diff mbox series

[bpf-next,V12,4/7] bpf: add BPF-helper for MTU checking

Message ID 161098887018.108067.13643446976934084937.stgit@firesoul (mailing list archive)
State Superseded
Delegated to: BPF
Headers show
Series bpf: New approach for BPF MTU handling | expand

Checks

Context Check Description
netdev/cover_letter success Link
netdev/fixes_present success Link
netdev/patch_count success Link
netdev/tree_selection success Clearly marked for bpf-next
netdev/subject_prefix success Link
netdev/cc_maintainers warning 10 maintainers not CCed: yhs@fb.com hawk@kernel.org ast@kernel.org songliubraving@fb.com kpsingh@kernel.org andrii@kernel.org daniel@iogearbox.net davem@davemloft.net kafai@fb.com quentin@isovalent.com
netdev/source_inline success Was 0 now: 0
netdev/verify_signedoff success Link
netdev/module_param success Was 0 now: 0
netdev/build_32bit success Errors and warnings before: 12220 this patch: 12220
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/verify_fixes success Link
netdev/checkpatch warning WARNING: line length of 84 exceeds 80 columns
netdev/build_allmodconfig_warn success Errors and warnings before: 12877 this patch: 12877
netdev/header_inline success Link
netdev/stable success Stable not CCed

Commit Message

Jesper Dangaard Brouer Jan. 18, 2021, 4:54 p.m. UTC
This BPF-helper bpf_check_mtu() works for both XDP and TC-BPF programs.

The SKB object is complex and the skb->len value (accessible from
BPF-prog) also include the length of any extra GRO/GSO segments, but
without taking into account that these GRO/GSO segments get added
transport (L4) and network (L3) headers before being transmitted. Thus,
this BPF-helper is created such that the BPF-programmer don't need to
handle these details in the BPF-prog.

The API is designed to help the BPF-programmer, that want to do packet
context size changes, which involves other helpers. These other helpers
usually does a delta size adjustment. This helper also support a delta
size (len_diff), which allow BPF-programmer to reuse arguments needed by
these other helpers, and perform the MTU check prior to doing any actual
size adjustment of the packet context.

It is on purpose, that we allow the len adjustment to become a negative
result, that will pass the MTU check. This might seem weird, but it's not
this helpers responsibility to "catch" wrong len_diff adjustments. Other
helpers will take care of these checks, if BPF-programmer chooses to do
actual size adjustment.

V12:
 - Simplify segment check that calls skb_gso_validate_network_len.
 - Helpers should return long

V9:
- Use dev->hard_header_len (instead of ETH_HLEN)
- Annotate with unlikely req from Daniel
- Fix logic error using skb_gso_validate_network_len from Daniel

V6:
- Took John's advice and dropped BPF_MTU_CHK_RELAX
- Returned MTU is kept at L3-level (like fib_lookup)

V4: Lot of changes
 - ifindex 0 now use current netdev for MTU lookup
 - rename helper from bpf_mtu_check to bpf_check_mtu
 - fix bug for GSO pkt length (as skb->len is total len)
 - remove __bpf_len_adj_positive, simply allow negative len adj

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
---
 include/uapi/linux/bpf.h       |   67 ++++++++++++++++++++++++
 net/core/filter.c              |  111 ++++++++++++++++++++++++++++++++++++++++
 tools/include/uapi/linux/bpf.h |   67 ++++++++++++++++++++++++
 3 files changed, 245 insertions(+)

Comments

Daniel Borkmann Jan. 23, 2021, 1:35 a.m. UTC | #1
On 1/18/21 5:54 PM, Jesper Dangaard Brouer wrote:
> This BPF-helper bpf_check_mtu() works for both XDP and TC-BPF programs.
> 
> The SKB object is complex and the skb->len value (accessible from
> BPF-prog) also include the length of any extra GRO/GSO segments, but
> without taking into account that these GRO/GSO segments get added
> transport (L4) and network (L3) headers before being transmitted. Thus,
> this BPF-helper is created such that the BPF-programmer don't need to
> handle these details in the BPF-prog.
> 
> The API is designed to help the BPF-programmer, that want to do packet
> context size changes, which involves other helpers. These other helpers
> usually does a delta size adjustment. This helper also support a delta
> size (len_diff), which allow BPF-programmer to reuse arguments needed by
> these other helpers, and perform the MTU check prior to doing any actual
> size adjustment of the packet context.
> 
> It is on purpose, that we allow the len adjustment to become a negative
> result, that will pass the MTU check. This might seem weird, but it's not
> this helpers responsibility to "catch" wrong len_diff adjustments. Other
> helpers will take care of these checks, if BPF-programmer chooses to do
> actual size adjustment.
> 
> V12:
>   - Simplify segment check that calls skb_gso_validate_network_len.
>   - Helpers should return long
> 
> V9:
> - Use dev->hard_header_len (instead of ETH_HLEN)
> - Annotate with unlikely req from Daniel
> - Fix logic error using skb_gso_validate_network_len from Daniel
> 
> V6:
> - Took John's advice and dropped BPF_MTU_CHK_RELAX
> - Returned MTU is kept at L3-level (like fib_lookup)
> 
> V4: Lot of changes
>   - ifindex 0 now use current netdev for MTU lookup
>   - rename helper from bpf_mtu_check to bpf_check_mtu
>   - fix bug for GSO pkt length (as skb->len is total len)
>   - remove __bpf_len_adj_positive, simply allow negative len adj
> 
> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
> ---
>   include/uapi/linux/bpf.h       |   67 ++++++++++++++++++++++++
>   net/core/filter.c              |  111 ++++++++++++++++++++++++++++++++++++++++
>   tools/include/uapi/linux/bpf.h |   67 ++++++++++++++++++++++++
>   3 files changed, 245 insertions(+)
> 
> diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h
> index 05bfc8c843dc..f17381a337ec 100644
> --- a/include/uapi/linux/bpf.h
> +++ b/include/uapi/linux/bpf.h
> @@ -3839,6 +3839,61 @@ union bpf_attr {
>    *	Return
>    *		A pointer to a struct socket on success or NULL if the file is
>    *		not a socket.
> + *
> + * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
> + *	Description
> + *		Check ctx packet size against MTU of net device (based on
> + *		*ifindex*).  This helper will likely be used in combination with
> + *		helpers that adjust/change the packet size.  The argument
> + *		*len_diff* can be used for querying with a planned size
> + *		change. This allows to check MTU prior to changing packet ctx.
> + *
> + *		Specifying *ifindex* zero means the MTU check is performed
> + *		against the current net device.  This is practical if this isn't
> + *		used prior to redirect.
> + *
> + *		The Linux kernel route table can configure MTUs on a more
> + *		specific per route level, which is not provided by this helper.
> + *		For route level MTU checks use the **bpf_fib_lookup**\ ()
> + *		helper.
> + *
> + *		*ctx* is either **struct xdp_md** for XDP programs or
> + *		**struct sk_buff** for tc cls_act programs.
> + *
> + *		The *flags* argument can be a combination of one or more of the
> + *		following values:
> + *
> + *		**BPF_MTU_CHK_SEGS**
> + *			This flag will only works for *ctx* **struct sk_buff**.
> + *			If packet context contains extra packet segment buffers
> + *			(often knows as GSO skb), then MTU check is harder to
> + *			check at this point, because in transmit path it is
> + *			possible for the skb packet to get re-segmented
> + *			(depending on net device features).  This could still be
> + *			a MTU violation, so this flag enables performing MTU
> + *			check against segments, with a different violation
> + *			return code to tell it apart. Check cannot use len_diff.
> + *
> + *		On return *mtu_len* pointer contains the MTU value of the net
> + *		device.  Remember the net device configured MTU is the L3 size,
> + *		which is returned here and XDP and TX length operate at L2.
> + *		Helper take this into account for you, but remember when using
> + *		MTU value in your BPF-code.  On input *mtu_len* must be a valid
> + *		pointer and be initialized (to zero), else verifier will reject
> + *		BPF program.
> + *
> + *	Return
> + *		* 0 on success, and populate MTU value in *mtu_len* pointer.
> + *
> + *		* < 0 if any input argument is invalid (*mtu_len* not updated)
> + *
> + *		MTU violations return positive values, but also populate MTU
> + *		value in *mtu_len* pointer, as this can be needed for
> + *		implementing PMTU handing:
> + *
> + *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
> + *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
> + *
>    */
[...]
> +BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
> +	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
> +{
> +	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
> +	struct net_device *dev = skb->dev;
> +	int skb_len, dev_len;
> +	int mtu;
> +
> +	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
> +		return -EINVAL;
> +
> +	dev = __dev_via_ifindex(dev, ifindex);
> +	if (unlikely(!dev))
> +		return -ENODEV;
> +
> +	mtu = READ_ONCE(dev->mtu);
> +
> +	dev_len = mtu + dev->hard_header_len;
> +	skb_len = skb->len + len_diff; /* minus result pass check */
> +	if (skb_len <= dev_len) {
> +		ret = BPF_MTU_CHK_RET_SUCCESS;
> +		goto out;
> +	}
> +	/* At this point, skb->len exceed MTU, but as it include length of all
> +	 * segments, it can still be below MTU.  The SKB can possibly get
> +	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
> +	 * must choose if segs are to be MTU checked.
> +	 */
> +	if (skb_is_gso(skb)) {
> +		ret = BPF_MTU_CHK_RET_SUCCESS;
> +
> +		if (flags & BPF_MTU_CHK_SEGS &&
> +		    !skb_gso_validate_network_len(skb, mtu))
> +			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;

I think that looks okay overall now. One thing that will easily slip through
is that in the helper description you mentioned 'Check cannot use len_diff.'
for BPF_MTU_CHK_SEGS flag. So right now for non-zero len_diff the user
will still get BPF_MTU_CHK_RET_SUCCESS if the current length check via
skb_gso_validate_network_len(skb, mtu) passes. If it cannot be checked,
maybe enforce len_diff == 0 for gso skbs on BPF_MTU_CHK_SEGS?

> +	}
> +out:
> +	/* BPF verifier guarantees valid pointer */
> +	*mtu_len = mtu;
> +
> +	return ret;
> +}
Jesper Dangaard Brouer Jan. 25, 2021, 8:41 a.m. UTC | #2
On Sat, 23 Jan 2021 02:35:41 +0100
Daniel Borkmann <daniel@iogearbox.net> wrote:

> > + *		The *flags* argument can be a combination of one or more of the
> > + *		following values:
> > + *
> > + *		**BPF_MTU_CHK_SEGS**
> > + *			This flag will only works for *ctx* **struct sk_buff**.
> > + *			If packet context contains extra packet segment buffers
> > + *			(often knows as GSO skb), then MTU check is harder to
> > + *			check at this point, because in transmit path it is
> > + *			possible for the skb packet to get re-segmented
> > + *			(depending on net device features).  This could still be
> > + *			a MTU violation, so this flag enables performing MTU
> > + *			check against segments, with a different violation
> > + *			return code to tell it apart. Check cannot use len_diff.
> > + *
> > + *		On return *mtu_len* pointer contains the MTU value of the net
> > + *		device.  Remember the net device configured MTU is the L3 size,
> > + *		which is returned here and XDP and TX length operate at L2.
> > + *		Helper take this into account for you, but remember when using
> > + *		MTU value in your BPF-code.  On input *mtu_len* must be a valid
> > + *		pointer and be initialized (to zero), else verifier will reject
> > + *		BPF program.
> > + *
> > + *	Return
> > + *		* 0 on success, and populate MTU value in *mtu_len* pointer.
> > + *
> > + *		* < 0 if any input argument is invalid (*mtu_len* not updated)
> > + *
> > + *		MTU violations return positive values, but also populate MTU
> > + *		value in *mtu_len* pointer, as this can be needed for
> > + *		implementing PMTU handing:
> > + *
> > + *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
> > + *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
> > + *
> >    */  
> [...]
> > +BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
> > +	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
> > +{
> > +	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
> > +	struct net_device *dev = skb->dev;
> > +	int skb_len, dev_len;
> > +	int mtu;
> > +
> > +	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
> > +		return -EINVAL;
> > +
> > +	dev = __dev_via_ifindex(dev, ifindex);
> > +	if (unlikely(!dev))
> > +		return -ENODEV;
> > +
> > +	mtu = READ_ONCE(dev->mtu);
> > +
> > +	dev_len = mtu + dev->hard_header_len;
> > +	skb_len = skb->len + len_diff; /* minus result pass check */
> > +	if (skb_len <= dev_len) {
> > +		ret = BPF_MTU_CHK_RET_SUCCESS;
> > +		goto out;
> > +	}
> > +	/* At this point, skb->len exceed MTU, but as it include length of all
> > +	 * segments, it can still be below MTU.  The SKB can possibly get
> > +	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
> > +	 * must choose if segs are to be MTU checked.
> > +	 */
> > +	if (skb_is_gso(skb)) {
> > +		ret = BPF_MTU_CHK_RET_SUCCESS;
> > +
> > +		if (flags & BPF_MTU_CHK_SEGS &&
> > +		    !skb_gso_validate_network_len(skb, mtu))
> > +			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;  
> 
> I think that looks okay overall now. One thing that will easily slip through
> is that in the helper description you mentioned 'Check cannot use len_diff.'
> for BPF_MTU_CHK_SEGS flag. So right now for non-zero len_diff the user
> will still get BPF_MTU_CHK_RET_SUCCESS if the current length check via
> skb_gso_validate_network_len(skb, mtu) passes. If it cannot be checked,
> maybe enforce len_diff == 0 for gso skbs on BPF_MTU_CHK_SEGS?

Ok. Do you want/think this can be enforced by the verifier or are you
simply requesting that the helper will return -EINVAL (or another errno)?
Daniel Borkmann Jan. 25, 2021, 10:27 p.m. UTC | #3
On 1/25/21 9:41 AM, Jesper Dangaard Brouer wrote:
> On Sat, 23 Jan 2021 02:35:41 +0100
> Daniel Borkmann <daniel@iogearbox.net> wrote:
> 
>>> + *		The *flags* argument can be a combination of one or more of the
>>> + *		following values:
>>> + *
>>> + *		**BPF_MTU_CHK_SEGS**
>>> + *			This flag will only works for *ctx* **struct sk_buff**.
>>> + *			If packet context contains extra packet segment buffers
>>> + *			(often knows as GSO skb), then MTU check is harder to
>>> + *			check at this point, because in transmit path it is
>>> + *			possible for the skb packet to get re-segmented
>>> + *			(depending on net device features).  This could still be
>>> + *			a MTU violation, so this flag enables performing MTU
>>> + *			check against segments, with a different violation
>>> + *			return code to tell it apart. Check cannot use len_diff.
>>> + *
>>> + *		On return *mtu_len* pointer contains the MTU value of the net
>>> + *		device.  Remember the net device configured MTU is the L3 size,
>>> + *		which is returned here and XDP and TX length operate at L2.
>>> + *		Helper take this into account for you, but remember when using
>>> + *		MTU value in your BPF-code.  On input *mtu_len* must be a valid
>>> + *		pointer and be initialized (to zero), else verifier will reject
>>> + *		BPF program.
>>> + *
>>> + *	Return
>>> + *		* 0 on success, and populate MTU value in *mtu_len* pointer.
>>> + *
>>> + *		* < 0 if any input argument is invalid (*mtu_len* not updated)
>>> + *
>>> + *		MTU violations return positive values, but also populate MTU
>>> + *		value in *mtu_len* pointer, as this can be needed for
>>> + *		implementing PMTU handing:
>>> + *
>>> + *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
>>> + *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
>>> + *
>>>     */
>> [...]
>>> +BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
>>> +	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
>>> +{
>>> +	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
>>> +	struct net_device *dev = skb->dev;
>>> +	int skb_len, dev_len;
>>> +	int mtu;
>>> +
>>> +	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
>>> +		return -EINVAL;
>>> +
>>> +	dev = __dev_via_ifindex(dev, ifindex);
>>> +	if (unlikely(!dev))
>>> +		return -ENODEV;
>>> +
>>> +	mtu = READ_ONCE(dev->mtu);
>>> +
>>> +	dev_len = mtu + dev->hard_header_len;
>>> +	skb_len = skb->len + len_diff; /* minus result pass check */
>>> +	if (skb_len <= dev_len) {
>>> +		ret = BPF_MTU_CHK_RET_SUCCESS;
>>> +		goto out;
>>> +	}
>>> +	/* At this point, skb->len exceed MTU, but as it include length of all
>>> +	 * segments, it can still be below MTU.  The SKB can possibly get
>>> +	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
>>> +	 * must choose if segs are to be MTU checked.
>>> +	 */
>>> +	if (skb_is_gso(skb)) {
>>> +		ret = BPF_MTU_CHK_RET_SUCCESS;
>>> +
>>> +		if (flags & BPF_MTU_CHK_SEGS &&
>>> +		    !skb_gso_validate_network_len(skb, mtu))
>>> +			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
>>
>> I think that looks okay overall now. One thing that will easily slip through
>> is that in the helper description you mentioned 'Check cannot use len_diff.'
>> for BPF_MTU_CHK_SEGS flag. So right now for non-zero len_diff the user
>> will still get BPF_MTU_CHK_RET_SUCCESS if the current length check via
>> skb_gso_validate_network_len(skb, mtu) passes. If it cannot be checked,
>> maybe enforce len_diff == 0 for gso skbs on BPF_MTU_CHK_SEGS?
> 
> Ok. Do you want/think this can be enforced by the verifier or are you
> simply requesting that the helper will return -EINVAL (or another errno)?

Simple -EINVAL should be fine in this case. Generally, we can detect this from
verifier side but I don't think the extra complexity is worth it especially given
this is dependent on BPF_MTU_CHK_SEGS and otherwise can be non-zero.

Thanks,
Daniel
Jesper Dangaard Brouer Jan. 26, 2021, 9:13 a.m. UTC | #4
On Mon, 25 Jan 2021 23:27:22 +0100
Daniel Borkmann <daniel@iogearbox.net> wrote:

> >>> +	/* At this point, skb->len exceed MTU, but as it include length of all
> >>> +	 * segments, it can still be below MTU.  The SKB can possibly get
> >>> +	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
> >>> +	 * must choose if segs are to be MTU checked.
> >>> +	 */
> >>> +	if (skb_is_gso(skb)) {
> >>> +		ret = BPF_MTU_CHK_RET_SUCCESS;
> >>> +
> >>> +		if (flags & BPF_MTU_CHK_SEGS &&
> >>> +		    !skb_gso_validate_network_len(skb, mtu))
> >>> +			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;  
> >>
> >> I think that looks okay overall now. One thing that will easily slip through
> >> is that in the helper description you mentioned 'Check cannot use len_diff.'
> >> for BPF_MTU_CHK_SEGS flag. So right now for non-zero len_diff the user
> >> will still get BPF_MTU_CHK_RET_SUCCESS if the current length check via
> >> skb_gso_validate_network_len(skb, mtu) passes. If it cannot be checked,
> >> maybe enforce len_diff == 0 for gso skbs on BPF_MTU_CHK_SEGS?  
> > 
> > Ok. Do you want/think this can be enforced by the verifier or are you
> > simply requesting that the helper will return -EINVAL (or another errno)?  
> 
> Simple -EINVAL should be fine in this case. Generally, we can detect this from
> verifier side but I don't think the extra complexity is worth it especially given
> this is dependent on BPF_MTU_CHK_SEGS and otherwise can be non-zero.

Luckily this was also my choice in V13 that I've already send out.

https://lore.kernel.org/netdev/161159457239.321749.9067604476261493815.stgit@firesoul/
diff mbox series

Patch

diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h
index 05bfc8c843dc..f17381a337ec 100644
--- a/include/uapi/linux/bpf.h
+++ b/include/uapi/linux/bpf.h
@@ -3839,6 +3839,61 @@  union bpf_attr {
  *	Return
  *		A pointer to a struct socket on success or NULL if the file is
  *		not a socket.
+ *
+ * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
+ *	Description
+ *		Check ctx packet size against MTU of net device (based on
+ *		*ifindex*).  This helper will likely be used in combination with
+ *		helpers that adjust/change the packet size.  The argument
+ *		*len_diff* can be used for querying with a planned size
+ *		change. This allows to check MTU prior to changing packet ctx.
+ *
+ *		Specifying *ifindex* zero means the MTU check is performed
+ *		against the current net device.  This is practical if this isn't
+ *		used prior to redirect.
+ *
+ *		The Linux kernel route table can configure MTUs on a more
+ *		specific per route level, which is not provided by this helper.
+ *		For route level MTU checks use the **bpf_fib_lookup**\ ()
+ *		helper.
+ *
+ *		*ctx* is either **struct xdp_md** for XDP programs or
+ *		**struct sk_buff** for tc cls_act programs.
+ *
+ *		The *flags* argument can be a combination of one or more of the
+ *		following values:
+ *
+ *		**BPF_MTU_CHK_SEGS**
+ *			This flag will only works for *ctx* **struct sk_buff**.
+ *			If packet context contains extra packet segment buffers
+ *			(often knows as GSO skb), then MTU check is harder to
+ *			check at this point, because in transmit path it is
+ *			possible for the skb packet to get re-segmented
+ *			(depending on net device features).  This could still be
+ *			a MTU violation, so this flag enables performing MTU
+ *			check against segments, with a different violation
+ *			return code to tell it apart. Check cannot use len_diff.
+ *
+ *		On return *mtu_len* pointer contains the MTU value of the net
+ *		device.  Remember the net device configured MTU is the L3 size,
+ *		which is returned here and XDP and TX length operate at L2.
+ *		Helper take this into account for you, but remember when using
+ *		MTU value in your BPF-code.  On input *mtu_len* must be a valid
+ *		pointer and be initialized (to zero), else verifier will reject
+ *		BPF program.
+ *
+ *	Return
+ *		* 0 on success, and populate MTU value in *mtu_len* pointer.
+ *
+ *		* < 0 if any input argument is invalid (*mtu_len* not updated)
+ *
+ *		MTU violations return positive values, but also populate MTU
+ *		value in *mtu_len* pointer, as this can be needed for
+ *		implementing PMTU handing:
+ *
+ *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
+ *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
+ *
  */
 #define __BPF_FUNC_MAPPER(FN)		\
 	FN(unspec),			\
@@ -4004,6 +4059,7 @@  union bpf_attr {
 	FN(ktime_get_coarse_ns),	\
 	FN(ima_inode_hash),		\
 	FN(sock_from_file),		\
+	FN(check_mtu),			\
 	/* */
 
 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
@@ -5036,6 +5092,17 @@  struct bpf_redir_neigh {
 	};
 };
 
+/* bpf_check_mtu flags*/
+enum  bpf_check_mtu_flags {
+	BPF_MTU_CHK_SEGS  = (1U << 0),
+};
+
+enum bpf_check_mtu_ret {
+	BPF_MTU_CHK_RET_SUCCESS,      /* check and lookup successful */
+	BPF_MTU_CHK_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
+	BPF_MTU_CHK_RET_SEGS_TOOBIG,  /* GSO re-segmentation needed to fwd */
+};
+
 enum bpf_task_fd_type {
 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
diff --git a/net/core/filter.c b/net/core/filter.c
index da162e64578a..0be81f499f51 100644
--- a/net/core/filter.c
+++ b/net/core/filter.c
@@ -5625,6 +5625,113 @@  static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
 	.arg4_type	= ARG_ANYTHING,
 };
 
+static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
+					    u32 ifindex)
+{
+	struct net *netns = dev_net(dev_curr);
+
+	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
+	if (ifindex == 0)
+		return dev_curr;
+
+	return dev_get_by_index_rcu(netns, ifindex);
+}
+
+BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
+	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
+{
+	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
+	struct net_device *dev = skb->dev;
+	int skb_len, dev_len;
+	int mtu;
+
+	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
+		return -EINVAL;
+
+	dev = __dev_via_ifindex(dev, ifindex);
+	if (unlikely(!dev))
+		return -ENODEV;
+
+	mtu = READ_ONCE(dev->mtu);
+
+	dev_len = mtu + dev->hard_header_len;
+	skb_len = skb->len + len_diff; /* minus result pass check */
+	if (skb_len <= dev_len) {
+		ret = BPF_MTU_CHK_RET_SUCCESS;
+		goto out;
+	}
+	/* At this point, skb->len exceed MTU, but as it include length of all
+	 * segments, it can still be below MTU.  The SKB can possibly get
+	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
+	 * must choose if segs are to be MTU checked.
+	 */
+	if (skb_is_gso(skb)) {
+		ret = BPF_MTU_CHK_RET_SUCCESS;
+
+		if (flags & BPF_MTU_CHK_SEGS &&
+		    !skb_gso_validate_network_len(skb, mtu))
+			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
+	}
+out:
+	/* BPF verifier guarantees valid pointer */
+	*mtu_len = mtu;
+
+	return ret;
+}
+
+BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
+	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
+{
+	struct net_device *dev = xdp->rxq->dev;
+	int xdp_len = xdp->data_end - xdp->data;
+	int ret = BPF_MTU_CHK_RET_SUCCESS;
+	int mtu, dev_len;
+
+	/* XDP variant doesn't support multi-buffer segment check (yet) */
+	if (unlikely(flags))
+		return -EINVAL;
+
+	dev = __dev_via_ifindex(dev, ifindex);
+	if (unlikely(!dev))
+		return -ENODEV;
+
+	mtu = READ_ONCE(dev->mtu);
+
+	/* Add L2-header as dev MTU is L3 size */
+	dev_len = mtu + dev->hard_header_len;
+
+	xdp_len += len_diff; /* minus result pass check */
+	if (xdp_len > dev_len)
+		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
+
+	/* BPF verifier guarantees valid pointer */
+	*mtu_len = mtu;
+
+	return ret;
+}
+
+static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
+	.func		= bpf_skb_check_mtu,
+	.gpl_only	= true,
+	.ret_type	= RET_INTEGER,
+	.arg1_type      = ARG_PTR_TO_CTX,
+	.arg2_type      = ARG_ANYTHING,
+	.arg3_type      = ARG_PTR_TO_INT,
+	.arg4_type      = ARG_ANYTHING,
+	.arg5_type      = ARG_ANYTHING,
+};
+
+static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
+	.func		= bpf_xdp_check_mtu,
+	.gpl_only	= true,
+	.ret_type	= RET_INTEGER,
+	.arg1_type      = ARG_PTR_TO_CTX,
+	.arg2_type      = ARG_ANYTHING,
+	.arg3_type      = ARG_PTR_TO_INT,
+	.arg4_type      = ARG_ANYTHING,
+	.arg5_type      = ARG_ANYTHING,
+};
+
 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
 {
@@ -7194,6 +7301,8 @@  tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 		return &bpf_get_socket_uid_proto;
 	case BPF_FUNC_fib_lookup:
 		return &bpf_skb_fib_lookup_proto;
+	case BPF_FUNC_check_mtu:
+		return &bpf_skb_check_mtu_proto;
 	case BPF_FUNC_sk_fullsock:
 		return &bpf_sk_fullsock_proto;
 	case BPF_FUNC_sk_storage_get:
@@ -7263,6 +7372,8 @@  xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 		return &bpf_xdp_adjust_tail_proto;
 	case BPF_FUNC_fib_lookup:
 		return &bpf_xdp_fib_lookup_proto;
+	case BPF_FUNC_check_mtu:
+		return &bpf_xdp_check_mtu_proto;
 #ifdef CONFIG_INET
 	case BPF_FUNC_sk_lookup_udp:
 		return &bpf_xdp_sk_lookup_udp_proto;
diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h
index 05bfc8c843dc..f17381a337ec 100644
--- a/tools/include/uapi/linux/bpf.h
+++ b/tools/include/uapi/linux/bpf.h
@@ -3839,6 +3839,61 @@  union bpf_attr {
  *	Return
  *		A pointer to a struct socket on success or NULL if the file is
  *		not a socket.
+ *
+ * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
+ *	Description
+ *		Check ctx packet size against MTU of net device (based on
+ *		*ifindex*).  This helper will likely be used in combination with
+ *		helpers that adjust/change the packet size.  The argument
+ *		*len_diff* can be used for querying with a planned size
+ *		change. This allows to check MTU prior to changing packet ctx.
+ *
+ *		Specifying *ifindex* zero means the MTU check is performed
+ *		against the current net device.  This is practical if this isn't
+ *		used prior to redirect.
+ *
+ *		The Linux kernel route table can configure MTUs on a more
+ *		specific per route level, which is not provided by this helper.
+ *		For route level MTU checks use the **bpf_fib_lookup**\ ()
+ *		helper.
+ *
+ *		*ctx* is either **struct xdp_md** for XDP programs or
+ *		**struct sk_buff** for tc cls_act programs.
+ *
+ *		The *flags* argument can be a combination of one or more of the
+ *		following values:
+ *
+ *		**BPF_MTU_CHK_SEGS**
+ *			This flag will only works for *ctx* **struct sk_buff**.
+ *			If packet context contains extra packet segment buffers
+ *			(often knows as GSO skb), then MTU check is harder to
+ *			check at this point, because in transmit path it is
+ *			possible for the skb packet to get re-segmented
+ *			(depending on net device features).  This could still be
+ *			a MTU violation, so this flag enables performing MTU
+ *			check against segments, with a different violation
+ *			return code to tell it apart. Check cannot use len_diff.
+ *
+ *		On return *mtu_len* pointer contains the MTU value of the net
+ *		device.  Remember the net device configured MTU is the L3 size,
+ *		which is returned here and XDP and TX length operate at L2.
+ *		Helper take this into account for you, but remember when using
+ *		MTU value in your BPF-code.  On input *mtu_len* must be a valid
+ *		pointer and be initialized (to zero), else verifier will reject
+ *		BPF program.
+ *
+ *	Return
+ *		* 0 on success, and populate MTU value in *mtu_len* pointer.
+ *
+ *		* < 0 if any input argument is invalid (*mtu_len* not updated)
+ *
+ *		MTU violations return positive values, but also populate MTU
+ *		value in *mtu_len* pointer, as this can be needed for
+ *		implementing PMTU handing:
+ *
+ *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
+ *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
+ *
  */
 #define __BPF_FUNC_MAPPER(FN)		\
 	FN(unspec),			\
@@ -4004,6 +4059,7 @@  union bpf_attr {
 	FN(ktime_get_coarse_ns),	\
 	FN(ima_inode_hash),		\
 	FN(sock_from_file),		\
+	FN(check_mtu),			\
 	/* */
 
 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
@@ -5036,6 +5092,17 @@  struct bpf_redir_neigh {
 	};
 };
 
+/* bpf_check_mtu flags*/
+enum  bpf_check_mtu_flags {
+	BPF_MTU_CHK_SEGS  = (1U << 0),
+};
+
+enum bpf_check_mtu_ret {
+	BPF_MTU_CHK_RET_SUCCESS,      /* check and lookup successful */
+	BPF_MTU_CHK_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
+	BPF_MTU_CHK_RET_SEGS_TOOBIG,  /* GSO re-segmentation needed to fwd */
+};
+
 enum bpf_task_fd_type {
 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */