Message ID | 20200608114047.26589-4-sjpark@amazon.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Introduce Data Access MONitor (DAMON) | expand |
On 6/8/20 1:40 PM, SeongJae Park wrote: > From: SeongJae Park <sjpark@amazon.de> > > This commit implements DAMON's basic access check and region based > sampling mechanisms. This change would seems make no sense, mainly > because it is only a part of the DAMON's logics. Following two commits > will make more sense. > > Basic Access Check > ------------------ > > DAMON basically reports what pages are how frequently accessed. Note > that the frequency is not an absolute number of accesses, but a relative > frequency among the pages of the target workloads. > > Users can control the resolution of the reports by setting two time > intervals, ``sampling interval`` and ``aggregation interval``. In > detail, DAMON checks access to each page per ``sampling interval``, > aggregates the results (counts the number of the accesses to each page), > and reports the aggregated results per ``aggregation interval``. For > the access check of each page, DAMON uses the Accessed bits of PTEs. > > This is thus similar to common periodic access checks based access > tracking mechanisms, which overhead is increasing as the size of the > target process grows. > > Region Based Sampling > --------------------- > > To avoid the unbounded increase of the overhead, DAMON groups a number > of adjacent pages that assumed to have same access frequencies into a > region. As long as the assumption (pages in a region have same access > frequencies) is kept, only one page in the region is required to be > checked. Thus, for each ``sampling interval``, DAMON randomly picks one > page in each region and clears its Accessed bit. After one more > ``sampling interval``, DAMON reads the Accessed bit of the page and > increases the access frequency of the region if the bit has set > meanwhile. Therefore, the monitoring overhead is controllable by > setting the number of regions. > > Nonetheless, this scheme cannot preserve the quality of the output if > the assumption is not kept. Following commit will introduce how we can > make the guarantee with best effort. > > Signed-off-by: SeongJae Park <sjpark@amazon.de> > Reviewed-by: Leonard Foerster <foersleo@amazon.de> > --- > include/linux/damon.h | 48 +++- > mm/damon.c | 615 +++++++++++++++++++++++++++++++++++++++++- > 2 files changed, 660 insertions(+), 3 deletions(-) > > diff --git a/include/linux/damon.h b/include/linux/damon.h > index 135633334929..f0fe4520a4e9 100644 > --- a/include/linux/damon.h > +++ b/include/linux/damon.h > @@ -11,6 +11,8 @@ > #define _DAMON_H_ > > #include <linux/random.h> > +#include <linux/mutex.h> > +#include <linux/time64.h> > #include <linux/types.h> > > /** > @@ -44,11 +46,55 @@ struct damon_task { > }; > > /** > - * struct damon_ctx - Represents a context for each monitoring. > + * struct damon_ctx - Represents a context for each monitoring. This is the > + * main interface that allows users to set the attributes and get the results > + * of the monitoring. > + * > + * For each monitoring request (damon_start()), a kernel thread for the > + * monitoring is created. The pointer to the thread is stored in @kdamond. > + * > + * @sample_interval: The time between access samplings. > + * @aggr_interval: The time between monitor results aggregations. > + * @min_nr_regions: The number of initial monitoring regions. > + * > + * For each @sample_interval, DAMON checks whether each region is accessed or > + * not. It aggregates and keeps the access information (number of accesses to > + * each region) for @aggr_interval time. All time intervals are in > + * micro-seconds. > + * > + * @kdamond: Kernel thread who does the monitoring. > + * @kdamond_stop: Notifies whether kdamond should stop. > + * @kdamond_lock: Mutex for the synchronizations with @kdamond. > + * > + * The monitoring thread sets @kdamond to NULL when it terminates. Therefore, > + * users can know whether the monitoring is ongoing or terminated by reading > + * @kdamond. Also, users can ask @kdamond to be terminated by writing non-zero > + * to @kdamond_stop. Reads and writes to @kdamond and @kdamond_stop from > + * outside of the monitoring thread must be protected by @kdamond_lock. > + * > + * Note that the monitoring thread protects only @kdamond and @kdamond_stop via > + * @kdamond_lock. Accesses to other fields must be protected by themselves. > + * > * @tasks_list: Head of monitoring target tasks (&damon_task) list. > */ > struct damon_ctx { > + unsigned long sample_interval; > + unsigned long aggr_interval; > + unsigned long min_nr_regions; > + > + struct timespec64 last_aggregation; > + > + struct task_struct *kdamond; > + bool kdamond_stop; > + struct mutex kdamond_lock; > + > struct list_head tasks_list; /* 'damon_task' objects */ > }; > > +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids); > +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, > + unsigned long aggr_int, unsigned long min_nr_reg); > +int damon_start(struct damon_ctx *ctx); > +int damon_stop(struct damon_ctx *ctx); > + > #endif > diff --git a/mm/damon.c b/mm/damon.c > index 170e8a694dbe..fa14ff7dd31a 100644 > --- a/mm/damon.c > +++ b/mm/damon.c > @@ -9,18 +9,29 @@ > * This file is constructed in below parts. > * > * - Functions and macros for DAMON data structures > + * - Functions for the initial monitoring target regions construction > + * - Functions for the access checking of the regions > + * - Functions for DAMON core logics and features > + * - Functions for the DAMON programming interface > * - Functions for the module loading/unloading > - * > - * The core parts are not implemented yet. > */ > > #define pr_fmt(fmt) "damon: " fmt > > #include <linux/damon.h> > +#include <linux/delay.h> > +#include <linux/kthread.h> > #include <linux/mm.h> > #include <linux/module.h> > +#include <linux/page_idle.h> > +#include <linux/random.h> > +#include <linux/sched/mm.h> > +#include <linux/sched/task.h> > #include <linux/slab.h> > > +/* Minimal region size. Every damon_region is aligned by this. */ > +#define MIN_REGION PAGE_SIZE > + > /* > * Functions and macros for DAMON data structures > */ > @@ -167,6 +178,606 @@ static unsigned int nr_damon_regions(struct damon_task *t) > return nr_regions; > } > > +/* > + * Get the mm_struct of the given task > + * > + * Caller _must_ put the mm_struct after use, unless it is NULL. > + * > + * Returns the mm_struct of the task on success, NULL on failure > + */ > +static struct mm_struct *damon_get_mm(struct damon_task *t) > +{ > + struct task_struct *task; > + struct mm_struct *mm; > + > + task = damon_get_task_struct(t); > + if (!task) > + return NULL; > + > + mm = get_task_mm(task); > + put_task_struct(task); > + return mm; > +} > + > +/* > + * Functions for the initial monitoring target regions construction > + */ > + > +/* > + * Size-evenly split a region into 'nr_pieces' small regions > + * > + * Returns 0 on success, or negative error code otherwise. > + */ > +static int damon_split_region_evenly(struct damon_ctx *ctx, > + struct damon_region *r, unsigned int nr_pieces) > +{ > + unsigned long sz_orig, sz_piece, orig_end; > + struct damon_region *n = NULL, *next; > + unsigned long start; > + > + if (!r || !nr_pieces) > + return -EINVAL; > + > + orig_end = r->vm_end; > + sz_orig = r->vm_end - r->vm_start; > + sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, MIN_REGION); > + > + if (!sz_piece) > + return -EINVAL; > + > + r->vm_end = r->vm_start + sz_piece; > + next = damon_next_region(r); > + for (start = r->vm_end; start + sz_piece <= orig_end; > + start += sz_piece) { > + n = damon_new_region(ctx, start, start + sz_piece); > + if (!n) > + return -ENOMEM; > + damon_insert_region(n, r, next); > + r = n; > + } > + /* complement last region for possible rounding error */ > + if (n) > + n->vm_end = orig_end; > + > + return 0; > +} > + > +struct region { > + unsigned long start; > + unsigned long end; > +}; > + > +static unsigned long sz_region(struct region *r) > +{ > + return r->end - r->start; > +} > + > +static void swap_regions(struct region *r1, struct region *r2) > +{ > + struct region tmp; > + > + tmp = *r1; > + *r1 = *r2; > + *r2 = tmp; > +} > + > +/* > + * Find three regions separated by two biggest unmapped regions > + * > + * vma the head vma of the target address space > + * regions an array of three 'struct region's that results will be saved > + * > + * This function receives an address space and finds three regions in it which > + * separated by the two biggest unmapped regions in the space. Please refer to > + * below comments of 'damon_init_regions_of()' function to know why this is > + * necessary. > + * > + * Returns 0 if success, or negative error code otherwise. > + */ > +static int damon_three_regions_in_vmas(struct vm_area_struct *vma, > + struct region regions[3]) > +{ > + struct region gap = {0}, first_gap = {0}, second_gap = {0}; > + struct vm_area_struct *last_vma = NULL; > + unsigned long start = 0; > + > + /* Find two biggest gaps so that first_gap > second_gap > others */ > + for (; vma; vma = vma->vm_next) { Since vm_area_struct already maintains information about the largest gap below this vma in the mm_rb rbtree, walking the vma via mm_rb instead of the linked list, and skipping the ones with don't fit the gap requirement via vma->rb_subtree_gap helps avoid the extra comparisons in this function. I measured the following implementation to be considerably faster as the number of vmas grows for a process damon would attach to: -static int damon_three_regions_in_vmas(struct vm_area_struct *vma, +static int damon_three_regions_in_vmas(struct rb_root *root, struct region regions[3]) { + struct rb_node *nd = NULL; struct region gap = {0}, first_gap = {0}, second_gap = {0}; - struct vm_area_struct *last_vma = NULL; + struct vm_area_struct *vma = NULL; unsigned long start = 0; /* Find two biggest gaps so that first_gap > second_gap > others */ - for (; vma; vma = vma->vm_next) { - if (!last_vma) { - start = vma->vm_start; - last_vma = vma; + for (nd = rb_first(root); nd; nd = rb_next(nd)) { + vma = rb_entry(nd, struct vm_area_struct, vm_rb); + + if (vma->rb_subtree_gap < sz_region(&second_gap)) { + /* + * Skip this vma if the largest gap at this vma is still + * smaller than what we have encountered so far. + */ continue; } - gap.start = last_vma->vm_end; + if (!vma->vm_prev) { + /* This is the first vma. */ + start = vma->vm_start; + continue; + } + gap.start = vma->vm_prev->vm_end; gap.end = vma->vm_start; if (sz_region(&gap) > sz_region(&second_gap)) { swap_regions(&gap, &second_gap); if (sz_region(&second_gap) > sz_region(&first_gap)) swap_regions(&second_gap, &first_gap); } - last_vma = vma; } if (!sz_region(&second_gap) || !sz_region(&first_gap)) @@ -35,7 +44,7 @@ regions[1].start = ALIGN(first_gap.end, MIN_REGION); regions[1].end = ALIGN(second_gap.start, MIN_REGION); regions[2].start = ALIGN(second_gap.end, MIN_REGION); - regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION); + regions[2].end = ALIGN(vma->vm_end, MIN_REGION); return 0; } > + if (!last_vma) { > + start = vma->vm_start; > + last_vma = vma; > + continue; > + } > + gap.start = last_vma->vm_end; > + gap.end = vma->vm_start; > + if (sz_region(&gap) > sz_region(&second_gap)) { > + swap_regions(&gap, &second_gap); > + if (sz_region(&second_gap) > sz_region(&first_gap)) > + swap_regions(&second_gap, &first_gap); > + } > + last_vma = vma; > + } > + > + if (!sz_region(&second_gap) || !sz_region(&first_gap)) > + return -EINVAL; > + > + /* Sort the two biggest gaps by address */ > + if (first_gap.start > second_gap.start) > + swap_regions(&first_gap, &second_gap); > + > + /* Store the result */ > + regions[0].start = ALIGN(start, MIN_REGION); > + regions[0].end = ALIGN(first_gap.start, MIN_REGION); > + regions[1].start = ALIGN(first_gap.end, MIN_REGION); > + regions[1].end = ALIGN(second_gap.start, MIN_REGION); > + regions[2].start = ALIGN(second_gap.end, MIN_REGION); > + regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION); > + > + return 0; > +} > + > +/* > + * Get the three regions in the given task > + * > + * Returns 0 on success, negative error code otherwise. > + */ > +static int damon_three_regions_of(struct damon_task *t, > + struct region regions[3]) > +{ > + struct mm_struct *mm; > + int rc; > + > + mm = damon_get_mm(t); > + if (!mm) > + return -EINVAL; > + > + down_read(&mm->mmap_sem); > + rc = damon_three_regions_in_vmas(mm->mmap, regions); > + up_read(&mm->mmap_sem); > + > + mmput(mm); > + return rc; > +} > + > +/* > + * Initialize the monitoring target regions for the given task > + * > + * t the given target task > + * > + * Because only a number of small portions of the entire address space > + * is actually mapped to the memory and accessed, monitoring the unmapped > + * regions is wasteful. That said, because we can deal with small noises, > + * tracking every mapping is not strictly required but could even incur a high > + * overhead if the mapping frequently changes or the number of mappings is > + * high. Nonetheless, this may seems very weird. DAMON's dynamic regions > + * adjustment mechanism, which will be implemented with following commit will > + * make this more sense. > + * > + * For the reason, we convert the complex mappings to three distinct regions > + * that cover every mapped area of the address space. Also the two gaps > + * between the three regions are the two biggest unmapped areas in the given > + * address space. In detail, this function first identifies the start and the > + * end of the mappings and the two biggest unmapped areas of the address space. > + * Then, it constructs the three regions as below: > + * > + * [mappings[0]->start, big_two_unmapped_areas[0]->start) > + * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) > + * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) > + * > + * As usual memory map of processes is as below, the gap between the heap and > + * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed > + * region and the stack will be two biggest unmapped regions. Because these > + * gaps are exceptionally huge areas in usual address space, excluding these > + * two biggest unmapped regions will be sufficient to make a trade-off. > + * > + * <heap> > + * <BIG UNMAPPED REGION 1> > + * <uppermost mmap()-ed region> > + * (other mmap()-ed regions and small unmapped regions) > + * <lowermost mmap()-ed region> > + * <BIG UNMAPPED REGION 2> > + * <stack> > + */ > +static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t) > +{ > + struct damon_region *r, *m = NULL; > + struct region regions[3]; > + int i; > + > + if (damon_three_regions_of(t, regions)) { > + pr_err("Failed to get three regions of task %d\n", t->pid); > + return; > + } > + > + /* Set the initial three regions of the task */ > + for (i = 0; i < 3; i++) { > + r = damon_new_region(c, regions[i].start, regions[i].end); > + if (!r) { > + pr_err("%d'th init region creation failed\n", i); > + return; > + } > + damon_add_region(r, t); > + if (i == 1) > + m = r; > + } > + > + /* Split the middle region into 'min_nr_regions - 2' regions */ > + if (damon_split_region_evenly(c, m, c->min_nr_regions - 2)) > + pr_warn("Init middle region failed to be split\n"); > +} > + > +/* Initialize '->regions_list' of every task */ > +static void kdamond_init_regions(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + > + damon_for_each_task(t, ctx) > + damon_init_regions_of(ctx, t); > +} > + > +/* > + * Functions for the access checking of the regions > + */ > + > +static void damon_mkold(struct mm_struct *mm, unsigned long addr) > +{ > + pte_t *pte = NULL; > + pmd_t *pmd = NULL; > + spinlock_t *ptl; > + > + if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl)) > + return; > + > + if (pte) { > + if (pte_young(*pte)) { > + clear_page_idle(pte_page(*pte)); > + set_page_young(pte_page(*pte)); > + } > + *pte = pte_mkold(*pte); > + pte_unmap_unlock(pte, ptl); > + return; > + } > + > +#ifdef CONFIG_TRANSPARENT_HUGEPAGE > + if (pmd_young(*pmd)) { > + clear_page_idle(pmd_page(*pmd)); > + set_page_young(pmd_page(*pmd)); > + } > + *pmd = pmd_mkold(*pmd); > + spin_unlock(ptl); > +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ > +} > + > +static void damon_prepare_access_check(struct damon_ctx *ctx, > + struct mm_struct *mm, struct damon_region *r) > +{ > + r->sampling_addr = damon_rand(r->vm_start, r->vm_end); > + > + damon_mkold(mm, r->sampling_addr); > +} > + > +static void kdamond_prepare_access_checks(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + struct mm_struct *mm; > + struct damon_region *r; > + > + damon_for_each_task(t, ctx) { > + mm = damon_get_mm(t); > + if (!mm) > + continue; > + damon_for_each_region(r, t) > + damon_prepare_access_check(ctx, mm, r); > + mmput(mm); > + } > +} > + > +static bool damon_young(struct mm_struct *mm, unsigned long addr, > + unsigned long *page_sz) > +{ > + pte_t *pte = NULL; > + pmd_t *pmd = NULL; > + spinlock_t *ptl; > + bool young = false; > + > + if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl)) > + return false; > + > + *page_sz = PAGE_SIZE; > + if (pte) { > + young = pte_young(*pte); > + pte_unmap_unlock(pte, ptl); > + return young; > + } > + > +#ifdef CONFIG_TRANSPARENT_HUGEPAGE > + young = pmd_young(*pmd); > + spin_unlock(ptl); > + *page_sz = ((1UL) << HPAGE_PMD_SHIFT); > +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ > + > + return young; > +} > + > +/* > + * Check whether the region was accessed after the last preparation > + * > + * mm 'mm_struct' for the given virtual address space > + * r the region to be checked > + */ > +static void damon_check_access(struct damon_ctx *ctx, > + struct mm_struct *mm, struct damon_region *r) > +{ > + static struct mm_struct *last_mm; > + static unsigned long last_addr; > + static unsigned long last_page_sz = PAGE_SIZE; > + static bool last_accessed; > + > + /* If the region is in the last checked page, reuse the result */ > + if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == > + ALIGN_DOWN(r->sampling_addr, last_page_sz))) { > + if (last_accessed) > + r->nr_accesses++; > + return; > + } > + > + last_accessed = damon_young(mm, r->sampling_addr, &last_page_sz); > + if (last_accessed) > + r->nr_accesses++; > + > + last_mm = mm; > + last_addr = r->sampling_addr; > +} > + > +static void kdamond_check_accesses(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + struct mm_struct *mm; > + struct damon_region *r; > + > + damon_for_each_task(t, ctx) { > + mm = damon_get_mm(t); > + if (!mm) > + continue; > + damon_for_each_region(r, t) > + damon_check_access(ctx, mm, r); > + mmput(mm); > + } > +} > + > +/* > + * Functions for DAMON core logics and features > + */ > + > +/* > + * damon_check_reset_time_interval() - Check if a time interval is elapsed. > + * @baseline: the time to check whether the interval has elapsed since > + * @interval: the time interval (microseconds) > + * > + * See whether the given time interval has passed since the given baseline > + * time. If so, it also updates the baseline to current time for next check. > + * > + * Return: true if the time interval has passed, or false otherwise. > + */ > +static bool damon_check_reset_time_interval(struct timespec64 *baseline, > + unsigned long interval) > +{ > + struct timespec64 now; > + > + ktime_get_coarse_ts64(&now); > + if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < > + interval * 1000) > + return false; > + *baseline = now; > + return true; > +} > + > +/* > + * Check whether it is time to flush the aggregated information > + */ > +static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) > +{ > + return damon_check_reset_time_interval(&ctx->last_aggregation, > + ctx->aggr_interval); > +} > + > +/* > + * Reset the aggregated monitoring results > + */ > +static void kdamond_reset_aggregated(struct damon_ctx *c) > +{ > + struct damon_task *t; > + struct damon_region *r; > + > + damon_for_each_task(t, c) { > + damon_for_each_region(r, t) > + r->nr_accesses = 0; > + } > +} > + > +/* > + * Check whether current monitoring should be stopped > + * > + * The monitoring is stopped when either the user requested to stop, or all > + * monitoring target tasks are dead. > + * > + * Returns true if need to stop current monitoring. > + */ > +static bool kdamond_need_stop(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + struct task_struct *task; > + bool stop; > + > + mutex_lock(&ctx->kdamond_lock); > + stop = ctx->kdamond_stop; > + mutex_unlock(&ctx->kdamond_lock); > + if (stop) > + return true; > + > + damon_for_each_task(t, ctx) { > + task = damon_get_task_struct(t); > + if (task) { > + put_task_struct(task); > + return false; > + } > + } > + > + return true; > +} > + > +/* > + * The monitoring daemon that runs as a kernel thread > + */ > +static int kdamond_fn(void *data) > +{ > + struct damon_ctx *ctx = (struct damon_ctx *)data; > + struct damon_task *t; > + struct damon_region *r, *next; > + > + pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); > + kdamond_init_regions(ctx); > + while (!kdamond_need_stop(ctx)) { > + kdamond_prepare_access_checks(ctx); > + > + usleep_range(ctx->sample_interval, ctx->sample_interval + 1); > + > + kdamond_check_accesses(ctx); > + > + if (kdamond_aggregate_interval_passed(ctx)) > + kdamond_reset_aggregated(ctx); > + > + } > + damon_for_each_task(t, ctx) { > + damon_for_each_region_safe(r, next, t) > + damon_destroy_region(r); > + } > + pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); > + mutex_lock(&ctx->kdamond_lock); > + ctx->kdamond = NULL; > + mutex_unlock(&ctx->kdamond_lock); > + > + do_exit(0); > +} > + > +/* > + * Functions for the DAMON programming interface > + */ > + > +static bool damon_kdamond_running(struct damon_ctx *ctx) > +{ > + bool running; > + > + mutex_lock(&ctx->kdamond_lock); > + running = ctx->kdamond != NULL; > + mutex_unlock(&ctx->kdamond_lock); > + > + return running; > +} > + > +/** > + * damon_start() - Starts monitoring with given context. > + * @ctx: monitoring context > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_start(struct damon_ctx *ctx) > +{ > + int err = -EBUSY; > + > + mutex_lock(&ctx->kdamond_lock); > + if (!ctx->kdamond) { > + err = 0; > + ctx->kdamond_stop = false; > + ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond"); > + if (IS_ERR(ctx->kdamond)) > + err = PTR_ERR(ctx->kdamond); > + } > + mutex_unlock(&ctx->kdamond_lock); > + > + return err; > +} > + > +/** > + * damon_stop() - Stops monitoring of given context. > + * @ctx: monitoring context > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_stop(struct damon_ctx *ctx) > +{ > + mutex_lock(&ctx->kdamond_lock); > + if (ctx->kdamond) { > + ctx->kdamond_stop = true; > + mutex_unlock(&ctx->kdamond_lock); > + while (damon_kdamond_running(ctx)) > + usleep_range(ctx->sample_interval, > + ctx->sample_interval * 2); > + return 0; > + } > + mutex_unlock(&ctx->kdamond_lock); > + > + return -EPERM; > +} > + > +/** > + * damon_set_pids() - Set monitoring target processes. > + * @ctx: monitoring context > + * @pids: array of target processes pids > + * @nr_pids: number of entries in @pids > + * > + * This function should not be called while the kdamond is running. > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids) > +{ > + ssize_t i; > + struct damon_task *t, *next; > + > + damon_for_each_task_safe(t, next, ctx) > + damon_destroy_task(t); > + > + for (i = 0; i < nr_pids; i++) { > + t = damon_new_task(pids[i]); > + if (!t) { > + pr_err("Failed to alloc damon_task\n"); > + return -ENOMEM; > + } > + damon_add_task(ctx, t); > + } > + > + return 0; > +} > + > +/** > + * damon_set_attrs() - Set attributes for the monitoring. > + * @ctx: monitoring context > + * @sample_int: time interval between samplings > + * @aggr_int: time interval between aggregations > + * @min_nr_reg: minimal number of regions > + * > + * This function should not be called while the kdamond is running. > + * Every time interval is in micro-seconds. > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, > + unsigned long aggr_int, unsigned long min_nr_reg) > +{ > + if (min_nr_reg < 3) { > + pr_err("min_nr_regions (%lu) must be at least 3\n", > + min_nr_reg); > + return -EINVAL; > + } > + > + ctx->sample_interval = sample_int; > + ctx->aggr_interval = aggr_int; > + ctx->min_nr_regions = min_nr_reg; > + > + return 0; > +} > + > /* > * Functions for the module loading/unloading > */ > Amazon Development Center Germany GmbH Krausenstr. 38 10117 Berlin Geschaeftsfuehrung: Christian Schlaeger, Jonathan Weiss Eingetragen am Amtsgericht Charlottenburg unter HRB 149173 B Sitz: Berlin Ust-ID: DE 289 237 879
diff --git a/include/linux/damon.h b/include/linux/damon.h index 135633334929..f0fe4520a4e9 100644 --- a/include/linux/damon.h +++ b/include/linux/damon.h @@ -11,6 +11,8 @@ #define _DAMON_H_ #include <linux/random.h> +#include <linux/mutex.h> +#include <linux/time64.h> #include <linux/types.h> /** @@ -44,11 +46,55 @@ struct damon_task { }; /** - * struct damon_ctx - Represents a context for each monitoring. + * struct damon_ctx - Represents a context for each monitoring. This is the + * main interface that allows users to set the attributes and get the results + * of the monitoring. + * + * For each monitoring request (damon_start()), a kernel thread for the + * monitoring is created. The pointer to the thread is stored in @kdamond. + * + * @sample_interval: The time between access samplings. + * @aggr_interval: The time between monitor results aggregations. + * @min_nr_regions: The number of initial monitoring regions. + * + * For each @sample_interval, DAMON checks whether each region is accessed or + * not. It aggregates and keeps the access information (number of accesses to + * each region) for @aggr_interval time. All time intervals are in + * micro-seconds. + * + * @kdamond: Kernel thread who does the monitoring. + * @kdamond_stop: Notifies whether kdamond should stop. + * @kdamond_lock: Mutex for the synchronizations with @kdamond. + * + * The monitoring thread sets @kdamond to NULL when it terminates. Therefore, + * users can know whether the monitoring is ongoing or terminated by reading + * @kdamond. Also, users can ask @kdamond to be terminated by writing non-zero + * to @kdamond_stop. Reads and writes to @kdamond and @kdamond_stop from + * outside of the monitoring thread must be protected by @kdamond_lock. + * + * Note that the monitoring thread protects only @kdamond and @kdamond_stop via + * @kdamond_lock. Accesses to other fields must be protected by themselves. + * * @tasks_list: Head of monitoring target tasks (&damon_task) list. */ struct damon_ctx { + unsigned long sample_interval; + unsigned long aggr_interval; + unsigned long min_nr_regions; + + struct timespec64 last_aggregation; + + struct task_struct *kdamond; + bool kdamond_stop; + struct mutex kdamond_lock; + struct list_head tasks_list; /* 'damon_task' objects */ }; +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids); +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, + unsigned long aggr_int, unsigned long min_nr_reg); +int damon_start(struct damon_ctx *ctx); +int damon_stop(struct damon_ctx *ctx); + #endif diff --git a/mm/damon.c b/mm/damon.c index 170e8a694dbe..fa14ff7dd31a 100644 --- a/mm/damon.c +++ b/mm/damon.c @@ -9,18 +9,29 @@ * This file is constructed in below parts. * * - Functions and macros for DAMON data structures + * - Functions for the initial monitoring target regions construction + * - Functions for the access checking of the regions + * - Functions for DAMON core logics and features + * - Functions for the DAMON programming interface * - Functions for the module loading/unloading - * - * The core parts are not implemented yet. */ #define pr_fmt(fmt) "damon: " fmt #include <linux/damon.h> +#include <linux/delay.h> +#include <linux/kthread.h> #include <linux/mm.h> #include <linux/module.h> +#include <linux/page_idle.h> +#include <linux/random.h> +#include <linux/sched/mm.h> +#include <linux/sched/task.h> #include <linux/slab.h> +/* Minimal region size. Every damon_region is aligned by this. */ +#define MIN_REGION PAGE_SIZE + /* * Functions and macros for DAMON data structures */ @@ -167,6 +178,606 @@ static unsigned int nr_damon_regions(struct damon_task *t) return nr_regions; } +/* + * Get the mm_struct of the given task + * + * Caller _must_ put the mm_struct after use, unless it is NULL. + * + * Returns the mm_struct of the task on success, NULL on failure + */ +static struct mm_struct *damon_get_mm(struct damon_task *t) +{ + struct task_struct *task; + struct mm_struct *mm; + + task = damon_get_task_struct(t); + if (!task) + return NULL; + + mm = get_task_mm(task); + put_task_struct(task); + return mm; +} + +/* + * Functions for the initial monitoring target regions construction + */ + +/* + * Size-evenly split a region into 'nr_pieces' small regions + * + * Returns 0 on success, or negative error code otherwise. + */ +static int damon_split_region_evenly(struct damon_ctx *ctx, + struct damon_region *r, unsigned int nr_pieces) +{ + unsigned long sz_orig, sz_piece, orig_end; + struct damon_region *n = NULL, *next; + unsigned long start; + + if (!r || !nr_pieces) + return -EINVAL; + + orig_end = r->vm_end; + sz_orig = r->vm_end - r->vm_start; + sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, MIN_REGION); + + if (!sz_piece) + return -EINVAL; + + r->vm_end = r->vm_start + sz_piece; + next = damon_next_region(r); + for (start = r->vm_end; start + sz_piece <= orig_end; + start += sz_piece) { + n = damon_new_region(ctx, start, start + sz_piece); + if (!n) + return -ENOMEM; + damon_insert_region(n, r, next); + r = n; + } + /* complement last region for possible rounding error */ + if (n) + n->vm_end = orig_end; + + return 0; +} + +struct region { + unsigned long start; + unsigned long end; +}; + +static unsigned long sz_region(struct region *r) +{ + return r->end - r->start; +} + +static void swap_regions(struct region *r1, struct region *r2) +{ + struct region tmp; + + tmp = *r1; + *r1 = *r2; + *r2 = tmp; +} + +/* + * Find three regions separated by two biggest unmapped regions + * + * vma the head vma of the target address space + * regions an array of three 'struct region's that results will be saved + * + * This function receives an address space and finds three regions in it which + * separated by the two biggest unmapped regions in the space. Please refer to + * below comments of 'damon_init_regions_of()' function to know why this is + * necessary. + * + * Returns 0 if success, or negative error code otherwise. + */ +static int damon_three_regions_in_vmas(struct vm_area_struct *vma, + struct region regions[3]) +{ + struct region gap = {0}, first_gap = {0}, second_gap = {0}; + struct vm_area_struct *last_vma = NULL; + unsigned long start = 0; + + /* Find two biggest gaps so that first_gap > second_gap > others */ + for (; vma; vma = vma->vm_next) { + if (!last_vma) { + start = vma->vm_start; + last_vma = vma; + continue; + } + gap.start = last_vma->vm_end; + gap.end = vma->vm_start; + if (sz_region(&gap) > sz_region(&second_gap)) { + swap_regions(&gap, &second_gap); + if (sz_region(&second_gap) > sz_region(&first_gap)) + swap_regions(&second_gap, &first_gap); + } + last_vma = vma; + } + + if (!sz_region(&second_gap) || !sz_region(&first_gap)) + return -EINVAL; + + /* Sort the two biggest gaps by address */ + if (first_gap.start > second_gap.start) + swap_regions(&first_gap, &second_gap); + + /* Store the result */ + regions[0].start = ALIGN(start, MIN_REGION); + regions[0].end = ALIGN(first_gap.start, MIN_REGION); + regions[1].start = ALIGN(first_gap.end, MIN_REGION); + regions[1].end = ALIGN(second_gap.start, MIN_REGION); + regions[2].start = ALIGN(second_gap.end, MIN_REGION); + regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION); + + return 0; +} + +/* + * Get the three regions in the given task + * + * Returns 0 on success, negative error code otherwise. + */ +static int damon_three_regions_of(struct damon_task *t, + struct region regions[3]) +{ + struct mm_struct *mm; + int rc; + + mm = damon_get_mm(t); + if (!mm) + return -EINVAL; + + down_read(&mm->mmap_sem); + rc = damon_three_regions_in_vmas(mm->mmap, regions); + up_read(&mm->mmap_sem); + + mmput(mm); + return rc; +} + +/* + * Initialize the monitoring target regions for the given task + * + * t the given target task + * + * Because only a number of small portions of the entire address space + * is actually mapped to the memory and accessed, monitoring the unmapped + * regions is wasteful. That said, because we can deal with small noises, + * tracking every mapping is not strictly required but could even incur a high + * overhead if the mapping frequently changes or the number of mappings is + * high. Nonetheless, this may seems very weird. DAMON's dynamic regions + * adjustment mechanism, which will be implemented with following commit will + * make this more sense. + * + * For the reason, we convert the complex mappings to three distinct regions + * that cover every mapped area of the address space. Also the two gaps + * between the three regions are the two biggest unmapped areas in the given + * address space. In detail, this function first identifies the start and the + * end of the mappings and the two biggest unmapped areas of the address space. + * Then, it constructs the three regions as below: + * + * [mappings[0]->start, big_two_unmapped_areas[0]->start) + * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) + * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) + * + * As usual memory map of processes is as below, the gap between the heap and + * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed + * region and the stack will be two biggest unmapped regions. Because these + * gaps are exceptionally huge areas in usual address space, excluding these + * two biggest unmapped regions will be sufficient to make a trade-off. + * + * <heap> + * <BIG UNMAPPED REGION 1> + * <uppermost mmap()-ed region> + * (other mmap()-ed regions and small unmapped regions) + * <lowermost mmap()-ed region> + * <BIG UNMAPPED REGION 2> + * <stack> + */ +static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t) +{ + struct damon_region *r, *m = NULL; + struct region regions[3]; + int i; + + if (damon_three_regions_of(t, regions)) { + pr_err("Failed to get three regions of task %d\n", t->pid); + return; + } + + /* Set the initial three regions of the task */ + for (i = 0; i < 3; i++) { + r = damon_new_region(c, regions[i].start, regions[i].end); + if (!r) { + pr_err("%d'th init region creation failed\n", i); + return; + } + damon_add_region(r, t); + if (i == 1) + m = r; + } + + /* Split the middle region into 'min_nr_regions - 2' regions */ + if (damon_split_region_evenly(c, m, c->min_nr_regions - 2)) + pr_warn("Init middle region failed to be split\n"); +} + +/* Initialize '->regions_list' of every task */ +static void kdamond_init_regions(struct damon_ctx *ctx) +{ + struct damon_task *t; + + damon_for_each_task(t, ctx) + damon_init_regions_of(ctx, t); +} + +/* + * Functions for the access checking of the regions + */ + +static void damon_mkold(struct mm_struct *mm, unsigned long addr) +{ + pte_t *pte = NULL; + pmd_t *pmd = NULL; + spinlock_t *ptl; + + if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl)) + return; + + if (pte) { + if (pte_young(*pte)) { + clear_page_idle(pte_page(*pte)); + set_page_young(pte_page(*pte)); + } + *pte = pte_mkold(*pte); + pte_unmap_unlock(pte, ptl); + return; + } + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + if (pmd_young(*pmd)) { + clear_page_idle(pmd_page(*pmd)); + set_page_young(pmd_page(*pmd)); + } + *pmd = pmd_mkold(*pmd); + spin_unlock(ptl); +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +} + +static void damon_prepare_access_check(struct damon_ctx *ctx, + struct mm_struct *mm, struct damon_region *r) +{ + r->sampling_addr = damon_rand(r->vm_start, r->vm_end); + + damon_mkold(mm, r->sampling_addr); +} + +static void kdamond_prepare_access_checks(struct damon_ctx *ctx) +{ + struct damon_task *t; + struct mm_struct *mm; + struct damon_region *r; + + damon_for_each_task(t, ctx) { + mm = damon_get_mm(t); + if (!mm) + continue; + damon_for_each_region(r, t) + damon_prepare_access_check(ctx, mm, r); + mmput(mm); + } +} + +static bool damon_young(struct mm_struct *mm, unsigned long addr, + unsigned long *page_sz) +{ + pte_t *pte = NULL; + pmd_t *pmd = NULL; + spinlock_t *ptl; + bool young = false; + + if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl)) + return false; + + *page_sz = PAGE_SIZE; + if (pte) { + young = pte_young(*pte); + pte_unmap_unlock(pte, ptl); + return young; + } + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + young = pmd_young(*pmd); + spin_unlock(ptl); + *page_sz = ((1UL) << HPAGE_PMD_SHIFT); +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + + return young; +} + +/* + * Check whether the region was accessed after the last preparation + * + * mm 'mm_struct' for the given virtual address space + * r the region to be checked + */ +static void damon_check_access(struct damon_ctx *ctx, + struct mm_struct *mm, struct damon_region *r) +{ + static struct mm_struct *last_mm; + static unsigned long last_addr; + static unsigned long last_page_sz = PAGE_SIZE; + static bool last_accessed; + + /* If the region is in the last checked page, reuse the result */ + if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == + ALIGN_DOWN(r->sampling_addr, last_page_sz))) { + if (last_accessed) + r->nr_accesses++; + return; + } + + last_accessed = damon_young(mm, r->sampling_addr, &last_page_sz); + if (last_accessed) + r->nr_accesses++; + + last_mm = mm; + last_addr = r->sampling_addr; +} + +static void kdamond_check_accesses(struct damon_ctx *ctx) +{ + struct damon_task *t; + struct mm_struct *mm; + struct damon_region *r; + + damon_for_each_task(t, ctx) { + mm = damon_get_mm(t); + if (!mm) + continue; + damon_for_each_region(r, t) + damon_check_access(ctx, mm, r); + mmput(mm); + } +} + +/* + * Functions for DAMON core logics and features + */ + +/* + * damon_check_reset_time_interval() - Check if a time interval is elapsed. + * @baseline: the time to check whether the interval has elapsed since + * @interval: the time interval (microseconds) + * + * See whether the given time interval has passed since the given baseline + * time. If so, it also updates the baseline to current time for next check. + * + * Return: true if the time interval has passed, or false otherwise. + */ +static bool damon_check_reset_time_interval(struct timespec64 *baseline, + unsigned long interval) +{ + struct timespec64 now; + + ktime_get_coarse_ts64(&now); + if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < + interval * 1000) + return false; + *baseline = now; + return true; +} + +/* + * Check whether it is time to flush the aggregated information + */ +static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) +{ + return damon_check_reset_time_interval(&ctx->last_aggregation, + ctx->aggr_interval); +} + +/* + * Reset the aggregated monitoring results + */ +static void kdamond_reset_aggregated(struct damon_ctx *c) +{ + struct damon_task *t; + struct damon_region *r; + + damon_for_each_task(t, c) { + damon_for_each_region(r, t) + r->nr_accesses = 0; + } +} + +/* + * Check whether current monitoring should be stopped + * + * The monitoring is stopped when either the user requested to stop, or all + * monitoring target tasks are dead. + * + * Returns true if need to stop current monitoring. + */ +static bool kdamond_need_stop(struct damon_ctx *ctx) +{ + struct damon_task *t; + struct task_struct *task; + bool stop; + + mutex_lock(&ctx->kdamond_lock); + stop = ctx->kdamond_stop; + mutex_unlock(&ctx->kdamond_lock); + if (stop) + return true; + + damon_for_each_task(t, ctx) { + task = damon_get_task_struct(t); + if (task) { + put_task_struct(task); + return false; + } + } + + return true; +} + +/* + * The monitoring daemon that runs as a kernel thread + */ +static int kdamond_fn(void *data) +{ + struct damon_ctx *ctx = (struct damon_ctx *)data; + struct damon_task *t; + struct damon_region *r, *next; + + pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); + kdamond_init_regions(ctx); + while (!kdamond_need_stop(ctx)) { + kdamond_prepare_access_checks(ctx); + + usleep_range(ctx->sample_interval, ctx->sample_interval + 1); + + kdamond_check_accesses(ctx); + + if (kdamond_aggregate_interval_passed(ctx)) + kdamond_reset_aggregated(ctx); + + } + damon_for_each_task(t, ctx) { + damon_for_each_region_safe(r, next, t) + damon_destroy_region(r); + } + pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); + mutex_lock(&ctx->kdamond_lock); + ctx->kdamond = NULL; + mutex_unlock(&ctx->kdamond_lock); + + do_exit(0); +} + +/* + * Functions for the DAMON programming interface + */ + +static bool damon_kdamond_running(struct damon_ctx *ctx) +{ + bool running; + + mutex_lock(&ctx->kdamond_lock); + running = ctx->kdamond != NULL; + mutex_unlock(&ctx->kdamond_lock); + + return running; +} + +/** + * damon_start() - Starts monitoring with given context. + * @ctx: monitoring context + * + * Return: 0 on success, negative error code otherwise. + */ +int damon_start(struct damon_ctx *ctx) +{ + int err = -EBUSY; + + mutex_lock(&ctx->kdamond_lock); + if (!ctx->kdamond) { + err = 0; + ctx->kdamond_stop = false; + ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond"); + if (IS_ERR(ctx->kdamond)) + err = PTR_ERR(ctx->kdamond); + } + mutex_unlock(&ctx->kdamond_lock); + + return err; +} + +/** + * damon_stop() - Stops monitoring of given context. + * @ctx: monitoring context + * + * Return: 0 on success, negative error code otherwise. + */ +int damon_stop(struct damon_ctx *ctx) +{ + mutex_lock(&ctx->kdamond_lock); + if (ctx->kdamond) { + ctx->kdamond_stop = true; + mutex_unlock(&ctx->kdamond_lock); + while (damon_kdamond_running(ctx)) + usleep_range(ctx->sample_interval, + ctx->sample_interval * 2); + return 0; + } + mutex_unlock(&ctx->kdamond_lock); + + return -EPERM; +} + +/** + * damon_set_pids() - Set monitoring target processes. + * @ctx: monitoring context + * @pids: array of target processes pids + * @nr_pids: number of entries in @pids + * + * This function should not be called while the kdamond is running. + * + * Return: 0 on success, negative error code otherwise. + */ +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids) +{ + ssize_t i; + struct damon_task *t, *next; + + damon_for_each_task_safe(t, next, ctx) + damon_destroy_task(t); + + for (i = 0; i < nr_pids; i++) { + t = damon_new_task(pids[i]); + if (!t) { + pr_err("Failed to alloc damon_task\n"); + return -ENOMEM; + } + damon_add_task(ctx, t); + } + + return 0; +} + +/** + * damon_set_attrs() - Set attributes for the monitoring. + * @ctx: monitoring context + * @sample_int: time interval between samplings + * @aggr_int: time interval between aggregations + * @min_nr_reg: minimal number of regions + * + * This function should not be called while the kdamond is running. + * Every time interval is in micro-seconds. + * + * Return: 0 on success, negative error code otherwise. + */ +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, + unsigned long aggr_int, unsigned long min_nr_reg) +{ + if (min_nr_reg < 3) { + pr_err("min_nr_regions (%lu) must be at least 3\n", + min_nr_reg); + return -EINVAL; + } + + ctx->sample_interval = sample_int; + ctx->aggr_interval = aggr_int; + ctx->min_nr_regions = min_nr_reg; + + return 0; +} + /* * Functions for the module loading/unloading */