Message ID | 20200609104221.21243-1-m.szyprowski@samsung.com (mailing list archive) |
---|---|
State | Not Applicable, archived |
Headers | show |
Series | [v3] soc: samsung: Add simple voltage coupler for Exynos5800 | expand |
09.06.2020 13:42, Marek Szyprowski пишет: > Add a simple custom voltage regulator coupler for Exynos5800 SoCs, which > require coupling between "vdd_arm" and "vdd_int" regulators. This coupler > ensures that the voltage values don't go below the bootloader-selected > operation point during the boot process until a the clients sets their > constraints. It is achieved by assuming minimal voltage value equal to > the current value if no constraints are set. This also ensures proper > voltage balancing if any of the client driver is missing. > > The balancing code comes from regulator core.c with the > > Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> > --- > This patch is yet another attempt to fix the regulator coupling on > Exynos5800/5422 SoCs. Here are links to the previous attempts and > discussions: > > https://lore.kernel.org/linux-samsung-soc/20191008101709.qVNy8eijBi0LynOteWFMnTg4GUwKG599n6OyYoX1Abs@z/ > https://lore.kernel.org/lkml/20191017102758.8104-1-m.szyprowski@samsung.com/ > https://lore.kernel.org/linux-pm/cover.1589528491.git.viresh.kumar@linaro.org/ > https://lore.kernel.org/linux-pm/20200528131130.17984-1-m.szyprowski@samsung.com/ > https://lore.kernel.org/linux-samsung-soc/57cf3a15-5d9b-7636-4c69-60742e8cfae6@samsung.com/ > https://lore.kernel.org/lkml/20200605063724.9030-1-m.szyprowski@samsung.com/ > > The problem is with "vdd_int" regulator coupled with "vdd_arm" on Odroid > XU3/XU4 boards family. "vdd_arm" is handled by CPUfreq. "vdd_int" is > handled by devfreq. CPUfreq initialized quite early during boot and it > starts changing OPPs and "vdd_arm" value. Sometimes CPU activity during > boot goes down and some low-frequency OPPs are selected, what in turn > causes lowering "vdd_arm". This happens before devfreq applies its > requirements on "vdd_int". Regulator balancing code reduces "vdd_arm" > voltage value, what in turn causes lowering "vdd_int" value to the lowest > possible value. This is much below the operation point of the wcore bus, > which still runs at the highest frequency. > > The issue was hard to notice because in the most cases the board managed > to boot properly, even when the regulator was set to lowest value allowed > by the regulator constraints. However, it caused some random issues, > which can be observed as "Unhandled prefetch abort" or low USB stability. > > Handling this case in the generic code has been rejected, so the only way > to ensure the desired behavior on Exynos5800-based SoCs is to make a > custom regulator coupler driver. I've tried hard to extract some common > code to simplify the exynos-regulator-coupler driver as much as possible, > but the difference between it and the generic code is so deep that this > approach failed, so indead I simply copied and modified the balancing > code. > > Best regards > Marek Szyprowski > --- > arch/arm/mach-exynos/Kconfig | 1 + > drivers/soc/samsung/Kconfig | 3 + > drivers/soc/samsung/Makefile | 1 + > .../soc/samsung/exynos-regulator-coupler.c | 221 ++++++++++++++++++ > 4 files changed, 226 insertions(+) > create mode 100644 drivers/soc/samsung/exynos-regulator-coupler.c > > diff --git a/arch/arm/mach-exynos/Kconfig b/arch/arm/mach-exynos/Kconfig > index 76838255b5fa..f185cd3d4c62 100644 > --- a/arch/arm/mach-exynos/Kconfig > +++ b/arch/arm/mach-exynos/Kconfig > @@ -118,6 +118,7 @@ config SOC_EXYNOS5800 > bool "Samsung EXYNOS5800" > default y > depends on SOC_EXYNOS5420 > + select EXYNOS_REGULATOR_COUPLER > > config EXYNOS_MCPM > bool > diff --git a/drivers/soc/samsung/Kconfig b/drivers/soc/samsung/Kconfig > index 19c4d3f1437b..5d7819b52eed 100644 > --- a/drivers/soc/samsung/Kconfig > +++ b/drivers/soc/samsung/Kconfig > @@ -43,4 +43,7 @@ config EXYNOS_PM_DOMAINS > bool "Exynos PM domains" if COMPILE_TEST > depends on PM_GENERIC_DOMAINS || COMPILE_TEST > > +config EXYNOS_REGULATOR_COUPLER > + bool "Exynos SoC Regulator Coupler" if COMPILE_TEST > + depends on ARCH_EXYNOS || COMPILE_TEST > endif > diff --git a/drivers/soc/samsung/Makefile b/drivers/soc/samsung/Makefile > index 31db65cb7aa3..93285faec416 100644 > --- a/drivers/soc/samsung/Makefile > +++ b/drivers/soc/samsung/Makefile > @@ -10,3 +10,4 @@ obj-$(CONFIG_EXYNOS_PMU_ARM_DRIVERS) += exynos3250-pmu.o exynos4-pmu.o \ > exynos5250-pmu.o exynos5420-pmu.o > obj-$(CONFIG_EXYNOS_PMU_ARM64_DRIVERS) += exynos-pm.o exynos5433-pmu.o > obj-$(CONFIG_EXYNOS_PM_DOMAINS) += pm_domains.o > +obj-$(CONFIG_EXYNOS_REGULATOR_COUPLER) += exynos-regulator-coupler.o > diff --git a/drivers/soc/samsung/exynos-regulator-coupler.c b/drivers/soc/samsung/exynos-regulator-coupler.c > new file mode 100644 > index 000000000000..3cafc1738eb6 > --- /dev/null > +++ b/drivers/soc/samsung/exynos-regulator-coupler.c > @@ -0,0 +1,221 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2020 Samsung Electronics Co., Ltd. > + * http://www.samsung.com/ > + * Author: Marek Szyprowski <m.szyprowski@samsung.com> > + * > + * Simplified generic volatage coupler from regulator core.c typo voltage -------------^ > + * The main difference is that it keeps current regulator voltage > + * if consumers didn't apply their contraints yet. typo conStraints ------------------------^ > + */ > + > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/of.h> > +#include <linux/regulator/coupler.h> > +#include <linux/regulator/driver.h> > +#include <linux/regulator/machine.h> > + > +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, > + int *current_uV, > + int *min_uV, int *max_uV, > + suspend_state_t state) > +{ > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; > + struct regulation_constraints *constraints = rdev->constraints; > + int desired_min_uV = 0, desired_max_uV = INT_MAX; > + int max_current_uV = 0, min_current_uV = INT_MAX; > + int highest_min_uV = 0, target_uV, possible_uV; > + int i, ret, max_spread, n_coupled = c_desc->n_coupled; > + bool done; > + > + *current_uV = -1; > + > + /* Find highest min desired voltage */ > + for (i = 0; i < n_coupled; i++) { > + int tmp_min = 0; > + int tmp_max = INT_MAX; > + > + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); > + > + ret = regulator_check_consumers(c_rdevs[i], > + &tmp_min, > + &tmp_max, state); > + if (ret < 0) > + return ret; > + > + if (tmp_min == 0) { > + ret = regulator_get_voltage_rdev(c_rdevs[i]); > + if (ret < 0) > + return ret; > + tmp_min = ret; > + } > + > + /* apply constraints */ > + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); > + if (ret < 0) > + return ret; > + > + highest_min_uV = max(highest_min_uV, tmp_min); > + > + if (i == 0) { > + desired_min_uV = tmp_min; > + desired_max_uV = tmp_max; > + } > + } > + > + max_spread = constraints->max_spread[0]; > + > + /* > + * Let target_uV be equal to the desired one if possible. > + * If not, set it to minimum voltage, allowed by other coupled > + * regulators. > + */ > + target_uV = max(desired_min_uV, highest_min_uV - max_spread); > + > + /* > + * Find min and max voltages, which currently aren't violating > + * max_spread. > + */ > + for (i = 1; i < n_coupled; i++) { > + int tmp_act; > + > + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); > + if (tmp_act < 0) > + return tmp_act; > + > + min_current_uV = min(tmp_act, min_current_uV); > + max_current_uV = max(tmp_act, max_current_uV); > + } > + > + /* > + * Correct target voltage, so as it currently isn't > + * violating max_spread > + */ > + possible_uV = max(target_uV, max_current_uV - max_spread); > + possible_uV = min(possible_uV, min_current_uV + max_spread); > + > + if (possible_uV > desired_max_uV) > + return -EINVAL; > + > + done = (possible_uV == target_uV); > + desired_min_uV = possible_uV; > + > + /* Set current_uV if wasn't done earlier in the code and if necessary */ > + if (*current_uV == -1) { > + ret = regulator_get_voltage_rdev(rdev); > + if (ret < 0) > + return ret; > + *current_uV = ret; > + } > + > + *min_uV = desired_min_uV; > + *max_uV = desired_max_uV; > + > + return done; > +} > + > +static int exynos_coupler_balance_voltage(struct regulator_coupler *coupler, > + struct regulator_dev *rdev, > + suspend_state_t state) > +{ > + struct regulator_dev **c_rdevs; > + struct regulator_dev *best_rdev; > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; > + unsigned int delta, best_delta; > + unsigned long c_rdev_done = 0; > + bool best_c_rdev_done; > + > + c_rdevs = c_desc->coupled_rdevs; > + n_coupled = c_desc->n_coupled; > + > + /* > + * Find the best possible voltage change on each loop. Leave the loop > + * if there isn't any possible change. > + */ > + do { > + best_c_rdev_done = false; > + best_delta = 0; > + best_min_uV = 0; > + best_max_uV = 0; > + best_c_rdev = 0; > + best_rdev = NULL; > + > + /* > + * Find highest difference between optimal voltage > + * and current voltage. > + */ > + for (i = 0; i < n_coupled; i++) { > + /* > + * optimal_uV is the best voltage that can be set for > + * i-th regulator at the moment without violating > + * max_spread constraint in order to balance > + * the coupled voltages. > + */ > + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; > + > + if (test_bit(i, &c_rdev_done)) > + continue; > + > + ret = regulator_get_optimal_voltage(c_rdevs[i], > + ¤t_uV, > + &optimal_uV, > + &optimal_max_uV, > + state); > + if (ret < 0) > + goto out; > + > + delta = abs(optimal_uV - current_uV); > + > + if (delta && best_delta <= delta) { > + best_c_rdev_done = ret; > + best_delta = delta; > + best_rdev = c_rdevs[i]; > + best_min_uV = optimal_uV; > + best_max_uV = optimal_max_uV; > + best_c_rdev = i; > + } > + } > + > + /* Nothing to change, return successfully */ > + if (!best_rdev) { > + ret = 0; > + goto out; > + } > + > + ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, > + best_max_uV, state); > + > + if (ret < 0) > + goto out; > + > + if (best_c_rdev_done) > + set_bit(best_c_rdev, &c_rdev_done); > + > + } while (n_coupled > 1); > + > +out: > + return ret; > +} > + > +static int exynos_coupler_attach(struct regulator_coupler *coupler, > + struct regulator_dev *rdev) > +{ > + return 0; > +} > + > +static struct regulator_coupler exynos_coupler = { > + .attach_regulator = exynos_coupler_attach, > + .balance_voltage = exynos_coupler_balance_voltage, > +}; > + > +static int __init exynos_coupler_init(void) > +{ > + if (!of_machine_is_compatible("samsung,exynos5800")) > + return 0; > + > + return regulator_coupler_register(&exynos_coupler); > +} > +arch_initcall(exynos_coupler_init); > The code looks good to me. Reviewed-by: Dmitry Osipenko <digetx@gmail.com>
On Tue, Jun 09, 2020 at 12:42:21PM +0200, Marek Szyprowski wrote: > Add a simple custom voltage regulator coupler for Exynos5800 SoCs, which > require coupling between "vdd_arm" and "vdd_int" regulators. This coupler > ensures that the voltage values don't go below the bootloader-selected > operation point during the boot process until a the clients sets their > constraints. It is achieved by assuming minimal voltage value equal to > the current value if no constraints are set. This also ensures proper > voltage balancing if any of the client driver is missing. > > The balancing code comes from regulator core.c with the You cut the sentence. > > Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> > --- > This patch is yet another attempt to fix the regulator coupling on > Exynos5800/5422 SoCs. Here are links to the previous attempts and > discussions: > > https://lore.kernel.org/linux-samsung-soc/20191008101709.qVNy8eijBi0LynOteWFMnTg4GUwKG599n6OyYoX1Abs@z/ > https://lore.kernel.org/lkml/20191017102758.8104-1-m.szyprowski@samsung.com/ > https://lore.kernel.org/linux-pm/cover.1589528491.git.viresh.kumar@linaro.org/ > https://lore.kernel.org/linux-pm/20200528131130.17984-1-m.szyprowski@samsung.com/ > https://lore.kernel.org/linux-samsung-soc/57cf3a15-5d9b-7636-4c69-60742e8cfae6@samsung.com/ > https://lore.kernel.org/lkml/20200605063724.9030-1-m.szyprowski@samsung.com/ > > The problem is with "vdd_int" regulator coupled with "vdd_arm" on Odroid > XU3/XU4 boards family. "vdd_arm" is handled by CPUfreq. "vdd_int" is > handled by devfreq. CPUfreq initialized quite early during boot and it > starts changing OPPs and "vdd_arm" value. Sometimes CPU activity during > boot goes down and some low-frequency OPPs are selected, what in turn > causes lowering "vdd_arm". This happens before devfreq applies its > requirements on "vdd_int". Regulator balancing code reduces "vdd_arm" > voltage value, what in turn causes lowering "vdd_int" value to the lowest > possible value. This is much below the operation point of the wcore bus, > which still runs at the highest frequency. > > The issue was hard to notice because in the most cases the board managed > to boot properly, even when the regulator was set to lowest value allowed > by the regulator constraints. However, it caused some random issues, > which can be observed as "Unhandled prefetch abort" or low USB stability. > > Handling this case in the generic code has been rejected, so the only way > to ensure the desired behavior on Exynos5800-based SoCs is to make a > custom regulator coupler driver. I've tried hard to extract some common > code to simplify the exynos-regulator-coupler driver as much as possible, > but the difference between it and the generic code is so deep that this > approach failed, so indead I simply copied and modified the balancing > code. > > Best regards > Marek Szyprowski > --- > arch/arm/mach-exynos/Kconfig | 1 + > drivers/soc/samsung/Kconfig | 3 + > drivers/soc/samsung/Makefile | 1 + > .../soc/samsung/exynos-regulator-coupler.c | 221 ++++++++++++++++++ > 4 files changed, 226 insertions(+) > create mode 100644 drivers/soc/samsung/exynos-regulator-coupler.c > > diff --git a/arch/arm/mach-exynos/Kconfig b/arch/arm/mach-exynos/Kconfig > index 76838255b5fa..f185cd3d4c62 100644 > --- a/arch/arm/mach-exynos/Kconfig > +++ b/arch/arm/mach-exynos/Kconfig > @@ -118,6 +118,7 @@ config SOC_EXYNOS5800 > bool "Samsung EXYNOS5800" > default y > depends on SOC_EXYNOS5420 > + select EXYNOS_REGULATOR_COUPLER > > config EXYNOS_MCPM > bool > diff --git a/drivers/soc/samsung/Kconfig b/drivers/soc/samsung/Kconfig > index 19c4d3f1437b..5d7819b52eed 100644 > --- a/drivers/soc/samsung/Kconfig > +++ b/drivers/soc/samsung/Kconfig > @@ -43,4 +43,7 @@ config EXYNOS_PM_DOMAINS > bool "Exynos PM domains" if COMPILE_TEST > depends on PM_GENERIC_DOMAINS || COMPILE_TEST > > +config EXYNOS_REGULATOR_COUPLER > + bool "Exynos SoC Regulator Coupler" if COMPILE_TEST > + depends on ARCH_EXYNOS || COMPILE_TEST > endif > diff --git a/drivers/soc/samsung/Makefile b/drivers/soc/samsung/Makefile > index 31db65cb7aa3..93285faec416 100644 > --- a/drivers/soc/samsung/Makefile > +++ b/drivers/soc/samsung/Makefile > @@ -10,3 +10,4 @@ obj-$(CONFIG_EXYNOS_PMU_ARM_DRIVERS) += exynos3250-pmu.o exynos4-pmu.o \ > exynos5250-pmu.o exynos5420-pmu.o > obj-$(CONFIG_EXYNOS_PMU_ARM64_DRIVERS) += exynos-pm.o exynos5433-pmu.o > obj-$(CONFIG_EXYNOS_PM_DOMAINS) += pm_domains.o > +obj-$(CONFIG_EXYNOS_REGULATOR_COUPLER) += exynos-regulator-coupler.o > diff --git a/drivers/soc/samsung/exynos-regulator-coupler.c b/drivers/soc/samsung/exynos-regulator-coupler.c > new file mode 100644 > index 000000000000..3cafc1738eb6 > --- /dev/null > +++ b/drivers/soc/samsung/exynos-regulator-coupler.c > @@ -0,0 +1,221 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2020 Samsung Electronics Co., Ltd. > + * http://www.samsung.com/ > + * Author: Marek Szyprowski <m.szyprowski@samsung.com> > + * > + * Simplified generic volatage coupler from regulator core.c > + * The main difference is that it keeps current regulator voltage > + * if consumers didn't apply their contraints yet. > + */ > + > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/of.h> > +#include <linux/regulator/coupler.h> > +#include <linux/regulator/driver.h> > +#include <linux/regulator/machine.h> > + > +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, > + int *current_uV, > + int *min_uV, int *max_uV, > + suspend_state_t state) > +{ > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; > + struct regulation_constraints *constraints = rdev->constraints; > + int desired_min_uV = 0, desired_max_uV = INT_MAX; > + int max_current_uV = 0, min_current_uV = INT_MAX; > + int highest_min_uV = 0, target_uV, possible_uV; > + int i, ret, max_spread, n_coupled = c_desc->n_coupled; > + bool done; > + > + *current_uV = -1; > + > + /* Find highest min desired voltage */ > + for (i = 0; i < n_coupled; i++) { > + int tmp_min = 0; > + int tmp_max = INT_MAX; > + > + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); > + > + ret = regulator_check_consumers(c_rdevs[i], > + &tmp_min, > + &tmp_max, state); > + if (ret < 0) > + return ret; > + > + if (tmp_min == 0) { > + ret = regulator_get_voltage_rdev(c_rdevs[i]); > + if (ret < 0) > + return ret; > + tmp_min = ret; > + } > + > + /* apply constraints */ > + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); > + if (ret < 0) > + return ret; > + > + highest_min_uV = max(highest_min_uV, tmp_min); > + > + if (i == 0) { > + desired_min_uV = tmp_min; > + desired_max_uV = tmp_max; > + } > + } > + > + max_spread = constraints->max_spread[0]; > + > + /* > + * Let target_uV be equal to the desired one if possible. > + * If not, set it to minimum voltage, allowed by other coupled > + * regulators. > + */ > + target_uV = max(desired_min_uV, highest_min_uV - max_spread); > + > + /* > + * Find min and max voltages, which currently aren't violating > + * max_spread. > + */ > + for (i = 1; i < n_coupled; i++) { > + int tmp_act; > + > + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); > + if (tmp_act < 0) > + return tmp_act; > + > + min_current_uV = min(tmp_act, min_current_uV); > + max_current_uV = max(tmp_act, max_current_uV); > + } > + > + /* > + * Correct target voltage, so as it currently isn't > + * violating max_spread > + */ > + possible_uV = max(target_uV, max_current_uV - max_spread); > + possible_uV = min(possible_uV, min_current_uV + max_spread); > + > + if (possible_uV > desired_max_uV) > + return -EINVAL; > + > + done = (possible_uV == target_uV); > + desired_min_uV = possible_uV; > + > + /* Set current_uV if wasn't done earlier in the code and if necessary */ > + if (*current_uV == -1) { > + ret = regulator_get_voltage_rdev(rdev); > + if (ret < 0) > + return ret; > + *current_uV = ret; > + } > + > + *min_uV = desired_min_uV; > + *max_uV = desired_max_uV; > + > + return done; > +} > + > +static int exynos_coupler_balance_voltage(struct regulator_coupler *coupler, > + struct regulator_dev *rdev, > + suspend_state_t state) > +{ > + struct regulator_dev **c_rdevs; > + struct regulator_dev *best_rdev; > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; > + unsigned int delta, best_delta; > + unsigned long c_rdev_done = 0; > + bool best_c_rdev_done; > + > + c_rdevs = c_desc->coupled_rdevs; > + n_coupled = c_desc->n_coupled; > + > + /* > + * Find the best possible voltage change on each loop. Leave the loop > + * if there isn't any possible change. > + */ > + do { > + best_c_rdev_done = false; > + best_delta = 0; > + best_min_uV = 0; > + best_max_uV = 0; > + best_c_rdev = 0; > + best_rdev = NULL; > + > + /* > + * Find highest difference between optimal voltage > + * and current voltage. > + */ > + for (i = 0; i < n_coupled; i++) { > + /* > + * optimal_uV is the best voltage that can be set for > + * i-th regulator at the moment without violating > + * max_spread constraint in order to balance > + * the coupled voltages. > + */ > + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; > + > + if (test_bit(i, &c_rdev_done)) Add a sanity check at beginning that you have enough of bits for this... or use bitmap. Best regards, Krzysztof
Hi Krzysztof, On 10.06.2020 09:08, Krzysztof Kozlowski wrote: > On Tue, Jun 09, 2020 at 12:42:21PM +0200, Marek Szyprowski wrote: >> Add a simple custom voltage regulator coupler for Exynos5800 SoCs, which >> require coupling between "vdd_arm" and "vdd_int" regulators. This coupler >> ensures that the voltage values don't go below the bootloader-selected >> operation point during the boot process until a the clients sets their >> constraints. It is achieved by assuming minimal voltage value equal to >> the current value if no constraints are set. This also ensures proper >> voltage balancing if any of the client driver is missing. >> >> The balancing code comes from regulator core.c with the > You cut the sentence. Right, looks like a copy/paste issue. I will fix this in v4. >> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> >> --- >> This patch is yet another attempt to fix the regulator coupling on >> Exynos5800/5422 SoCs. Here are links to the previous attempts and >> discussions: >> >> https://lore.kernel.org/linux-samsung-soc/20191008101709.qVNy8eijBi0LynOteWFMnTg4GUwKG599n6OyYoX1Abs@z/ >> https://lore.kernel.org/lkml/20191017102758.8104-1-m.szyprowski@samsung.com/ >> https://lore.kernel.org/linux-pm/cover.1589528491.git.viresh.kumar@linaro.org/ >> https://lore.kernel.org/linux-pm/20200528131130.17984-1-m.szyprowski@samsung.com/ >> https://lore.kernel.org/linux-samsung-soc/57cf3a15-5d9b-7636-4c69-60742e8cfae6@samsung.com/ >> https://lore.kernel.org/lkml/20200605063724.9030-1-m.szyprowski@samsung.com/ >> >> The problem is with "vdd_int" regulator coupled with "vdd_arm" on Odroid >> XU3/XU4 boards family. "vdd_arm" is handled by CPUfreq. "vdd_int" is >> handled by devfreq. CPUfreq initialized quite early during boot and it >> starts changing OPPs and "vdd_arm" value. Sometimes CPU activity during >> boot goes down and some low-frequency OPPs are selected, what in turn >> causes lowering "vdd_arm". This happens before devfreq applies its >> requirements on "vdd_int". Regulator balancing code reduces "vdd_arm" >> voltage value, what in turn causes lowering "vdd_int" value to the lowest >> possible value. This is much below the operation point of the wcore bus, >> which still runs at the highest frequency. >> >> The issue was hard to notice because in the most cases the board managed >> to boot properly, even when the regulator was set to lowest value allowed >> by the regulator constraints. However, it caused some random issues, >> which can be observed as "Unhandled prefetch abort" or low USB stability. >> >> Handling this case in the generic code has been rejected, so the only way >> to ensure the desired behavior on Exynos5800-based SoCs is to make a >> custom regulator coupler driver. I've tried hard to extract some common >> code to simplify the exynos-regulator-coupler driver as much as possible, >> but the difference between it and the generic code is so deep that this >> approach failed, so indead I simply copied and modified the balancing >> code. >> >> Best regards >> Marek Szyprowski >> --- >> arch/arm/mach-exynos/Kconfig | 1 + >> drivers/soc/samsung/Kconfig | 3 + >> drivers/soc/samsung/Makefile | 1 + >> .../soc/samsung/exynos-regulator-coupler.c | 221 ++++++++++++++++++ >> 4 files changed, 226 insertions(+) >> create mode 100644 drivers/soc/samsung/exynos-regulator-coupler.c >> >> diff --git a/arch/arm/mach-exynos/Kconfig b/arch/arm/mach-exynos/Kconfig >> index 76838255b5fa..f185cd3d4c62 100644 >> --- a/arch/arm/mach-exynos/Kconfig >> +++ b/arch/arm/mach-exynos/Kconfig >> @@ -118,6 +118,7 @@ config SOC_EXYNOS5800 >> bool "Samsung EXYNOS5800" >> default y >> depends on SOC_EXYNOS5420 >> + select EXYNOS_REGULATOR_COUPLER >> >> config EXYNOS_MCPM >> bool >> diff --git a/drivers/soc/samsung/Kconfig b/drivers/soc/samsung/Kconfig >> index 19c4d3f1437b..5d7819b52eed 100644 >> --- a/drivers/soc/samsung/Kconfig >> +++ b/drivers/soc/samsung/Kconfig >> @@ -43,4 +43,7 @@ config EXYNOS_PM_DOMAINS >> bool "Exynos PM domains" if COMPILE_TEST >> depends on PM_GENERIC_DOMAINS || COMPILE_TEST >> >> +config EXYNOS_REGULATOR_COUPLER >> + bool "Exynos SoC Regulator Coupler" if COMPILE_TEST >> + depends on ARCH_EXYNOS || COMPILE_TEST >> endif >> diff --git a/drivers/soc/samsung/Makefile b/drivers/soc/samsung/Makefile >> index 31db65cb7aa3..93285faec416 100644 >> --- a/drivers/soc/samsung/Makefile >> +++ b/drivers/soc/samsung/Makefile >> @@ -10,3 +10,4 @@ obj-$(CONFIG_EXYNOS_PMU_ARM_DRIVERS) += exynos3250-pmu.o exynos4-pmu.o \ >> exynos5250-pmu.o exynos5420-pmu.o >> obj-$(CONFIG_EXYNOS_PMU_ARM64_DRIVERS) += exynos-pm.o exynos5433-pmu.o >> obj-$(CONFIG_EXYNOS_PM_DOMAINS) += pm_domains.o >> +obj-$(CONFIG_EXYNOS_REGULATOR_COUPLER) += exynos-regulator-coupler.o >> diff --git a/drivers/soc/samsung/exynos-regulator-coupler.c b/drivers/soc/samsung/exynos-regulator-coupler.c >> new file mode 100644 >> index 000000000000..3cafc1738eb6 >> --- /dev/null >> +++ b/drivers/soc/samsung/exynos-regulator-coupler.c >> @@ -0,0 +1,221 @@ >> +// SPDX-License-Identifier: GPL-2.0 >> +/* >> + * Copyright (c) 2020 Samsung Electronics Co., Ltd. >> + * http://www.samsung.com/ >> + * Author: Marek Szyprowski <m.szyprowski@samsung.com> >> + * >> + * Simplified generic volatage coupler from regulator core.c >> + * The main difference is that it keeps current regulator voltage >> + * if consumers didn't apply their contraints yet. >> + */ >> + >> +#include <linux/init.h> >> +#include <linux/kernel.h> >> +#include <linux/of.h> >> +#include <linux/regulator/coupler.h> >> +#include <linux/regulator/driver.h> >> +#include <linux/regulator/machine.h> >> + >> +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, >> + int *current_uV, >> + int *min_uV, int *max_uV, >> + suspend_state_t state) >> +{ >> + struct coupling_desc *c_desc = &rdev->coupling_desc; >> + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; >> + struct regulation_constraints *constraints = rdev->constraints; >> + int desired_min_uV = 0, desired_max_uV = INT_MAX; >> + int max_current_uV = 0, min_current_uV = INT_MAX; >> + int highest_min_uV = 0, target_uV, possible_uV; >> + int i, ret, max_spread, n_coupled = c_desc->n_coupled; >> + bool done; >> + >> + *current_uV = -1; >> + >> + /* Find highest min desired voltage */ >> + for (i = 0; i < n_coupled; i++) { >> + int tmp_min = 0; >> + int tmp_max = INT_MAX; >> + >> + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); >> + >> + ret = regulator_check_consumers(c_rdevs[i], >> + &tmp_min, >> + &tmp_max, state); >> + if (ret < 0) >> + return ret; >> + >> + if (tmp_min == 0) { >> + ret = regulator_get_voltage_rdev(c_rdevs[i]); >> + if (ret < 0) >> + return ret; >> + tmp_min = ret; >> + } >> + >> + /* apply constraints */ >> + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); >> + if (ret < 0) >> + return ret; >> + >> + highest_min_uV = max(highest_min_uV, tmp_min); >> + >> + if (i == 0) { >> + desired_min_uV = tmp_min; >> + desired_max_uV = tmp_max; >> + } >> + } >> + >> + max_spread = constraints->max_spread[0]; >> + >> + /* >> + * Let target_uV be equal to the desired one if possible. >> + * If not, set it to minimum voltage, allowed by other coupled >> + * regulators. >> + */ >> + target_uV = max(desired_min_uV, highest_min_uV - max_spread); >> + >> + /* >> + * Find min and max voltages, which currently aren't violating >> + * max_spread. >> + */ >> + for (i = 1; i < n_coupled; i++) { >> + int tmp_act; >> + >> + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); >> + if (tmp_act < 0) >> + return tmp_act; >> + >> + min_current_uV = min(tmp_act, min_current_uV); >> + max_current_uV = max(tmp_act, max_current_uV); >> + } >> + >> + /* >> + * Correct target voltage, so as it currently isn't >> + * violating max_spread >> + */ >> + possible_uV = max(target_uV, max_current_uV - max_spread); >> + possible_uV = min(possible_uV, min_current_uV + max_spread); >> + >> + if (possible_uV > desired_max_uV) >> + return -EINVAL; >> + >> + done = (possible_uV == target_uV); >> + desired_min_uV = possible_uV; >> + >> + /* Set current_uV if wasn't done earlier in the code and if necessary */ >> + if (*current_uV == -1) { >> + ret = regulator_get_voltage_rdev(rdev); >> + if (ret < 0) >> + return ret; >> + *current_uV = ret; >> + } >> + >> + *min_uV = desired_min_uV; >> + *max_uV = desired_max_uV; >> + >> + return done; >> +} >> + >> +static int exynos_coupler_balance_voltage(struct regulator_coupler *coupler, >> + struct regulator_dev *rdev, >> + suspend_state_t state) >> +{ >> + struct regulator_dev **c_rdevs; >> + struct regulator_dev *best_rdev; >> + struct coupling_desc *c_desc = &rdev->coupling_desc; >> + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; >> + unsigned int delta, best_delta; >> + unsigned long c_rdev_done = 0; >> + bool best_c_rdev_done; >> + >> + c_rdevs = c_desc->coupled_rdevs; >> + n_coupled = c_desc->n_coupled; >> + >> + /* >> + * Find the best possible voltage change on each loop. Leave the loop >> + * if there isn't any possible change. >> + */ >> + do { >> + best_c_rdev_done = false; >> + best_delta = 0; >> + best_min_uV = 0; >> + best_max_uV = 0; >> + best_c_rdev = 0; >> + best_rdev = NULL; >> + >> + /* >> + * Find highest difference between optimal voltage >> + * and current voltage. >> + */ >> + for (i = 0; i < n_coupled; i++) { >> + /* >> + * optimal_uV is the best voltage that can be set for >> + * i-th regulator at the moment without violating >> + * max_spread constraint in order to balance >> + * the coupled voltages. >> + */ >> + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; >> + >> + if (test_bit(i, &c_rdev_done)) > Add a sanity check at beginning that you have enough of bits for this... > or use bitmap. Frankly, even regulator core uses this simple approach. I doubt that there will be more than 32 coupled regulators ever... Best regards
diff --git a/arch/arm/mach-exynos/Kconfig b/arch/arm/mach-exynos/Kconfig index 76838255b5fa..f185cd3d4c62 100644 --- a/arch/arm/mach-exynos/Kconfig +++ b/arch/arm/mach-exynos/Kconfig @@ -118,6 +118,7 @@ config SOC_EXYNOS5800 bool "Samsung EXYNOS5800" default y depends on SOC_EXYNOS5420 + select EXYNOS_REGULATOR_COUPLER config EXYNOS_MCPM bool diff --git a/drivers/soc/samsung/Kconfig b/drivers/soc/samsung/Kconfig index 19c4d3f1437b..5d7819b52eed 100644 --- a/drivers/soc/samsung/Kconfig +++ b/drivers/soc/samsung/Kconfig @@ -43,4 +43,7 @@ config EXYNOS_PM_DOMAINS bool "Exynos PM domains" if COMPILE_TEST depends on PM_GENERIC_DOMAINS || COMPILE_TEST +config EXYNOS_REGULATOR_COUPLER + bool "Exynos SoC Regulator Coupler" if COMPILE_TEST + depends on ARCH_EXYNOS || COMPILE_TEST endif diff --git a/drivers/soc/samsung/Makefile b/drivers/soc/samsung/Makefile index 31db65cb7aa3..93285faec416 100644 --- a/drivers/soc/samsung/Makefile +++ b/drivers/soc/samsung/Makefile @@ -10,3 +10,4 @@ obj-$(CONFIG_EXYNOS_PMU_ARM_DRIVERS) += exynos3250-pmu.o exynos4-pmu.o \ exynos5250-pmu.o exynos5420-pmu.o obj-$(CONFIG_EXYNOS_PMU_ARM64_DRIVERS) += exynos-pm.o exynos5433-pmu.o obj-$(CONFIG_EXYNOS_PM_DOMAINS) += pm_domains.o +obj-$(CONFIG_EXYNOS_REGULATOR_COUPLER) += exynos-regulator-coupler.o diff --git a/drivers/soc/samsung/exynos-regulator-coupler.c b/drivers/soc/samsung/exynos-regulator-coupler.c new file mode 100644 index 000000000000..3cafc1738eb6 --- /dev/null +++ b/drivers/soc/samsung/exynos-regulator-coupler.c @@ -0,0 +1,221 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2020 Samsung Electronics Co., Ltd. + * http://www.samsung.com/ + * Author: Marek Szyprowski <m.szyprowski@samsung.com> + * + * Simplified generic volatage coupler from regulator core.c + * The main difference is that it keeps current regulator voltage + * if consumers didn't apply their contraints yet. + */ + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/of.h> +#include <linux/regulator/coupler.h> +#include <linux/regulator/driver.h> +#include <linux/regulator/machine.h> + +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, + int *current_uV, + int *min_uV, int *max_uV, + suspend_state_t state) +{ + struct coupling_desc *c_desc = &rdev->coupling_desc; + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; + struct regulation_constraints *constraints = rdev->constraints; + int desired_min_uV = 0, desired_max_uV = INT_MAX; + int max_current_uV = 0, min_current_uV = INT_MAX; + int highest_min_uV = 0, target_uV, possible_uV; + int i, ret, max_spread, n_coupled = c_desc->n_coupled; + bool done; + + *current_uV = -1; + + /* Find highest min desired voltage */ + for (i = 0; i < n_coupled; i++) { + int tmp_min = 0; + int tmp_max = INT_MAX; + + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); + + ret = regulator_check_consumers(c_rdevs[i], + &tmp_min, + &tmp_max, state); + if (ret < 0) + return ret; + + if (tmp_min == 0) { + ret = regulator_get_voltage_rdev(c_rdevs[i]); + if (ret < 0) + return ret; + tmp_min = ret; + } + + /* apply constraints */ + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); + if (ret < 0) + return ret; + + highest_min_uV = max(highest_min_uV, tmp_min); + + if (i == 0) { + desired_min_uV = tmp_min; + desired_max_uV = tmp_max; + } + } + + max_spread = constraints->max_spread[0]; + + /* + * Let target_uV be equal to the desired one if possible. + * If not, set it to minimum voltage, allowed by other coupled + * regulators. + */ + target_uV = max(desired_min_uV, highest_min_uV - max_spread); + + /* + * Find min and max voltages, which currently aren't violating + * max_spread. + */ + for (i = 1; i < n_coupled; i++) { + int tmp_act; + + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); + if (tmp_act < 0) + return tmp_act; + + min_current_uV = min(tmp_act, min_current_uV); + max_current_uV = max(tmp_act, max_current_uV); + } + + /* + * Correct target voltage, so as it currently isn't + * violating max_spread + */ + possible_uV = max(target_uV, max_current_uV - max_spread); + possible_uV = min(possible_uV, min_current_uV + max_spread); + + if (possible_uV > desired_max_uV) + return -EINVAL; + + done = (possible_uV == target_uV); + desired_min_uV = possible_uV; + + /* Set current_uV if wasn't done earlier in the code and if necessary */ + if (*current_uV == -1) { + ret = regulator_get_voltage_rdev(rdev); + if (ret < 0) + return ret; + *current_uV = ret; + } + + *min_uV = desired_min_uV; + *max_uV = desired_max_uV; + + return done; +} + +static int exynos_coupler_balance_voltage(struct regulator_coupler *coupler, + struct regulator_dev *rdev, + suspend_state_t state) +{ + struct regulator_dev **c_rdevs; + struct regulator_dev *best_rdev; + struct coupling_desc *c_desc = &rdev->coupling_desc; + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; + unsigned int delta, best_delta; + unsigned long c_rdev_done = 0; + bool best_c_rdev_done; + + c_rdevs = c_desc->coupled_rdevs; + n_coupled = c_desc->n_coupled; + + /* + * Find the best possible voltage change on each loop. Leave the loop + * if there isn't any possible change. + */ + do { + best_c_rdev_done = false; + best_delta = 0; + best_min_uV = 0; + best_max_uV = 0; + best_c_rdev = 0; + best_rdev = NULL; + + /* + * Find highest difference between optimal voltage + * and current voltage. + */ + for (i = 0; i < n_coupled; i++) { + /* + * optimal_uV is the best voltage that can be set for + * i-th regulator at the moment without violating + * max_spread constraint in order to balance + * the coupled voltages. + */ + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; + + if (test_bit(i, &c_rdev_done)) + continue; + + ret = regulator_get_optimal_voltage(c_rdevs[i], + ¤t_uV, + &optimal_uV, + &optimal_max_uV, + state); + if (ret < 0) + goto out; + + delta = abs(optimal_uV - current_uV); + + if (delta && best_delta <= delta) { + best_c_rdev_done = ret; + best_delta = delta; + best_rdev = c_rdevs[i]; + best_min_uV = optimal_uV; + best_max_uV = optimal_max_uV; + best_c_rdev = i; + } + } + + /* Nothing to change, return successfully */ + if (!best_rdev) { + ret = 0; + goto out; + } + + ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, + best_max_uV, state); + + if (ret < 0) + goto out; + + if (best_c_rdev_done) + set_bit(best_c_rdev, &c_rdev_done); + + } while (n_coupled > 1); + +out: + return ret; +} + +static int exynos_coupler_attach(struct regulator_coupler *coupler, + struct regulator_dev *rdev) +{ + return 0; +} + +static struct regulator_coupler exynos_coupler = { + .attach_regulator = exynos_coupler_attach, + .balance_voltage = exynos_coupler_balance_voltage, +}; + +static int __init exynos_coupler_init(void) +{ + if (!of_machine_is_compatible("samsung,exynos5800")) + return 0; + + return regulator_coupler_register(&exynos_coupler); +} +arch_initcall(exynos_coupler_init);
Add a simple custom voltage regulator coupler for Exynos5800 SoCs, which require coupling between "vdd_arm" and "vdd_int" regulators. This coupler ensures that the voltage values don't go below the bootloader-selected operation point during the boot process until a the clients sets their constraints. It is achieved by assuming minimal voltage value equal to the current value if no constraints are set. This also ensures proper voltage balancing if any of the client driver is missing. The balancing code comes from regulator core.c with the Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> --- This patch is yet another attempt to fix the regulator coupling on Exynos5800/5422 SoCs. Here are links to the previous attempts and discussions: https://lore.kernel.org/linux-samsung-soc/20191008101709.qVNy8eijBi0LynOteWFMnTg4GUwKG599n6OyYoX1Abs@z/ https://lore.kernel.org/lkml/20191017102758.8104-1-m.szyprowski@samsung.com/ https://lore.kernel.org/linux-pm/cover.1589528491.git.viresh.kumar@linaro.org/ https://lore.kernel.org/linux-pm/20200528131130.17984-1-m.szyprowski@samsung.com/ https://lore.kernel.org/linux-samsung-soc/57cf3a15-5d9b-7636-4c69-60742e8cfae6@samsung.com/ https://lore.kernel.org/lkml/20200605063724.9030-1-m.szyprowski@samsung.com/ The problem is with "vdd_int" regulator coupled with "vdd_arm" on Odroid XU3/XU4 boards family. "vdd_arm" is handled by CPUfreq. "vdd_int" is handled by devfreq. CPUfreq initialized quite early during boot and it starts changing OPPs and "vdd_arm" value. Sometimes CPU activity during boot goes down and some low-frequency OPPs are selected, what in turn causes lowering "vdd_arm". This happens before devfreq applies its requirements on "vdd_int". Regulator balancing code reduces "vdd_arm" voltage value, what in turn causes lowering "vdd_int" value to the lowest possible value. This is much below the operation point of the wcore bus, which still runs at the highest frequency. The issue was hard to notice because in the most cases the board managed to boot properly, even when the regulator was set to lowest value allowed by the regulator constraints. However, it caused some random issues, which can be observed as "Unhandled prefetch abort" or low USB stability. Handling this case in the generic code has been rejected, so the only way to ensure the desired behavior on Exynos5800-based SoCs is to make a custom regulator coupler driver. I've tried hard to extract some common code to simplify the exynos-regulator-coupler driver as much as possible, but the difference between it and the generic code is so deep that this approach failed, so indead I simply copied and modified the balancing code. Best regards Marek Szyprowski --- arch/arm/mach-exynos/Kconfig | 1 + drivers/soc/samsung/Kconfig | 3 + drivers/soc/samsung/Makefile | 1 + .../soc/samsung/exynos-regulator-coupler.c | 221 ++++++++++++++++++ 4 files changed, 226 insertions(+) create mode 100644 drivers/soc/samsung/exynos-regulator-coupler.c