 110 ++++++
 hw/timer/Kconfig               |   3 +
 hw/timer/Makefile.objs         |   1 +
 hw/timer/avr_timer16.c         | 603 +++++++++++++++++++++++++++++++++
 include/hw/char/avr_usart.h    |  97 ++++++
 include/hw/misc/avr_mask.h     |  47 +++
 include/hw/timer/avr_timer16.h |  97 ++++++
 12 files changed, 1289 insertions(+)
 create mode 100644 hw/char/avr_usart.c
 create mode 100644 hw/misc/avr_mask.c
 create mode 100644 hw/timer/avr_timer16.c
 create mode 100644 include/hw/char/avr_usart.h
 create mode 100644 include/hw/misc/avr_mask.h
 create mode 100644 include/hw/timer/avr_timer16.h

Comments

Pavel Dovgalyuk July 25, 2019, 10 a.m. UTC | #1
> From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
> devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
> From: Sarah Harris <S.E.Harris@kent.ac.uk>
> 
> These were designed to facilitate testing but should provide enough function to be useful in
> other contexts.

USART is very useful for testing, but to which model of AVR is belongs?
We also started implementation of USART and other devices in our internship program,
using prior version of your patches.
There were other register addresses for the registers and some of them even intersect
making read/write logic more complex (we looked at Atmega8).

You also mix the board and the SoC into one file, making hardware-on-chip harder to reuse.

I think that the structure can be revised in the following way:
Board -> SoC -> Devices

Board includes SoC, loads the firmware, and adds some external peripheral devices, if needed.

SoC includes embedded peripherals. It dispatches IO memory accesses and passes them
to the devices. In this case you can have different register addresses for different SoCs, but
the embedded device emulation code can be mostly the same for simple devices like USART.

> Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a
> standard way to handle electrical connections (like GPIO pins).

We did not got too much results, you can check for our changes here: https://github.com/Dovgalyuk/qemu/tree/avr8

But we can help you in development of better version of the patches and split the work
for making this platform more usable.


Pavel Dovgalyuk
Michael Rolnik July 25, 2019, 5:52 p.m. UTC | #2
Hi Pavel.

Please see my answers below.

On Thu, Jul 25, 2019 at 1:00 PM Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:

> > From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
> > devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
> > From: Sarah Harris <S.E.Harris@kent.ac.uk>
> >
> > These were designed to facilitate testing but should provide enough
> function to be useful in
> > other contexts.
>
> USART is very useful for testing, but to which model of AVR is belongs?
> We also started implementation of USART and other devices in our
> internship program,
> using prior version of your patches.
> There were other register addresses for the registers and some of them
> even intersect
> making read/write logic more complex (we looked at Atmega8).
>

This is a question for Sara as she built it. (I think it was ATmega2560)


>
> You also mix the board and the SoC into one file, making hardware-on-chip
> harder to reuse.
>
> I think that the structure can be revised in the following way:
> Board -> SoC -> Devices
>
> Board includes SoC, loads the firmware, and adds some external peripheral
> devices, if needed.
>
> SoC includes embedded peripherals. It dispatches IO memory accesses and
> passes them
> to the devices. In this case you can have different register addresses for
> different SoCs, but
> the embedded device emulation code can be mostly the same for simple
> devices like USART.
>
> > Only a subset of the functions of each peripheral is implemented, mainly
> due to the lack of a
> > standard way to handle electrical connections (like GPIO pins).
>
You are right.

>
> We did not got too much results, you can check for our changes here:
> https://github.com/Dovgalyuk/qemu/tree/avr8
>
> But we can help you in development of better version of the patches and
> split the work
> for making this platform more usable.
>

Gladly.
You are welcome.
My initial intent was to provide CPU only and I hoped that others will
model the devices.

*Richard, Phil & all,*
what would be the right mechanism / procedure to split the work?


>
> Pavel Dovgalyuk
>
>
Sarah Harris July 26, 2019, 2:53 p.m. UTC | #3
Hi Michael and Pavel,

The USART was based on the ATMega2560.
It was designed for testing so its functionality is somewhat limited.

Peripherals seem to vary between AVR chips so the configuration in the 2560 may not match other chips, especially the older ones.
From memory, the only shared registers in the 2560 USART are the PRR's, which we implemented by adding single byte memory regions during board initialisation (so that the memory region wasn't part of any one device).
I expect there are cleaner ways to do it.

Kind regards,
Sarah Harris

On Thu, 25 Jul 2019 20:52:33 +0300
Michael Rolnik <mrolnik@gmail.com> wrote:

> Hi Pavel.
> 
> Please see my answers below.
> 
> On Thu, Jul 25, 2019 at 1:00 PM Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:
> 
> > > From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
> > > devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
> > > From: Sarah Harris <S.E.Harris@kent.ac.uk>
> > >
> > > These were designed to facilitate testing but should provide enough
> > function to be useful in
> > > other contexts.
> >
> > USART is very useful for testing, but to which model of AVR is belongs?
> > We also started implementation of USART and other devices in our
> > internship program,
> > using prior version of your patches.
> > There were other register addresses for the registers and some of them
> > even intersect
> > making read/write logic more complex (we looked at Atmega8).
> >
> 
> This is a question for Sara as she built it. (I think it was ATmega2560)
> 
> 
> >
> > You also mix the board and the SoC into one file, making hardware-on-chip
> > harder to reuse.
> >
> > I think that the structure can be revised in the following way:
> > Board -> SoC -> Devices
> >
> > Board includes SoC, loads the firmware, and adds some external peripheral
> > devices, if needed.
> >
> > SoC includes embedded peripherals. It dispatches IO memory accesses and
> > passes them
> > to the devices. In this case you can have different register addresses for
> > different SoCs, but
> > the embedded device emulation code can be mostly the same for simple
> > devices like USART.
> >
> > > Only a subset of the functions of each peripheral is implemented, mainly
> > due to the lack of a
> > > standard way to handle electrical connections (like GPIO pins).
> >
> You are right.
> 
> >
> > We did not got too much results, you can check for our changes here:
> > https://github.com/Dovgalyuk/qemu/tree/avr8
> >
> > But we can help you in development of better version of the patches and
> > split the work
> > for making this platform more usable.
> >
> 
> Gladly.
> You are welcome.
> My initial intent was to provide CPU only and I hoped that others will
> model the devices.
> 
> *Richard, Phil & all,*
> what would be the right mechanism / procedure to split the work?
> 
> 
> >
> > Pavel Dovgalyuk
> >
> >
> 
> -- 
> Best Regards,
> Michael Rolnik
Aleksandar Markovic Dec. 5, 2019, 10:27 a.m. UTC | #4
On Thursday, July 25, 2019, Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:

> > From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
> > devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
> > From: Sarah Harris <S.E.Harris@kent.ac.uk>
> >
> > These were designed to facilitate testing but should provide enough
> function to be useful in
> > other contexts.
>
> USART is very useful for testing, but to which model of AVR is belongs?
> We also started implementation of USART and other devices in our
> internship program,
> using prior version of your patches.
> There were other register addresses for the registers and some of them
> even intersect
> making read/write logic more complex (we looked at Atmega8).
>
> You also mix the board and the SoC into one file, making hardware-on-chip
> harder to reuse.
>
> I think that the structure can be revised in the following way:
> Board -> SoC -> Devices
>
>
Pavel,

By "structure", did you mean structure of patches?

Let's say, after the all ISA instruction patches are introduced, we first
introduce one real board of our choice (only infrastructure, with almost
empty content, than devices on that board, than the corresponding SoC/MCU
infrastucture, than device in that SoC.

Additional boards would follow the same pattern, potentially reusing
already implemented devices, or whole SoC/MCU.

One more question:

We already saw that devices within SoC/MCUs for AVR platform exibit great
variation. First, there are around 17 generation of AVR cores (avr1, avr2,
... xmega7). Than, there is, I think 600+ SoC/MCU models (hard to believe,
but true). Each SoC defines its devices, and in potentially different way
(not only its starting address, but real differences in terms of
functionality). I thought that at least for a particular core, the devices
would be defined in a consistent way, but even that is not true - for
example ADC for a SoC having core X can be significantly different that ADC
for another SoC having the same core X.

How to deal with such avalanche of devices? How to organize and maintain 27
significantly different versions of ADC; and 53 significantly different
versions of Watchdogs (the numbers are invented by me, but are likely to
describe the situation well)?

Best regards,

Aleksandar





> Board includes SoC, loads the firmware, and adds some external peripheral
> devices, if needed.
>
> SoC includes embedded peripherals. It dispatches IO memory accesses and
> passes them
> to the devices. In this case you can have different register addresses for
> different SoCs, but
> the embedded device emulation code can be mostly the same for simple
> devices like USART.
>
> > Only a subset of the functions of each peripheral is implemented, mainly
> due to the lack of a
> > standard way to handle electrical connections (like GPIO pins).
>
> We did not got too much results, you can check for our changes here:
> https://github.com/Dovgalyuk/qemu/tree/avr8
>
> But we can help you in development of better version of the patches and
> split the work
> for making this platform more usable.
>
>
> Pavel Dovgalyuk
>
>
>
Aleksandar Markovic Dec. 5, 2019, 10:33 a.m. UTC | #5
On Thursday, December 5, 2019, Aleksandar Markovic <
aleksandar.m.mail@gmail.com> wrote:

>
>
> On Thursday, July 25, 2019, Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:
>
>> > From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
>> > devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
>> > From: Sarah Harris <S.E.Harris@kent.ac.uk>
>> >
>> > These were designed to facilitate testing but should provide enough
>> function to be useful in
>> > other contexts.
>>
>> USART is very useful for testing, but to which model of AVR is belongs?
>> We also started implementation of USART and other devices in our
>> internship program,
>> using prior version of your patches.
>> There were other register addresses for the registers and some of them
>> even intersect
>> making read/write logic more complex (we looked at Atmega8).
>>
>> You also mix the board and the SoC into one file, making hardware-on-chip
>> harder to reuse.
>>
>> I think that the structure can be revised in the following way:
>> Board -> SoC -> Devices
>>
>>
> Pavel,
>
> By "structure", did you mean structure of patches?
>
> Let's say, after the all ISA instruction patches are introduced, we first
> introduce one real board of our choice (only infrastructure, with almost
> empty content, than devices on that board, than the corresponding SoC/MCU
> infrastucture, than device in that SoC.
>
> Additional boards would follow the same pattern, potentially reusing
> already implemented devices, or whole SoC/MCU.
>
> One more question:
>
> We already saw that devices within SoC/MCUs for AVR platform exibit great
> variation. First, there are around 17 generation of AVR cores (avr1, avr2,
> ... xmega7). Than, there is, I think 600+ SoC/MCU models (hard to believe,
> but true). Each SoC defines its devices, and in potentially different way
> (not only its starting address, but real differences in terms of
> functionality). I thought that at least for a particular core, the devices
> would be defined in a consistent way, but even that is not true - for
> example ADC for a SoC having core X can be significantly different that ADC
> for another SoC having the same core X.
>
> How to deal with such avalanche of devices? How to organize and maintain
> 27 significantly different versions of ADC; and 53 significantly different
> versions of Watchdogs (the numbers are invented by me, but are likely to
> describe the situation well)?
>
>
Peter, may I ask you the same questions?

I have a strong impression we here need to think colectively.

Yours,

Aleksandar



> Best regards,
>
> Aleksandar
>
>
>
>
>
>> Board includes SoC, loads the firmware, and adds some external peripheral
>> devices, if needed.
>>
>> SoC includes embedded peripherals. It dispatches IO memory accesses and
>> passes them
>> to the devices. In this case you can have different register addresses
>> for different SoCs, but
>> the embedded device emulation code can be mostly the same for simple
>> devices like USART.
>>
>> > Only a subset of the functions of each peripheral is implemented,
>> mainly due to the lack of a
>> > standard way to handle electrical connections (like GPIO pins).
>>
>> We did not got too much results, you can check for our changes here:
>> https://github.com/Dovgalyuk/qemu/tree/avr8
>>
>> But we can help you in development of better version of the patches and
>> split the work
>> for making this platform more usable.
>>
>>
>> Pavel Dovgalyuk
>>
>>
>>
Aleksandar Markovic Dec. 5, 2019, 11:13 a.m. UTC | #6
On Thursday, December 5, 2019, Aleksandar Markovic <
aleksandar.m.mail@gmail.com> wrote:

>
>
> On Thursday, December 5, 2019, Aleksandar Markovic <
> aleksandar.m.mail@gmail.com> wrote:
>
>>
>>
>> On Thursday, July 25, 2019, Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:
>>
>>> > From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
>>> > devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
>>> > From: Sarah Harris <S.E.Harris@kent.ac.uk>
>>> >
>>> > These were designed to facilitate testing but should provide enough
>>> function to be useful in
>>> > other contexts.
>>>
>>> USART is very useful for testing, but to which model of AVR is belongs?
>>> We also started implementation of USART and other devices in our
>>> internship program,
>>> using prior version of your patches.
>>> There were other register addresses for the registers and some of them
>>> even intersect
>>> making read/write logic more complex (we looked at Atmega8).
>>>
>>> You also mix the board and the SoC into one file, making
>>> hardware-on-chip harder to reuse.
>>>
>>> I think that the structure can be revised in the following way:
>>> Board -> SoC -> Devices
>>>
>>>
>> Pavel,
>>
>> By "structure", did you mean structure of patches?
>>
>> Let's say, after the all ISA instruction patches are introduced, we first
>> introduce one real board of our choice (only infrastructure, with almost
>> empty content, than devices on that board, than the corresponding SoC/MCU
>> infrastucture, than device in that SoC.
>>
>> Additional boards would follow the same pattern, potentially reusing
>> already implemented devices, or whole SoC/MCU.
>>
>> One more question:
>>
>> We already saw that devices within SoC/MCUs for AVR platform exibit great
>> variation. First, there are around 17 generation of AVR cores (avr1, avr2,
>> ... xmega7). Than, there is, I think 600+ SoC/MCU models (hard to believe,
>> but true). Each SoC defines its devices, and in potentially different way
>> (not only its starting address, but real differences in terms of
>> functionality). I thought that at least for a particular core, the devices
>> would be defined in a consistent way, but even that is not true - for
>> example ADC for a SoC having core X can be significantly different that ADC
>> for another SoC having the same core X.
>>
>> How to deal with such avalanche of devices? How to organize and maintain
>> 27 significantly different versions of ADC; and 53 significantly different
>> versions of Watchdogs (the numbers are invented by me, but are likely to
>> describe the situation well)?
>>
>>
> Peter, may I ask you the same questions?
>
> I have a strong impression we here need to think colectively.
>
>
Of course, I did not mean that we'll ever support 600+ AVR SoCs/MCUs, or 53
AVR watchogs, but, as the work in Pavel's repository illustrates, we will
stumble very soon on, let's say different USART devices (in this case
between "atmega2560" and one of "xmega" cores. It is realistic that we can
potentially end up needing support for 5-6 AVR USARTs. How to name them, as
a first question?

Not to mention also possible dependencies between various devices,
interleaved memory ranges, shared registers...



> Yours,
>
> Aleksandar
>
>
>
>> Best regards,
>>
>> Aleksandar
>>
>>
>>
>>
>>
>>> Board includes SoC, loads the firmware, and adds some external
>>> peripheral devices, if needed.
>>>
>>> SoC includes embedded peripherals. It dispatches IO memory accesses and
>>> passes them
>>> to the devices. In this case you can have different register addresses
>>> for different SoCs, but
>>> the embedded device emulation code can be mostly the same for simple
>>> devices like USART.
>>>
>>> > Only a subset of the functions of each peripheral is implemented,
>>> mainly due to the lack of a
>>> > standard way to handle electrical connections (like GPIO pins).
>>>
>>> We did not got too much results, you can check for our changes here:
>>> https://github.com/Dovgalyuk/qemu/tree/avr8
>>>
>>> But we can help you in development of better version of the patches and
>>> split the work
>>> for making this platform more usable.
>>>
>>>
>>> Pavel Dovgalyuk
>>>
>>>
>>>
Pavel Dovgalyuk Dec. 6, 2019, 11:32 a.m. UTC | #7
From: Aleksandar Markovic [mailto:aleksandar.m.mail@gmail.com] 
Sent: Thursday, December 05, 2019 1:27 PM
To: Pavel Dovgalyuk
Cc: Michael Rolnik; qemu-devel@nongnu.org; richard.henderson@linaro.org; Sarah Harris; philmd@redhat.com
Subject: Re: [Qemu-devel] [PATCH v27 5/8] target/avr: Add limited support for USART and 16 bit timer peripherals

 



On Thursday, July 25, 2019, Pavel Dovgalyuk <dovgaluk@ispras.ru> wrote:

> From: Qemu-devel [mailto:qemu-devel-bounces+patchwork-qemu-
> devel=patchwork.kernel.org@nongnu.org] On Behalf Of Michael Rolnik
> From: Sarah Harris <S.E.Harris@kent.ac.uk>
> 
> These were designed to facilitate testing but should provide enough function to be useful in
> other contexts.

USART is very useful for testing, but to which model of AVR is belongs?
We also started implementation of USART and other devices in our internship program,
using prior version of your patches.
There were other register addresses for the registers and some of them even intersect
making read/write logic more complex (we looked at Atmega8).

You also mix the board and the SoC into one file, making hardware-on-chip harder to reuse.

I think that the structure can be revised in the following way:
Board -> SoC -> Devices

 

Pavel,

 

By "structure", did you mean structure of patches?

 

I mean structure of files/qobjects.

 

Let's say, after the all ISA instruction patches are introduced, we first introduce one real board of our choice (only infrastructure, with almost empty content, than devices on that board, than the corresponding SoC/MCU infrastucture, than device in that SoC.

 

Additional boards would follow the same pattern, potentially reusing already implemented devices, or whole SoC/MCU.

 

That’s why we tried to join peripherals and CPU into SoC/MCU – for reusing the hardware configuration.

 

One more question:

 

We already saw that devices within SoC/MCUs for AVR platform exibit great variation. First, there are around 17 generation of AVR cores (avr1, avr2, ... xmega7). Than, there is, I think 600+ SoC/MCU models (hard to believe, but true). Each SoC defines its devices, and in potentially different way (not only its starting address, but real differences in terms of functionality). I thought that at least for a particular core, the devices would be defined in a consistent way, but even that is not true - for example ADC for a SoC having core X can be significantly different that ADC for another SoC having the same core X.

 

How to deal with such avalanche of devices? How to organize and maintain 27 significantly different versions of ADC; and 53 significantly different versions of Watchdogs (the numbers are invented by me, but are likely to describe the situation well)?

 

I hope, that the differences will be rather small and allow making simple flag switches like in mips/translate.c, when decoding depends on CPU features.

In the opposite case we can create several instances of the device implementations.

 

 

Best regards,

 

Aleksandar

 

 

 

 

Board includes SoC, loads the firmware, and adds some external peripheral devices, if needed.

SoC includes embedded peripherals. It dispatches IO memory accesses and passes them
to the devices. In this case you can have different register addresses for different SoCs, but
the embedded device emulation code can be mostly the same for simple devices like USART.

> Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a
> standard way to handle electrical connections (like GPIO pins).

We did not got too much results, you can check for our changes here: https://github.com/Dovgalyuk/qemu/tree/avr8

But we can help you in development of better version of the patches and split the work
for making this platform more usable.


Pavel Dovgalyuk



 

Pavel Dovgalyuk
diff mbox series

Patch

diff --git a/hw/char/Kconfig b/hw/char/Kconfig
index 40e7a8b8bb..331b20983f 100644
--- a/hw/char/Kconfig
+++ b/hw/char/Kconfig
@@ -46,3 +46,6 @@  config SCLPCONSOLE
 
 config TERMINAL3270
     bool
+
+config AVR_USART
+    bool
diff --git a/hw/char/Makefile.objs b/hw/char/Makefile.objs
index 02d8a66925..09ed50f1d0 100644
--- a/hw/char/Makefile.objs
+++ b/hw/char/Makefile.objs
@@ -21,6 +21,7 @@  obj-$(CONFIG_PSERIES) += spapr_vty.o
 obj-$(CONFIG_DIGIC) += digic-uart.o
 obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o
 obj-$(CONFIG_RASPI) += bcm2835_aux.o
+obj-$(CONFIG_AVR_USART) += avr_usart.o
 
 common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o
 common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o
diff --git a/hw/char/avr_usart.c b/hw/char/avr_usart.c
new file mode 100644
index 0000000000..21f533f6e6
--- /dev/null
+++ b/hw/char/avr_usart.c
@@ -0,0 +1,322 @@ 
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "hw/char/avr_usart.h"
+#include "qemu/log.h"
+
+static int avr_usart_can_receive(void *opaque)
+{
+    AVRUsartState *usart = opaque;
+
+    if (usart->data_valid || !(usart->csrb & USART_CSRB_RXEN)) {
+        return 0;
+    }
+    return 1;
+}
+
+static void avr_usart_receive(void *opaque, const uint8_t *buffer, int size)
+{
+    AVRUsartState *usart = opaque;
+    assert(size == 1);
+    assert(!usart->data_valid);
+    usart->data = buffer[0];
+    usart->data_valid = true;
+    usart->csra |= USART_CSRA_RXC;
+    if (usart->csrb & USART_CSRB_RXCIE) {
+        qemu_set_irq(usart->rxc_irq, 1);
+    }
+}
+
+static void update_char_mask(AVRUsartState *usart)
+{
+    uint8_t mode = ((usart->csrc & USART_CSRC_CSZ0) ? 1 : 0) |
+        ((usart->csrc & USART_CSRC_CSZ1) ? 2 : 0) |
+        ((usart->csrb & USART_CSRB_CSZ2) ? 4 : 0);
+    switch (mode) {
+    case 0:
+        usart->char_mask = 0b11111;
+        break;
+    case 1:
+        usart->char_mask = 0b111111;
+        break;
+    case 2:
+        usart->char_mask = 0b1111111;
+        break;
+    case 3:
+        usart->char_mask = 0b11111111;
+        break;
+    case 4:
+        /* Fallthrough. */
+    case 5:
+        /* Fallthrough. */
+    case 6:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Reserved character size 0x%x\n",
+            __func__,
+            mode);
+        break;
+    case 7:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Nine bit character size not supported (forcing eight)\n",
+            __func__);
+        usart->char_mask = 0b11111111;
+        break;
+    default:
+        assert(0);
+    }
+}
+
+static void avr_usart_reset(DeviceState *dev)
+{
+    AVRUsartState *usart = AVR_USART(dev);
+    usart->data_valid = false;
+    usart->csra = 0b00100000;
+    usart->csrb = 0b00000000;
+    usart->csrc = 0b00000110;
+    usart->brrl = 0;
+    usart->brrh = 0;
+    update_char_mask(usart);
+    qemu_set_irq(usart->rxc_irq, 0);
+    qemu_set_irq(usart->txc_irq, 0);
+    qemu_set_irq(usart->dre_irq, 0);
+}
+
+static uint64_t avr_usart_read(void *opaque, hwaddr addr, unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t data;
+    assert(size == 1);
+
+    if (!usart->enabled) {
+        return 0;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_RXEN)) {
+            /* Receiver disabled, ignore. */
+            return 0;
+        }
+        if (usart->data_valid) {
+            data = usart->data & usart->char_mask;
+            usart->data_valid = false;
+        } else {
+            data = 0;
+        }
+        usart->csra &= 0xff ^ USART_CSRA_RXC;
+        qemu_set_irq(usart->rxc_irq, 0);
+        qemu_chr_fe_accept_input(&usart->chr);
+        return data;
+    case USART_CSRA:
+        return usart->csra;
+    case USART_CSRB:
+        return usart->csrb;
+    case USART_CSRC:
+        return usart->csrc;
+    case USART_BRRL:
+        return usart->brrl;
+    case USART_BRRH:
+        return usart->brrh;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+    return 0;
+}
+
+static void avr_usart_write(void *opaque, hwaddr addr, uint64_t value,
+                                unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t mask;
+    uint8_t data;
+    assert((value & 0xff) == value);
+    assert(size == 1);
+
+    if (!usart->enabled) {
+        return;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_TXEN)) {
+            /* Transmitter disabled, ignore. */
+            return;
+        }
+        usart->csra |= USART_CSRA_TXC;
+        usart->csra |= USART_CSRA_DRE;
+        if (usart->csrb & USART_CSRB_TXCIE) {
+            qemu_set_irq(usart->txc_irq, 1);
+            usart->csra &= 0xff ^ USART_CSRA_TXC;
+        }
+        if (usart->csrb & USART_CSRB_DREIE) {
+            qemu_set_irq(usart->dre_irq, 1);
+        }
+        data = value;
+        qemu_chr_fe_write_all(&usart->chr, &data, 1);
+        break;
+    case USART_CSRA:
+        mask = 0b01000011;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csra & (0xff ^ mask));
+        usart->csra = value;
+        if (value & USART_CSRA_TXC) {
+            usart->csra ^= USART_CSRA_TXC;
+            qemu_set_irq(usart->txc_irq, 0);
+        }
+        if (value & USART_CSRA_MPCM) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: MPCM not supported by USART\n",
+                __func__);
+        }
+        break;
+    case USART_CSRB:
+        mask = 0b11111101;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csrb & (0xff ^ mask));
+        usart->csrb = value;
+        if (!(value & USART_CSRB_RXEN)) {
+            /* Receiver disabled, flush input buffer. */
+            usart->data_valid = false;
+        }
+        qemu_set_irq(usart->rxc_irq,
+            ((value & USART_CSRB_RXCIE) &&
+            (usart->csra & USART_CSRA_RXC)) ? 1 : 0);
+        qemu_set_irq(usart->txc_irq,
+            ((value & USART_CSRB_TXCIE) &&
+            (usart->csra & USART_CSRA_TXC)) ? 1 : 0);
+        qemu_set_irq(usart->dre_irq,
+            ((value & USART_CSRB_DREIE) &&
+            (usart->csra & USART_CSRA_DRE)) ? 1 : 0);
+        update_char_mask(usart);
+        break;
+    case USART_CSRC:
+        usart->csrc = value;
+        if ((value & USART_CSRC_MSEL1) && (value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: SPI mode not supported by USART\n",
+                __func__);
+        }
+        if ((value & USART_CSRC_MSEL1) && !(value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad USART mode\n", __func__);
+        }
+        if (!(value & USART_CSRC_PM1) && (value & USART_CSRC_PM0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: Bad USART parity mode\n",
+                __func__);
+        }
+        update_char_mask(usart);
+        break;
+    case USART_BRRL:
+        usart->brrl = value;
+        break;
+    case USART_BRRH:
+        usart->brrh = value & 0b00001111;
+        break;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+}
+
+static const MemoryRegionOps avr_usart_ops = {
+    .read = avr_usart_read,
+    .write = avr_usart_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+    .impl = {.min_access_size = 1, .max_access_size = 1}
+};
+
+static Property avr_usart_properties[] = {
+    DEFINE_PROP_CHR("chardev", AVRUsartState, chr),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_usart_pr(void *opaque, int irq, int level)
+{
+    AVRUsartState *s = AVR_USART(opaque);
+
+    s->enabled = !level;
+
+    if (!s->enabled) {
+        avr_usart_reset(DEVICE(s));
+    }
+}
+
+static void avr_usart_init(Object *obj)
+{
+    AVRUsartState *s = AVR_USART(obj);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rxc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->dre_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->txc_irq);
+    memory_region_init_io(&s->mmio, obj, &avr_usart_ops, s, TYPE_AVR_USART, 8);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
+    qdev_init_gpio_in(DEVICE(s), avr_usart_pr, 1);
+    s->enabled = true;
+}
+
+static void avr_usart_realize(DeviceState *dev, Error **errp)
+{
+    AVRUsartState *s = AVR_USART(dev);
+    qemu_chr_fe_set_handlers(&s->chr, avr_usart_can_receive,
+                             avr_usart_receive, NULL, NULL,
+                             s, NULL, true);
+    avr_usart_reset(dev);
+}
+
+static void avr_usart_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_usart_reset;
+    dc->props = avr_usart_properties;
+    dc->realize = avr_usart_realize;
+}
+
+static const TypeInfo avr_usart_info = {
+    .name          = TYPE_AVR_USART,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRUsartState),
+    .instance_init = avr_usart_init,
+    .class_init    = avr_usart_class_init,
+};
+
+static void avr_usart_register_types(void)
+{
+    type_register_static(&avr_usart_info);
+}
+
+type_init(avr_usart_register_types)
diff --git a/hw/misc/Kconfig b/hw/misc/Kconfig
index 385e1b0cec..ebdcf319f6 100644
--- a/hw/misc/Kconfig
+++ b/hw/misc/Kconfig
@@ -117,4 +117,7 @@  config AUX
     bool
     select I2C
 
+config AVR_MASK
+    bool
+
 source macio/Kconfig
diff --git a/hw/misc/Makefile.objs b/hw/misc/Makefile.objs
index e9aab519a1..0806e9df9c 100644
--- a/hw/misc/Makefile.objs
+++ b/hw/misc/Makefile.objs
@@ -80,3 +80,5 @@  obj-$(CONFIG_MSF2) += msf2-sysreg.o
 obj-$(CONFIG_NRF51_SOC) += nrf51_rng.o
 
 obj-$(CONFIG_GRLIB) += grlib_ahb_apb_pnp.o
+
+obj-$(CONFIG_AVR_MASK) += avr_mask.o
diff --git a/hw/misc/avr_mask.c b/hw/misc/avr_mask.c
new file mode 100644
index 0000000000..1d1f8e10a8
--- /dev/null
+++ b/hw/misc/avr_mask.c
@@ -0,0 +1,110 @@ 
+/*
+ * AVR Power Reduction
+ *
+ * Copyright (c) 2019 Michael Rolnik
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "hw/misc/avr_mask.h"
+#include "qemu/log.h"
+
+#define DB_PRINT(fmt, args...) /* Nothing */
+/*#define DB_PRINT(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)*/
+
+static void avr_mask_reset(DeviceState *dev)
+{
+    AVRMaskState *s = AVR_MASK(dev);
+
+    s->val = 0x00;
+
+    for (int i = 0; i < 8; i++) {
+        qemu_set_irq(s->irq[i], 0);
+    }
+}
+
+static uint64_t avr_mask_read(void *opaque, hwaddr offset, unsigned size)
+{
+    assert(size == 1);
+    assert(offset == 0);
+    AVRMaskState *s = opaque;
+
+    return (uint64_t)s->val;
+}
+
+static void avr_mask_write(void *opaque, hwaddr offset,
+                              uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    assert(offset == 0);
+    AVRMaskState *s = opaque;
+    uint8_t val8 = val64;
+
+    DB_PRINT("write %d to offset %d", val8, (uint8_t)offset);
+
+    s->val = val8;
+    for (int i = 0; i < 8; i++) {
+        qemu_set_irq(s->irq[i], (val8 & (1 << i)) != 0);
+    }
+}
+
+static const MemoryRegionOps avr_mask_ops = {
+    .read = avr_mask_read,
+    .write = avr_mask_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+    .impl = {.max_access_size = 1}
+};
+
+static void avr_mask_init(Object *dev)
+{
+    AVRMaskState *s = AVR_MASK(dev);
+    SysBusDevice *busdev = SYS_BUS_DEVICE(dev);
+
+    memory_region_init_io(&s->iomem, dev, &avr_mask_ops, s, TYPE_AVR_MASK,
+            0x01);
+    sysbus_init_mmio(busdev, &s->iomem);
+
+    for (int i = 0; i < 8; i++) {
+        sysbus_init_irq(busdev, &s->irq[i]);
+    }
+    s->val = 0x00;
+}
+
+static void avr_mask_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_mask_reset;
+}
+
+static const TypeInfo avr_mask_info = {
+    .name          = TYPE_AVR_MASK,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRMaskState),
+    .class_init    = avr_mask_class_init,
+    .instance_init = avr_mask_init,
+};
+
+static void avr_mask_register_types(void)
+{
+    type_register_static(&avr_mask_info);
+}
+
+type_init(avr_mask_register_types)
diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig
index 51921eb63f..ad754df750 100644
--- a/hw/timer/Kconfig
+++ b/hw/timer/Kconfig
@@ -61,3 +61,6 @@  config CMSDK_APB_TIMER
 config CMSDK_APB_DUALTIMER
     bool
     select PTIMER
+
+config AVR_TIMER16
+    bool
diff --git a/hw/timer/Makefile.objs b/hw/timer/Makefile.objs
index 123d92c969..4f853e265d 100644
--- a/hw/timer/Makefile.objs
+++ b/hw/timer/Makefile.objs
@@ -35,6 +35,7 @@  obj-$(CONFIG_PXA2XX) += pxa2xx_timer.o
 obj-$(CONFIG_SH4) += sh_timer.o
 obj-$(CONFIG_DIGIC) += digic-timer.o
 obj-$(CONFIG_MIPS_CPS) += mips_gictimer.o
+obj-$(CONFIG_AVR_TIMER16) += avr_timer16.o
 
 obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
 
diff --git a/hw/timer/avr_timer16.c b/hw/timer/avr_timer16.c
new file mode 100644
index 0000000000..bd13a92765
--- /dev/null
+++ b/hw/timer/avr_timer16.c
@@ -0,0 +1,603 @@ 
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+/*
+ * XXX TODO: Power Reduction Register support
+ *           prescaler pause support
+ *           PWM modes, GPIO, output capture pins, input compare pin
+ */
+
+#include "qemu/osdep.h"
+#include "hw/timer/avr_timer16.h"
+#include "qemu/log.h"
+
+/* Register offsets */
+#define T16_CRA     0x0
+#define T16_CRB     0x1
+#define T16_CRC     0x2
+#define T16_CNTL    0x4
+#define T16_CNTH    0x5
+#define T16_ICRL    0x6
+#define T16_ICRH    0x7
+#define T16_OCRAL   0x8
+#define T16_OCRAH   0x9
+#define T16_OCRBL   0xa
+#define T16_OCRBH   0xb
+#define T16_OCRCL   0xc
+#define T16_OCRCH   0xd
+
+/* Field masks */
+#define T16_CRA_WGM01   0x3
+#define T16_CRA_COMC    0xc
+#define T16_CRA_COMB    0x30
+#define T16_CRA_COMA    0xc0
+#define T16_CRA_OC_CONF \
+    (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC)
+
+#define T16_CRB_CS      0x7
+#define T16_CRB_WGM23   0x18
+#define T16_CRB_ICES    0x40
+#define T16_CRB_ICNC    0x80
+
+#define T16_CRC_FOCC    0x20
+#define T16_CRC_FOCB    0x40
+#define T16_CRC_FOCA    0x80
+
+/* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */
+#define T16_INT_TOV    0x1 /* Timer overflow */
+#define T16_INT_OCA    0x2 /* Output compare A */
+#define T16_INT_OCB    0x4 /* Output compare B */
+#define T16_INT_OCC    0x8 /* Output compare C */
+#define T16_INT_IC     0x20 /* Input capture */
+
+/* Clock source values */
+#define T16_CLKSRC_STOPPED     0
+#define T16_CLKSRC_DIV1        1
+#define T16_CLKSRC_DIV8        2
+#define T16_CLKSRC_DIV64       3
+#define T16_CLKSRC_DIV256      4
+#define T16_CLKSRC_DIV1024     5
+#define T16_CLKSRC_EXT_FALLING 6
+#define T16_CLKSRC_EXT_RISING  7
+
+/* Timer mode values (not including PWM modes) */
+#define T16_MODE_NORMAL     0
+#define T16_MODE_CTC_OCRA   4
+#define T16_MODE_CTC_ICR    12
+
+/* Accessors */
+#define CLKSRC(t16) (t16->crb & T16_CRB_CS)
+#define MODE(t16)   (((t16->crb & T16_CRB_WGM23) >> 1) | \
+                     (t16->cra & T16_CRA_WGM01))
+#define CNT(t16)    VAL16(t16->cntl, t16->cnth)
+#define OCRA(t16)   VAL16(t16->ocral, t16->ocrah)
+#define OCRB(t16)   VAL16(t16->ocrbl, t16->ocrbh)
+#define OCRC(t16)   VAL16(t16->ocrcl, t16->ocrch)
+#define ICR(t16)    VAL16(t16->icrl, t16->icrh)
+
+/* Helper macros */
+#define VAL16(l, h) ((h << 8) | l)
+#define ERROR(fmt, args...) \
+    qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## args)
+#define DB_PRINT(fmt, args...) /* Nothing */
+/*#define DB_PRINT(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)*/
+
+static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t)
+{
+    if (t16->period_ns == 0) {
+        return 0;
+    }
+    return t / t16->period_ns;
+}
+
+static void avr_timer16_update_cnt(AVRTimer16State *t16)
+{
+    uint16_t cnt;
+    cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                                       t16->reset_time_ns);
+    t16->cntl = (uint8_t)(cnt & 0xff);
+    t16->cnth = (uint8_t)((cnt & 0xff00) >> 8);
+}
+
+static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16)
+{
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                         CNT(t16) * t16->period_ns;
+}
+
+static void avr_timer16_clock_reset(AVRTimer16State *t16)
+{
+    t16->cntl = 0;
+    t16->cnth = 0;
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+}
+
+static void avr_timer16_clksrc_update(AVRTimer16State *t16)
+{
+    uint16_t divider = 0;
+    switch (CLKSRC(t16)) {
+    case T16_CLKSRC_EXT_FALLING:
+    case T16_CLKSRC_EXT_RISING:
+        ERROR("external clock source unsupported");
+        goto end;
+    case T16_CLKSRC_STOPPED:
+        goto end;
+    case T16_CLKSRC_DIV1:
+        divider = 1;
+        break;
+    case T16_CLKSRC_DIV8:
+        divider = 8;
+        break;
+    case T16_CLKSRC_DIV64:
+        divider = 64;
+        break;
+    case T16_CLKSRC_DIV256:
+        divider = 256;
+        break;
+    case T16_CLKSRC_DIV1024:
+        divider = 1024;
+        break;
+    default:
+        goto end;
+    }
+    t16->freq_hz = t16->cpu_freq_hz / divider;
+    t16->period_ns = 1000000000ULL / t16->freq_hz;
+    DB_PRINT("Timer frequency %" PRIu64 " hz, period %" PRIu64 " ns (%f s)",
+             t16->freq_hz, t16->period_ns, 1 / (double)t16->freq_hz);
+end:
+    return;
+}
+
+static void avr_timer16_set_alarm(AVRTimer16State *t16)
+{
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        goto end;
+    }
+
+    uint64_t alarm_offset = 0xffff;
+    enum NextInterrupt next_interrupt = OVERFLOW;
+
+    switch (MODE(t16)) {
+    case T16_MODE_NORMAL:
+        /* Normal mode */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    case T16_MODE_CTC_OCRA:
+        /* CTC mode, top = ocra */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+       break;
+    case T16_MODE_CTC_ICR:
+        /* CTC mode, top = icr */
+        if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) {
+            alarm_offset = ICR(t16);
+            next_interrupt = CAPT;
+        }
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    default:
+        ERROR("pwm modes are unsupported");
+        goto end;
+    }
+    if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCB)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPB;
+    }
+    if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCC)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPC;
+    }
+    alarm_offset -= CNT(t16);
+
+    t16->next_interrupt = next_interrupt;
+    uint64_t alarm_ns =
+        t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns);
+    timer_mod(t16->timer, alarm_ns);
+
+    DB_PRINT("next alarm %" PRIu64 " ns from now",
+        alarm_offset * t16->period_ns);
+
+end:
+    return;
+}
+
+static void avr_timer16_interrupt(void *opaque)
+{
+    AVRTimer16State *t16 = opaque;
+    uint8_t mode = MODE(t16);
+
+    avr_timer16_update_cnt(t16);
+
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        return;
+    }
+
+    DB_PRINT("interrupt, cnt = %d", CNT(t16));
+
+    /* Counter overflow */
+    if (t16->next_interrupt == OVERFLOW) {
+        DB_PRINT("0xffff overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_TOV) {
+            t16->ifr |= T16_INT_TOV;
+            qemu_set_irq(t16->ovf_irq, 1);
+        }
+    }
+    /* Check for ocra overflow in CTC mode */
+    if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) {
+        DB_PRINT("CTC OCRA overflow");
+        avr_timer16_clock_reset(t16);
+    }
+    /* Check for icr overflow in CTC mode */
+    if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) {
+        DB_PRINT("CTC ICR overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_IC) {
+            t16->ifr |= T16_INT_IC;
+            qemu_set_irq(t16->capt_irq, 1);
+        }
+    }
+    /* Check for output compare interrupts */
+    if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) {
+        t16->ifr |= T16_INT_OCA;
+        qemu_set_irq(t16->compa_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) {
+        t16->ifr |= T16_INT_OCB;
+        qemu_set_irq(t16->compb_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) {
+        t16->ifr |= T16_INT_OCC;
+        qemu_set_irq(t16->compc_irq, 1);
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static void avr_timer16_reset(DeviceState *dev)
+{
+    AVRTimer16State *t16 = AVR_TIMER16(dev);
+
+    avr_timer16_clock_reset(t16);
+    avr_timer16_clksrc_update(t16);
+    avr_timer16_set_alarm(t16);
+
+    qemu_set_irq(t16->capt_irq, 0);
+    qemu_set_irq(t16->compa_irq, 0);
+    qemu_set_irq(t16->compb_irq, 0);
+    qemu_set_irq(t16->compc_irq, 0);
+    qemu_set_irq(t16->ovf_irq, 0);
+}
+
+static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t retval = 0;
+
+    switch (offset) {
+    case T16_CRA:
+        retval = t16->cra;
+        break;
+    case T16_CRB:
+        retval = t16->crb;
+        break;
+    case T16_CRC:
+        retval = t16->crc;
+        break;
+    case T16_CNTL:
+        avr_timer16_update_cnt(t16);
+        t16->rtmp = t16->cnth;
+        retval = t16->cntl;
+        break;
+    case T16_CNTH:
+        retval = t16->rtmp;
+        break;
+    case T16_ICRL:
+        /*
+         * The timer copies cnt to icr when the input capture pin changes
+         * state or when the analog comparator has a match. We don't
+         * emulate this behaviour. We do support it's use for defining a
+         * TOP value in T16_MODE_CTC_ICR
+         */
+        t16->rtmp = t16->icrh;
+        retval = t16->icrl;
+        break;
+    case T16_ICRH:
+        retval = t16->rtmp;
+        break;
+    case T16_OCRAL:
+        retval = t16->ocral;
+        break;
+    case T16_OCRAH:
+        retval = t16->ocrah;
+        break;
+    case T16_OCRBL:
+        retval = t16->ocrbl;
+        break;
+    case T16_OCRBH:
+        retval = t16->ocrbh;
+        break;
+    case T16_OCRCL:
+        retval = t16->ocrcl;
+        break;
+    case T16_OCRCH:
+        retval = t16->ocrch;
+        break;
+    default:
+        break;
+    }
+    return (uint64_t)retval;
+}
+
+static void avr_timer16_write(void *opaque, hwaddr offset,
+                              uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t val8 = (uint8_t)val64;
+    uint8_t prev_clk_src = CLKSRC(t16);
+
+    DB_PRINT("write %d to offset %d", val8, (uint8_t)offset);
+
+    switch (offset) {
+    case T16_CRA:
+        t16->cra = val8;
+        if (t16->cra & T16_CRA_OC_CONF) {
+            ERROR("output compare pins unsupported");
+        }
+        break;
+    case T16_CRB:
+        t16->crb = val8;
+        if (t16->crb & T16_CRB_ICNC) {
+            ERROR("input capture noise canceller unsupported");
+        }
+        if (t16->crb & T16_CRB_ICES) {
+            ERROR("input capture unsupported");
+        }
+        if (CLKSRC(t16) != prev_clk_src) {
+            avr_timer16_clksrc_update(t16);
+            if (prev_clk_src == T16_CLKSRC_STOPPED) {
+                t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+            }
+        }
+        break;
+    case T16_CRC:
+        t16->crc = val8;
+        ERROR("output compare pins unsupported");
+        break;
+    case T16_CNTL:
+        /*
+         * CNT is the 16-bit counter value, it must be read/written via
+         * a temporary register (rtmp) to make the read/write atomic.
+         */
+        /* ICR also has this behaviour, and shares rtmp */
+        /*
+         * Writing CNT blocks compare matches for one clock cycle.
+         * Writing CNT to TOP or to an OCR value (if in use) will
+         * skip the relevant interrupt
+         */
+        t16->cntl = val8;
+        t16->cnth = t16->rtmp;
+        avr_timer16_recalc_reset_time(t16);
+        break;
+    case T16_CNTH:
+        t16->rtmp = val8;
+        break;
+    case T16_ICRL:
+        /* ICR can only be written in mode T16_MODE_CTC_ICR */
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->icrl = val8;
+            t16->icrh = t16->rtmp;
+        }
+        break;
+    case T16_ICRH:
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->rtmp = val8;
+        }
+        break;
+    case T16_OCRAL:
+        /*
+         * OCRn cause the relevant output compare flag to be raised, and
+         * trigger an interrupt, when CNT is equal to the value here
+         */
+        t16->ocral = val8;
+        break;
+    case T16_OCRAH:
+        t16->ocrah = val8;
+        break;
+    case T16_OCRBL:
+        t16->ocrbl = val8;
+        break;
+    case T16_OCRBH:
+        t16->ocrbh = val8;
+        break;
+    case T16_OCRCL:
+        t16->ocrcl = val8;
+        break;
+    case T16_OCRCH:
+        t16->ocrch = val8;
+        break;
+    default:
+        break;
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static uint64_t avr_timer16_imsk_read(void *opaque,
+                                      hwaddr offset,
+                                      unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->imsk;
+}
+
+static void avr_timer16_imsk_write(void *opaque, hwaddr offset,
+                                   uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->imsk = (uint8_t)val64;
+}
+
+static uint64_t avr_timer16_ifr_read(void *opaque,
+                                     hwaddr offset,
+                                     unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->ifr;
+}
+
+static void avr_timer16_ifr_write(void *opaque, hwaddr offset,
+                                  uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->ifr = (uint8_t)val64;
+}
+
+static const MemoryRegionOps avr_timer16_ops = {
+    .read = avr_timer16_read,
+    .write = avr_timer16_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+    .impl = {.max_access_size = 1}
+};
+
+static const MemoryRegionOps avr_timer16_imsk_ops = {
+    .read = avr_timer16_imsk_read,
+    .write = avr_timer16_imsk_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+    .impl = {.max_access_size = 1}
+};
+
+static const MemoryRegionOps avr_timer16_ifr_ops = {
+    .read = avr_timer16_ifr_read,
+    .write = avr_timer16_ifr_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+    .impl = {.max_access_size = 1}
+};
+
+static Property avr_timer16_properties[] = {
+    DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State,
+                       cpu_freq_hz, 20000000),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_timer16_pr(void *opaque, int irq, int level)
+{
+    AVRTimer16State *s = AVR_TIMER16(opaque);
+
+    s->enabled = !level;
+
+    if (!s->enabled) {
+        avr_timer16_reset(DEVICE(s));
+    }
+}
+
+static void avr_timer16_init(Object *obj)
+{
+    AVRTimer16State *s = AVR_TIMER16(obj);
+
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq);
+
+    memory_region_init_io(&s->iomem, obj, &avr_timer16_ops,
+                          s, TYPE_AVR_TIMER16, 0xe);
+    memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+    memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem);
+    qdev_init_gpio_in(DEVICE(s), avr_timer16_pr, 1);
+
+    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s);
+    s->enabled = true;
+}
+
+static void avr_timer16_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_timer16_reset;
+    dc->props = avr_timer16_properties;
+}
+
+static const TypeInfo avr_timer16_info = {
+    .name          = TYPE_AVR_TIMER16,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRTimer16State),
+    .instance_init = avr_timer16_init,
+    .class_init    = avr_timer16_class_init,
+};
+
+static void avr_timer16_register_types(void)
+{
+    type_register_static(&avr_timer16_info);
+}
+
+type_init(avr_timer16_register_types)
diff --git a/include/hw/char/avr_usart.h b/include/hw/char/avr_usart.h
new file mode 100644
index 0000000000..8e9ee88bbd
--- /dev/null
+++ b/include/hw/char/avr_usart.h
@@ -0,0 +1,97 @@ 
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef HW_AVR_USART_H
+#define HW_AVR_USART_H
+
+#include "hw/sysbus.h"
+#include "chardev/char-fe.h"
+#include "hw/hw.h"
+
+/* Offsets of registers. */
+#define USART_DR   0x06
+#define USART_CSRA  0x00
+#define USART_CSRB  0x01
+#define USART_CSRC  0x02
+#define USART_BRRH 0x05
+#define USART_BRRL 0x04
+
+/* Relevant bits in regiters. */
+#define USART_CSRA_RXC    (1 << 7)
+#define USART_CSRA_TXC    (1 << 6)
+#define USART_CSRA_DRE    (1 << 5)
+#define USART_CSRA_MPCM   (1 << 0)
+
+#define USART_CSRB_RXCIE  (1 << 7)
+#define USART_CSRB_TXCIE  (1 << 6)
+#define USART_CSRB_DREIE  (1 << 5)
+#define USART_CSRB_RXEN   (1 << 4)
+#define USART_CSRB_TXEN   (1 << 3)
+#define USART_CSRB_CSZ2   (1 << 2)
+#define USART_CSRB_RXB8   (1 << 1)
+#define USART_CSRB_TXB8   (1 << 0)
+
+#define USART_CSRC_MSEL1  (1 << 7)
+#define USART_CSRC_MSEL0  (1 << 6)
+#define USART_CSRC_PM1    (1 << 5)
+#define USART_CSRC_PM0    (1 << 4)
+#define USART_CSRC_CSZ1   (1 << 2)
+#define USART_CSRC_CSZ0   (1 << 1)
+
+#define TYPE_AVR_USART "avr-usart"
+#define AVR_USART(obj) \
+    OBJECT_CHECK(AVRUsartState, (obj), TYPE_AVR_USART)
+
+typedef struct {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion mmio;
+
+    CharBackend chr;
+
+    bool enabled;
+
+    uint8_t data;
+    bool data_valid;
+    uint8_t char_mask;
+    /* Control and Status Registers */
+    uint8_t csra;
+    uint8_t csrb;
+    uint8_t csrc;
+    /* Baud Rate Registers (low/high byte) */
+    uint8_t brrh;
+    uint8_t brrl;
+
+    /* Receive Complete */
+    qemu_irq rxc_irq;
+    /* Transmit Complete */
+    qemu_irq txc_irq;
+    /* Data Register Empty */
+    qemu_irq dre_irq;
+} AVRUsartState;
+
+#endif /* HW_AVR_USART_H */
diff --git a/include/hw/misc/avr_mask.h b/include/hw/misc/avr_mask.h
new file mode 100644
index 0000000000..d3e21972d8
--- /dev/null
+++ b/include/hw/misc/avr_mask.h
@@ -0,0 +1,47 @@ 
+/*
+ * AVR Power Reduction
+ *
+ * Copyright (c) 2019 Michael Rolnik
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef HW_avr_mask_H
+#define HW_avr_mask_H
+
+#include "hw/sysbus.h"
+#include "chardev/char-fe.h"
+#include "hw/hw.h"
+
+
+#define TYPE_AVR_MASK "avr-mask"
+#define AVR_MASK(obj) OBJECT_CHECK(AVRMaskState, (obj), TYPE_AVR_MASK)
+
+typedef struct {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion iomem;
+
+    uint8_t val;
+    qemu_irq irq[8];
+} AVRMaskState;
+
+#endif /* HW_avr_mask_H */
diff --git a/include/hw/timer/avr_timer16.h b/include/hw/timer/avr_timer16.h
new file mode 100644
index 0000000000..5639074ce5
--- /dev/null
+++ b/include/hw/timer/avr_timer16.h
@@ -0,0 +1,97 @@ 
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * On ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+#ifndef AVR_TIMER16_H
+#define AVR_TIMER16_H
+
+#include "hw/sysbus.h"
+#include "qemu/timer.h"
+#include "hw/hw.h"
+
+enum NextInterrupt {
+    OVERFLOW,
+    COMPA,
+    COMPB,
+    COMPC,
+    CAPT
+};
+
+#define TYPE_AVR_TIMER16 "avr-timer16"
+#define AVR_TIMER16(obj) \
+    OBJECT_CHECK(AVRTimer16State, (obj), TYPE_AVR_TIMER16)
+
+typedef struct AVRTimer16State {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion iomem;
+    MemoryRegion imsk_iomem;
+    MemoryRegion ifr_iomem;
+    QEMUTimer *timer;
+    qemu_irq capt_irq;
+    qemu_irq compa_irq;
+    qemu_irq compb_irq;
+    qemu_irq compc_irq;
+    qemu_irq ovf_irq;
+
+    bool enabled;
+
+    /* registers */
+    uint8_t cra;
+    uint8_t crb;
+    uint8_t crc;
+    uint8_t cntl;
+    uint8_t cnth;
+    uint8_t icrl;
+    uint8_t icrh;
+    uint8_t ocral;
+    uint8_t ocrah;
+    uint8_t ocrbl;
+    uint8_t ocrbh;
+    uint8_t ocrcl;
+    uint8_t ocrch;
+    /*
+     * Reads and writes to CNT and ICR utilise a bizarre temporary
+     * register, which we emulate
+     */
+    uint8_t rtmp;
+    uint8_t imsk;
+    uint8_t ifr;
+
+    uint64_t cpu_freq_hz;
+    uint64_t freq_hz;
+    uint64_t period_ns;
+    uint64_t reset_time_ns;
+    enum NextInterrupt next_interrupt;
+} AVRTimer16State;
+
+#endif /* AVR_TIMER16_H */