Message ID | 20220325100849.2019209-9-clg@kaod.org (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | spi: spi-mem: Convert Aspeed SMC driver to spi-mem | expand |
Hi Cédric Le, > -----Original Message----- > From: Cédric Le Goater <clg@kaod.org> > Sent: Friday, March 25, 2022 6:09 PM > To: linux-spi@vger.kernel.org; linux-mtd@lists.infradead.org > Subject: [PATCH v4 08/11] spi: aspeed: Calibrate read timings > > To accommodate the different response time of SPI transfers on different > boards and different SPI NOR devices, the Aspeed controllers provide a set of > Read Timing Compensation registers to tune the timing delays depending on > the frequency being used. The AST2600 SoC has one of these registers per > device. On the AST2500 and AST2400 SoCs, the timing register is shared by all > devices which is problematic to get good results other than for one device. > > The algorithm first reads a golden buffer at low speed and then performs reads > with different clocks and delay cycle settings to find a breaking point. This > selects a default good frequency for the CEx control register. > The current settings are a bit optimistic as we pick the first delay giving good > results. A safer approach would be to determine an interval and choose the > middle value. > > Calibration is performed when the direct mapping for reads is created. > Since the underlying spi-nor object needs to be initialized to create the > spi_mem operation for direct mapping, we should be fine. Having a specific > API would clarify the requirements though. > > Cc: Pratyush Yadav <p.yadav@ti.com> > Reviewed-by: Joel Stanley <joel@jms.id.au> > Tested-by: Joel Stanley <joel@jms.id.au> > Tested-by: Tao Ren <rentao.bupt@gmail.com> > Signed-off-by: Cédric Le Goater <clg@kaod.org> > --- > drivers/spi/spi-aspeed-smc.c | 281 > +++++++++++++++++++++++++++++++++++ > 1 file changed, 281 insertions(+) > > diff --git a/drivers/spi/spi-aspeed-smc.c b/drivers/spi/spi-aspeed-smc.c index > 7f306da7c44e..660451667a39 100644 > --- a/drivers/spi/spi-aspeed-smc.c > +++ b/drivers/spi/spi-aspeed-smc.c > @@ -33,6 +33,8 @@ > #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */ > #define CTRL_IO_DUMMY_SET(dummy) \ > (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6)) > +#define CTRL_FREQ_SEL_SHIFT 8 > +#define CTRL_FREQ_SEL_MASK GENMASK(11, > CTRL_FREQ_SEL_SHIFT) > #define CTRL_CE_STOP_ACTIVE BIT(2) > #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0) > #define CTRL_IO_MODE_NORMAL 0x0 > @@ -45,6 +47,9 @@ > /* CEx Address Decoding Range Register */ > #define CE0_SEGMENT_ADDR_REG 0x30 > > +/* CEx Read timing compensation register */ > +#define CE0_TIMING_COMPENSATION_REG 0x94 > + > enum aspeed_spi_ctl_reg_value { > ASPEED_SPI_BASE, > ASPEED_SPI_READ, > @@ -70,10 +75,15 @@ struct aspeed_spi_data { > bool hastype; > u32 mode_bits; > u32 we0; > + u32 timing; > + u32 hclk_mask; > + u32 hdiv_max; > > u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg); > u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg); > u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end); > + int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv, > + const u8 *golden_buf, u8 *test_buf); > }; > > #define ASPEED_SPI_MAX_NUM_CS 5 > @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct > aspeed_spi_chip *chip, > return 0; > } > > +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); > + > static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { > struct aspeed_spi *aspi = > spi_controller_get_devdata(desc->mem->spi->master); > @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct > spi_mem_dirmap_desc *desc) > chip->ctl_val[ASPEED_SPI_READ] = ctl_val; > writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > > + ret = aspeed_spi_do_calibration(chip); > + > dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", > chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]); > > @@ -812,6 +826,249 @@ static u32 aspeed_spi_segment_ast2600_reg(struct > aspeed_spi *aspi, > ((end - 1) & AST2600_SEG_ADDR_MASK); > } > > +/* > + * Read timing compensation sequences > + */ > + > +#define CALIBRATE_BUF_SIZE SZ_16K > + > +static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip, > + const u8 *golden_buf, u8 *test_buf) { > + int i; > + > + for (i = 0; i < 10; i++) { > + memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); > + if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) { #if > +defined(VERBOSE_DEBUG) > + print_hex_dump_bytes(DEVICE_NAME " fail: ", > DUMP_PREFIX_NONE, > + test_buf, 0x100); > +#endif > + return false; > + } > + } > + return true; > +} > + > +#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) > + > +/* > + * The timing register is shared by all devices. Only update for CE0. > + */ > +static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, > + const u8 *golden_buf, u8 *test_buf) { > + struct aspeed_spi *aspi = chip->aspi; > + const struct aspeed_spi_data *data = aspi->data; > + int i; > + int good_pass = -1, pass_count = 0; > + u32 shift = (hdiv - 1) << 2; > + u32 mask = ~(0xfu << shift); > + u32 fread_timing_val = 0; > + > + /* Try HCLK delay 0..5, each one with/without delay and look for a > + * good pair. > + */ > + for (i = 0; i < 12; i++) { > + bool pass; > + > + if (chip->cs == 0) { > + fread_timing_val &= mask; > + fread_timing_val |= FREAD_TPASS(i) << shift; > + writel(fread_timing_val, aspi->regs + data->timing); > + } > + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > + dev_dbg(aspi->dev, > + " * [%08x] %d HCLK delay, %dns DI delay : %s", > + fread_timing_val, i / 2, (i & 1) ? 0 : 4, > + pass ? "PASS" : "FAIL"); > + if (pass) { > + pass_count++; > + if (pass_count == 3) { > + good_pass = i - 1; > + break; > + } > + } else { > + pass_count = 0; > + } > + } > + > + /* No good setting for this frequency */ > + if (good_pass < 0) > + return -1; > + > + /* We have at least one pass of margin, let's use first pass */ > + if (chip->cs == 0) { > + fread_timing_val &= mask; > + fread_timing_val |= FREAD_TPASS(good_pass) << shift; > + writel(fread_timing_val, aspi->regs + data->timing); > + } > + dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]", > + good_pass, fread_timing_val); > + return 0; > +} > + > +static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size) { > + const u32 *tb32 = (const u32 *)test_buf; > + u32 i, cnt = 0; > + > + /* We check if we have enough words that are neither all 0 > + * nor all 1's so the calibration can be considered valid. > + * > + * I use an arbitrary threshold for now of 64 > + */ > + size >>= 2; > + for (i = 0; i < size; i++) { > + if (tb32[i] != 0 && tb32[i] != 0xffffffff) > + cnt++; > + } > + return cnt >= 64; > +} > + > +static const u32 aspeed_spi_hclk_divs[] = { > + 0xf, /* HCLK */ > + 0x7, /* HCLK/2 */ > + 0xe, /* HCLK/3 */ > + 0x6, /* HCLK/4 */ > + 0xd, /* HCLK/5 */ > +}; > + > +#define ASPEED_SPI_HCLK_DIV(i) \ > + (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT) > + > +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip) { > + struct aspeed_spi *aspi = chip->aspi; > + const struct aspeed_spi_data *data = aspi->data; > + u32 ahb_freq = aspi->clk_freq; > + u32 max_freq = chip->clk_freq; > + u32 ctl_val; > + u8 *golden_buf = NULL; > + u8 *test_buf = NULL; > + int i, rc, best_div = -1; > + > + dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz", > + ahb_freq / 1000000); > + > + /* > + * use the related low frequency to get check calibration data > + * and get golden data. > + */ > + ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask; > + writel(ctl_val, chip->ctl); > + > + test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL); > + if (!test_buf) > + return -ENOMEM; > + > + golden_buf = test_buf + CALIBRATE_BUF_SIZE; > + > + memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); > + if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) { > + dev_info(aspi->dev, "Calibration area too uniform, using low speed"); > + goto no_calib; > + } > + > +#if defined(VERBOSE_DEBUG) > + print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE, > + golden_buf, 0x100); > +#endif > + > + /* Now we iterate the HCLK dividers until we find our breaking point */ > + for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) { > + u32 tv, freq; > + > + freq = ahb_freq / i; > + if (freq > max_freq) > + continue; > + > + /* Set the timing */ > + tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i); > + writel(tv, chip->ctl); > + dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv); > + rc = data->calibrate(chip, i, golden_buf, test_buf); > + if (rc == 0) > + best_div = i; > + } > + > + /* Nothing found ? */ > + if (best_div < 0) { > + dev_warn(aspi->dev, "No good frequency, using dumb slow"); > + } else { > + dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", > best_div); > + > + /* Record the freq */ > + for (i = 0; i < ASPEED_SPI_MAX; i++) > + chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) | > + ASPEED_SPI_HCLK_DIV(best_div); > + } > + > +no_calib: - Maybe, if the calibration process is not executed, the frequency setting calculated from max_frequency in the device tree can be filled in FMC10 instead of using dumb slow one, 12.5MHz, always. For example, except for uniform content case, the calibration process will be ignored when SPI clock frequency in the device tree is smaller than 40MHz. - The function, aspeed_2600_spi_clk_basic_setting, in [2] can be added to support lower SPI clock frequency, e.g., 4MHz. For AST2600, SPI clock frequency can be calculated by HCLK/(FMC10[27:24] + FMC10[11:8]). > + writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > + kfree(test_buf); > + return 0; > +} > + > +#define TIMING_DELAY_DI BIT(3) > +#define TIMING_DELAY_HCYCLE_MAX 5 > +#define TIMING_REG_AST2600(chip) \ > + ((chip)->aspi->regs + (chip)->aspi->data->timing + \ > + (chip)->cs * 4) > + > +static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 > hdiv, > + const u8 *golden_buf, u8 *test_buf) { > + struct aspeed_spi *aspi = chip->aspi; > + int hcycle; > + u32 shift = (hdiv - 2) << 3; > + u32 mask = ~(0xfu << shift); > + u32 fread_timing_val = 0; > + > + for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) { > + int delay_ns; > + bool pass = false; > + > + fread_timing_val &= mask; > + fread_timing_val |= hcycle << shift; > + > + /* no DI input delay first */ > + writel(fread_timing_val, TIMING_REG_AST2600(chip)); > + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > + dev_dbg(aspi->dev, > + " * [%08x] %d HCLK delay, DI delay none : %s", > + fread_timing_val, hcycle, pass ? "PASS" : "FAIL"); > + if (pass) > + return 0; > + > + /* Add DI input delays */ > + fread_timing_val &= mask; > + fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift; > + > + for (delay_ns = 0; delay_ns < 0x10; delay_ns++) { > + fread_timing_val &= ~(0xf << (4 + shift)); > + fread_timing_val |= delay_ns << (4 + shift); > + > + writel(fread_timing_val, TIMING_REG_AST2600(chip)); > + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > + dev_dbg(aspi->dev, > + " * [%08x] %d HCLK delay, DI delay %d.%dns : %s", > + fread_timing_val, hcycle, (delay_ns + 1) / 2, > + (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL"); > + /* > + * TODO: This is optimistic. We should look > + * for a working interval and save the middle > + * value in the read timing register. > + */ > + if (pass) > + return 0; > + } > + } > + > + /* No good setting for this frequency */ > + return -1; > +} > + > /* > * Platform definitions > */ > @@ -820,6 +1077,10 @@ static const struct aspeed_spi_data > ast2400_fmc_data = { > .hastype = true, > .we0 = 16, > .ctl0 = CE0_CTRL_REG, > + .timing = CE0_TIMING_COMPENSATION_REG, > + .hclk_mask = 0xfffff0ff, > + .hdiv_max = 1, > + .calibrate = aspeed_spi_calibrate, > .segment_start = aspeed_spi_segment_start, > .segment_end = aspeed_spi_segment_end, > .segment_reg = aspeed_spi_segment_reg, > @@ -830,6 +1091,10 @@ static const struct aspeed_spi_data > ast2400_spi_data = { > .hastype = false, > .we0 = 0, > .ctl0 = 0x04, > + .timing = 0x14, > + .hclk_mask = 0xfffff0ff, > + .hdiv_max = 1, > + .calibrate = aspeed_spi_calibrate, > /* No segment registers */ > }; > > @@ -838,6 +1103,10 @@ static const struct aspeed_spi_data > ast2500_fmc_data = { > .hastype = true, > .we0 = 16, > .ctl0 = CE0_CTRL_REG, > + .timing = CE0_TIMING_COMPENSATION_REG, > + .hclk_mask = 0xfffff0ff, > + .hdiv_max = 1, > + .calibrate = aspeed_spi_calibrate, > .segment_start = aspeed_spi_segment_start, > .segment_end = aspeed_spi_segment_end, > .segment_reg = aspeed_spi_segment_reg, > @@ -848,6 +1117,10 @@ static const struct aspeed_spi_data > ast2500_spi_data = { > .hastype = false, > .we0 = 16, > .ctl0 = CE0_CTRL_REG, > + .timing = CE0_TIMING_COMPENSATION_REG, > + .hclk_mask = 0xfffff0ff, > + .hdiv_max = 1, > + .calibrate = aspeed_spi_calibrate, > .segment_start = aspeed_spi_segment_start, > .segment_end = aspeed_spi_segment_end, > .segment_reg = aspeed_spi_segment_reg, > @@ -859,6 +1132,10 @@ static const struct aspeed_spi_data > ast2600_fmc_data = { > .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, > .we0 = 16, > .ctl0 = CE0_CTRL_REG, > + .timing = CE0_TIMING_COMPENSATION_REG, > + .hclk_mask = 0xf0fff0ff, > + .hdiv_max = 2, > + .calibrate = aspeed_spi_ast2600_calibrate, > .segment_start = aspeed_spi_segment_ast2600_start, > .segment_end = aspeed_spi_segment_ast2600_end, > .segment_reg = aspeed_spi_segment_ast2600_reg, > @@ -870,6 +1147,10 @@ static const struct aspeed_spi_data > ast2600_spi_data = { > .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, > .we0 = 16, > .ctl0 = CE0_CTRL_REG, > + .timing = CE0_TIMING_COMPENSATION_REG, > + .hclk_mask = 0xf0fff0ff, > + .hdiv_max = 2, > + .calibrate = aspeed_spi_ast2600_calibrate, > .segment_start = aspeed_spi_segment_ast2600_start, > .segment_end = aspeed_spi_segment_ast2600_end, > .segment_reg = aspeed_spi_segment_ast2600_reg, > -- > 2.34.1 Best Wishes, Chin-Ting
On 3/30/22 13:53, Chin-Ting Kuo wrote: > Hi Cédric Le, > >> -----Original Message----- >> From: Cédric Le Goater <clg@kaod.org> >> Sent: Friday, March 25, 2022 6:09 PM >> To: linux-spi@vger.kernel.org; linux-mtd@lists.infradead.org >> Subject: [PATCH v4 08/11] spi: aspeed: Calibrate read timings >> >> To accommodate the different response time of SPI transfers on different >> boards and different SPI NOR devices, the Aspeed controllers provide a set of >> Read Timing Compensation registers to tune the timing delays depending on >> the frequency being used. The AST2600 SoC has one of these registers per >> device. On the AST2500 and AST2400 SoCs, the timing register is shared by all >> devices which is problematic to get good results other than for one device. >> >> The algorithm first reads a golden buffer at low speed and then performs reads >> with different clocks and delay cycle settings to find a breaking point. This >> selects a default good frequency for the CEx control register. >> The current settings are a bit optimistic as we pick the first delay giving good >> results. A safer approach would be to determine an interval and choose the >> middle value. >> >> Calibration is performed when the direct mapping for reads is created. >> Since the underlying spi-nor object needs to be initialized to create the >> spi_mem operation for direct mapping, we should be fine. Having a specific >> API would clarify the requirements though. >> >> Cc: Pratyush Yadav <p.yadav@ti.com> >> Reviewed-by: Joel Stanley <joel@jms.id.au> >> Tested-by: Joel Stanley <joel@jms.id.au> >> Tested-by: Tao Ren <rentao.bupt@gmail.com> >> Signed-off-by: Cédric Le Goater <clg@kaod.org> >> --- >> drivers/spi/spi-aspeed-smc.c | 281 >> +++++++++++++++++++++++++++++++++++ >> 1 file changed, 281 insertions(+) >> >> diff --git a/drivers/spi/spi-aspeed-smc.c b/drivers/spi/spi-aspeed-smc.c index >> 7f306da7c44e..660451667a39 100644 >> --- a/drivers/spi/spi-aspeed-smc.c >> +++ b/drivers/spi/spi-aspeed-smc.c >> @@ -33,6 +33,8 @@ >> #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */ >> #define CTRL_IO_DUMMY_SET(dummy) \ >> (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6)) >> +#define CTRL_FREQ_SEL_SHIFT 8 >> +#define CTRL_FREQ_SEL_MASK GENMASK(11, >> CTRL_FREQ_SEL_SHIFT) >> #define CTRL_CE_STOP_ACTIVE BIT(2) >> #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0) >> #define CTRL_IO_MODE_NORMAL 0x0 >> @@ -45,6 +47,9 @@ >> /* CEx Address Decoding Range Register */ >> #define CE0_SEGMENT_ADDR_REG 0x30 >> >> +/* CEx Read timing compensation register */ >> +#define CE0_TIMING_COMPENSATION_REG 0x94 >> + >> enum aspeed_spi_ctl_reg_value { >> ASPEED_SPI_BASE, >> ASPEED_SPI_READ, >> @@ -70,10 +75,15 @@ struct aspeed_spi_data { >> bool hastype; >> u32 mode_bits; >> u32 we0; >> + u32 timing; >> + u32 hclk_mask; >> + u32 hdiv_max; >> >> u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg); >> u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg); >> u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end); >> + int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv, >> + const u8 *golden_buf, u8 *test_buf); >> }; >> >> #define ASPEED_SPI_MAX_NUM_CS 5 >> @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct >> aspeed_spi_chip *chip, >> return 0; >> } >> >> +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); >> + >> static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { >> struct aspeed_spi *aspi = >> spi_controller_get_devdata(desc->mem->spi->master); >> @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct >> spi_mem_dirmap_desc *desc) >> chip->ctl_val[ASPEED_SPI_READ] = ctl_val; >> writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); >> >> + ret = aspeed_spi_do_calibration(chip); >> + >> dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", >> chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]); >> >> @@ -812,6 +826,249 @@ static u32 aspeed_spi_segment_ast2600_reg(struct >> aspeed_spi *aspi, >> ((end - 1) & AST2600_SEG_ADDR_MASK); >> } >> >> +/* >> + * Read timing compensation sequences >> + */ >> + >> +#define CALIBRATE_BUF_SIZE SZ_16K >> + >> +static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip, >> + const u8 *golden_buf, u8 *test_buf) { >> + int i; >> + >> + for (i = 0; i < 10; i++) { >> + memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); >> + if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) { #if >> +defined(VERBOSE_DEBUG) >> + print_hex_dump_bytes(DEVICE_NAME " fail: ", >> DUMP_PREFIX_NONE, >> + test_buf, 0x100); >> +#endif >> + return false; >> + } >> + } >> + return true; >> +} >> + >> +#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) >> + >> +/* >> + * The timing register is shared by all devices. Only update for CE0. >> + */ >> +static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, >> + const u8 *golden_buf, u8 *test_buf) { >> + struct aspeed_spi *aspi = chip->aspi; >> + const struct aspeed_spi_data *data = aspi->data; >> + int i; >> + int good_pass = -1, pass_count = 0; >> + u32 shift = (hdiv - 1) << 2; >> + u32 mask = ~(0xfu << shift); >> + u32 fread_timing_val = 0; >> + >> + /* Try HCLK delay 0..5, each one with/without delay and look for a >> + * good pair. >> + */ >> + for (i = 0; i < 12; i++) { >> + bool pass; >> + >> + if (chip->cs == 0) { >> + fread_timing_val &= mask; >> + fread_timing_val |= FREAD_TPASS(i) << shift; >> + writel(fread_timing_val, aspi->regs + data->timing); >> + } >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); >> + dev_dbg(aspi->dev, >> + " * [%08x] %d HCLK delay, %dns DI delay : %s", >> + fread_timing_val, i / 2, (i & 1) ? 0 : 4, >> + pass ? "PASS" : "FAIL"); >> + if (pass) { >> + pass_count++; >> + if (pass_count == 3) { >> + good_pass = i - 1; >> + break; >> + } >> + } else { >> + pass_count = 0; >> + } >> + } >> + >> + /* No good setting for this frequency */ >> + if (good_pass < 0) >> + return -1; >> + >> + /* We have at least one pass of margin, let's use first pass */ >> + if (chip->cs == 0) { >> + fread_timing_val &= mask; >> + fread_timing_val |= FREAD_TPASS(good_pass) << shift; >> + writel(fread_timing_val, aspi->regs + data->timing); >> + } >> + dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]", >> + good_pass, fread_timing_val); >> + return 0; >> +} >> + >> +static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size) { >> + const u32 *tb32 = (const u32 *)test_buf; >> + u32 i, cnt = 0; >> + >> + /* We check if we have enough words that are neither all 0 >> + * nor all 1's so the calibration can be considered valid. >> + * >> + * I use an arbitrary threshold for now of 64 >> + */ >> + size >>= 2; >> + for (i = 0; i < size; i++) { >> + if (tb32[i] != 0 && tb32[i] != 0xffffffff) >> + cnt++; >> + } >> + return cnt >= 64; >> +} >> + >> +static const u32 aspeed_spi_hclk_divs[] = { >> + 0xf, /* HCLK */ >> + 0x7, /* HCLK/2 */ >> + 0xe, /* HCLK/3 */ >> + 0x6, /* HCLK/4 */ >> + 0xd, /* HCLK/5 */ >> +}; >> + >> +#define ASPEED_SPI_HCLK_DIV(i) \ >> + (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT) >> + >> +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip) { >> + struct aspeed_spi *aspi = chip->aspi; >> + const struct aspeed_spi_data *data = aspi->data; >> + u32 ahb_freq = aspi->clk_freq; >> + u32 max_freq = chip->clk_freq; >> + u32 ctl_val; >> + u8 *golden_buf = NULL; >> + u8 *test_buf = NULL; >> + int i, rc, best_div = -1; >> + >> + dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz", >> + ahb_freq / 1000000); >> + >> + /* >> + * use the related low frequency to get check calibration data >> + * and get golden data. >> + */ >> + ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask; >> + writel(ctl_val, chip->ctl); >> + >> + test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL); >> + if (!test_buf) >> + return -ENOMEM; >> + >> + golden_buf = test_buf + CALIBRATE_BUF_SIZE; >> + >> + memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); >> + if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) { >> + dev_info(aspi->dev, "Calibration area too uniform, using low speed"); >> + goto no_calib; >> + } >> + >> +#if defined(VERBOSE_DEBUG) >> + print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE, >> + golden_buf, 0x100); >> +#endif >> + >> + /* Now we iterate the HCLK dividers until we find our breaking point */ >> + for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) { >> + u32 tv, freq; >> + >> + freq = ahb_freq / i; >> + if (freq > max_freq) >> + continue; >> + >> + /* Set the timing */ >> + tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i); >> + writel(tv, chip->ctl); >> + dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv); >> + rc = data->calibrate(chip, i, golden_buf, test_buf); >> + if (rc == 0) >> + best_div = i; >> + } >> + >> + /* Nothing found ? */ >> + if (best_div < 0) { >> + dev_warn(aspi->dev, "No good frequency, using dumb slow"); >> + } else { >> + dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", >> best_div); >> + >> + /* Record the freq */ >> + for (i = 0; i < ASPEED_SPI_MAX; i++) >> + chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) | >> + ASPEED_SPI_HCLK_DIV(best_div); >> + } >> + >> +no_calib: > > - Maybe, if the calibration process is not executed, the frequency setting calculated from max_frequency in the device tree can be filled in FMC10 instead of using dumb slow one, 12.5MHz, always. Indeed. > For example, except for uniform content case, the calibration process will be ignored when SPI clock frequency in the device tree is smaller than 40MHz. > - The function, aspeed_2600_spi_clk_basic_setting, in [2] can be added to support lower SPI clock frequency, e.g., 4MHz. > For AST2600, SPI clock frequency can be calculated by HCLK/(FMC10[27:24] + FMC10[11:8]). Could you please send patches on top of this series ? Here are the branches : https://github.com/legoater/linux/commits/openbmc-5.15 https://github.com/legoater/linux/commits/aspeed (mainline) I can include them when I resend a v5. Thanks, C. > >> + writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); >> + kfree(test_buf); >> + return 0; >> +} >> + >> +#define TIMING_DELAY_DI BIT(3) >> +#define TIMING_DELAY_HCYCLE_MAX 5 >> +#define TIMING_REG_AST2600(chip) \ >> + ((chip)->aspi->regs + (chip)->aspi->data->timing + \ >> + (chip)->cs * 4) >> + >> +static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 >> hdiv, >> + const u8 *golden_buf, u8 *test_buf) { >> + struct aspeed_spi *aspi = chip->aspi; >> + int hcycle; >> + u32 shift = (hdiv - 2) << 3; >> + u32 mask = ~(0xfu << shift); >> + u32 fread_timing_val = 0; >> + >> + for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) { >> + int delay_ns; >> + bool pass = false; >> + >> + fread_timing_val &= mask; >> + fread_timing_val |= hcycle << shift; >> + >> + /* no DI input delay first */ >> + writel(fread_timing_val, TIMING_REG_AST2600(chip)); >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); >> + dev_dbg(aspi->dev, >> + " * [%08x] %d HCLK delay, DI delay none : %s", >> + fread_timing_val, hcycle, pass ? "PASS" : "FAIL"); >> + if (pass) >> + return 0; >> + >> + /* Add DI input delays */ >> + fread_timing_val &= mask; >> + fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift; >> + >> + for (delay_ns = 0; delay_ns < 0x10; delay_ns++) { >> + fread_timing_val &= ~(0xf << (4 + shift)); >> + fread_timing_val |= delay_ns << (4 + shift); >> + >> + writel(fread_timing_val, TIMING_REG_AST2600(chip)); >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); >> + dev_dbg(aspi->dev, >> + " * [%08x] %d HCLK delay, DI delay %d.%dns : %s", >> + fread_timing_val, hcycle, (delay_ns + 1) / 2, >> + (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL"); >> + /* >> + * TODO: This is optimistic. We should look >> + * for a working interval and save the middle >> + * value in the read timing register. >> + */ >> + if (pass) >> + return 0; >> + } >> + } >> + >> + /* No good setting for this frequency */ >> + return -1; >> +} >> + >> /* >> * Platform definitions >> */ >> @@ -820,6 +1077,10 @@ static const struct aspeed_spi_data >> ast2400_fmc_data = { >> .hastype = true, >> .we0 = 16, >> .ctl0 = CE0_CTRL_REG, >> + .timing = CE0_TIMING_COMPENSATION_REG, >> + .hclk_mask = 0xfffff0ff, >> + .hdiv_max = 1, >> + .calibrate = aspeed_spi_calibrate, >> .segment_start = aspeed_spi_segment_start, >> .segment_end = aspeed_spi_segment_end, >> .segment_reg = aspeed_spi_segment_reg, >> @@ -830,6 +1091,10 @@ static const struct aspeed_spi_data >> ast2400_spi_data = { >> .hastype = false, >> .we0 = 0, >> .ctl0 = 0x04, >> + .timing = 0x14, >> + .hclk_mask = 0xfffff0ff, >> + .hdiv_max = 1, >> + .calibrate = aspeed_spi_calibrate, >> /* No segment registers */ >> }; >> >> @@ -838,6 +1103,10 @@ static const struct aspeed_spi_data >> ast2500_fmc_data = { >> .hastype = true, >> .we0 = 16, >> .ctl0 = CE0_CTRL_REG, >> + .timing = CE0_TIMING_COMPENSATION_REG, >> + .hclk_mask = 0xfffff0ff, >> + .hdiv_max = 1, >> + .calibrate = aspeed_spi_calibrate, >> .segment_start = aspeed_spi_segment_start, >> .segment_end = aspeed_spi_segment_end, >> .segment_reg = aspeed_spi_segment_reg, >> @@ -848,6 +1117,10 @@ static const struct aspeed_spi_data >> ast2500_spi_data = { >> .hastype = false, >> .we0 = 16, >> .ctl0 = CE0_CTRL_REG, >> + .timing = CE0_TIMING_COMPENSATION_REG, >> + .hclk_mask = 0xfffff0ff, >> + .hdiv_max = 1, >> + .calibrate = aspeed_spi_calibrate, >> .segment_start = aspeed_spi_segment_start, >> .segment_end = aspeed_spi_segment_end, >> .segment_reg = aspeed_spi_segment_reg, >> @@ -859,6 +1132,10 @@ static const struct aspeed_spi_data >> ast2600_fmc_data = { >> .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, >> .we0 = 16, >> .ctl0 = CE0_CTRL_REG, >> + .timing = CE0_TIMING_COMPENSATION_REG, >> + .hclk_mask = 0xf0fff0ff, >> + .hdiv_max = 2, >> + .calibrate = aspeed_spi_ast2600_calibrate, >> .segment_start = aspeed_spi_segment_ast2600_start, >> .segment_end = aspeed_spi_segment_ast2600_end, >> .segment_reg = aspeed_spi_segment_ast2600_reg, >> @@ -870,6 +1147,10 @@ static const struct aspeed_spi_data >> ast2600_spi_data = { >> .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, >> .we0 = 16, >> .ctl0 = CE0_CTRL_REG, >> + .timing = CE0_TIMING_COMPENSATION_REG, >> + .hclk_mask = 0xf0fff0ff, >> + .hdiv_max = 2, >> + .calibrate = aspeed_spi_ast2600_calibrate, >> .segment_start = aspeed_spi_segment_ast2600_start, >> .segment_end = aspeed_spi_segment_ast2600_end, >> .segment_reg = aspeed_spi_segment_ast2600_reg, >> -- >> 2.34.1 > > > Best Wishes, > Chin-Ting
Hi Cédric, > -----Original Message----- > From: Cédric Le Goater <clg@kaod.org> > Sent: Wednesday, March 30, 2022 8:15 PM > To: Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>; linux-spi@vger.kernel.org; > linux-mtd@lists.infradead.org > Subject: Re: [PATCH v4 08/11] spi: aspeed: Calibrate read timings > > On 3/30/22 13:53, Chin-Ting Kuo wrote: > > Hi Cédric Le, > > > >> -----Original Message----- > >> From: Cédric Le Goater <clg@kaod.org> > >> Sent: Friday, March 25, 2022 6:09 PM > >> To: linux-spi@vger.kernel.org; linux-mtd@lists.infradead.org > >> Subject: [PATCH v4 08/11] spi: aspeed: Calibrate read timings > >> > >> To accommodate the different response time of SPI transfers on > >> different boards and different SPI NOR devices, the Aspeed > >> controllers provide a set of Read Timing Compensation registers to > >> tune the timing delays depending on the frequency being used. The > >> AST2600 SoC has one of these registers per device. On the AST2500 and > >> AST2400 SoCs, the timing register is shared by all devices which is > problematic to get good results other than for one device. > >> > >> The algorithm first reads a golden buffer at low speed and then > >> performs reads with different clocks and delay cycle settings to find > >> a breaking point. This selects a default good frequency for the CEx control > register. > >> The current settings are a bit optimistic as we pick the first delay > >> giving good results. A safer approach would be to determine an > >> interval and choose the middle value. > >> > >> Calibration is performed when the direct mapping for reads is created. > >> Since the underlying spi-nor object needs to be initialized to create > >> the spi_mem operation for direct mapping, we should be fine. Having a > >> specific API would clarify the requirements though. > >> > >> Cc: Pratyush Yadav <p.yadav@ti.com> > >> Reviewed-by: Joel Stanley <joel@jms.id.au> > >> Tested-by: Joel Stanley <joel@jms.id.au> > >> Tested-by: Tao Ren <rentao.bupt@gmail.com> > >> Signed-off-by: Cédric Le Goater <clg@kaod.org> > >> --- > >> drivers/spi/spi-aspeed-smc.c | 281 > >> +++++++++++++++++++++++++++++++++++ > >> 1 file changed, 281 insertions(+) > >> > >> diff --git a/drivers/spi/spi-aspeed-smc.c > >> b/drivers/spi/spi-aspeed-smc.c index > >> 7f306da7c44e..660451667a39 100644 > >> --- a/drivers/spi/spi-aspeed-smc.c > >> +++ b/drivers/spi/spi-aspeed-smc.c > >> @@ -33,6 +33,8 @@ > >> #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only > */ > >> #define CTRL_IO_DUMMY_SET(dummy) \ > >> (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6)) > >> +#define CTRL_FREQ_SEL_SHIFT 8 > >> +#define CTRL_FREQ_SEL_MASK GENMASK(11, > >> CTRL_FREQ_SEL_SHIFT) > >> #define CTRL_CE_STOP_ACTIVE BIT(2) > >> #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0) > >> #define CTRL_IO_MODE_NORMAL 0x0 > >> @@ -45,6 +47,9 @@ > >> /* CEx Address Decoding Range Register */ > >> #define CE0_SEGMENT_ADDR_REG 0x30 > >> > >> +/* CEx Read timing compensation register */ > >> +#define CE0_TIMING_COMPENSATION_REG 0x94 > >> + > >> enum aspeed_spi_ctl_reg_value { > >> ASPEED_SPI_BASE, > >> ASPEED_SPI_READ, > >> @@ -70,10 +75,15 @@ struct aspeed_spi_data { > >> bool hastype; > >> u32 mode_bits; > >> u32 we0; > >> + u32 timing; > >> + u32 hclk_mask; > >> + u32 hdiv_max; > >> > >> u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg); > >> u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg); > >> u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end); > >> + int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv, > >> + const u8 *golden_buf, u8 *test_buf); > >> }; > >> > >> #define ASPEED_SPI_MAX_NUM_CS 5 > >> @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct > >> aspeed_spi_chip *chip, > >> return 0; > >> } > >> > >> +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); > >> + > >> static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc > *desc) { > >> struct aspeed_spi *aspi = > >> spi_controller_get_devdata(desc->mem->spi->master); > >> @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct > >> spi_mem_dirmap_desc *desc) > >> chip->ctl_val[ASPEED_SPI_READ] = ctl_val; > >> writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > >> > >> + ret = aspeed_spi_do_calibration(chip); > >> + > >> dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", > >> chip->cs, op->data.buswidth, > chip->ctl_val[ASPEED_SPI_READ]); > >> > >> @@ -812,6 +826,249 @@ static u32 > >> aspeed_spi_segment_ast2600_reg(struct > >> aspeed_spi *aspi, > >> ((end - 1) & AST2600_SEG_ADDR_MASK); > >> } > >> > >> +/* > >> + * Read timing compensation sequences */ > >> + > >> +#define CALIBRATE_BUF_SIZE SZ_16K > >> + > >> +static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip, > >> + const u8 *golden_buf, u8 *test_buf) { > >> + int i; > >> + > >> + for (i = 0; i < 10; i++) { > >> + memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); > >> + if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) { #if > >> +defined(VERBOSE_DEBUG) > >> + print_hex_dump_bytes(DEVICE_NAME " fail: ", > >> DUMP_PREFIX_NONE, > >> + test_buf, 0x100); > >> +#endif > >> + return false; > >> + } > >> + } > >> + return true; > >> +} > >> + > >> +#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) > >> + > >> +/* > >> + * The timing register is shared by all devices. Only update for CE0. > >> + */ > >> +static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, > >> + const u8 *golden_buf, u8 *test_buf) { > >> + struct aspeed_spi *aspi = chip->aspi; > >> + const struct aspeed_spi_data *data = aspi->data; > >> + int i; > >> + int good_pass = -1, pass_count = 0; > >> + u32 shift = (hdiv - 1) << 2; > >> + u32 mask = ~(0xfu << shift); > >> + u32 fread_timing_val = 0; > >> + > >> + /* Try HCLK delay 0..5, each one with/without delay and look for a > >> + * good pair. > >> + */ > >> + for (i = 0; i < 12; i++) { > >> + bool pass; > >> + > >> + if (chip->cs == 0) { > >> + fread_timing_val &= mask; > >> + fread_timing_val |= FREAD_TPASS(i) << shift; > >> + writel(fread_timing_val, aspi->regs + data->timing); > >> + } > >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > >> + dev_dbg(aspi->dev, > >> + " * [%08x] %d HCLK delay, %dns DI delay : %s", > >> + fread_timing_val, i / 2, (i & 1) ? 0 : 4, > >> + pass ? "PASS" : "FAIL"); > >> + if (pass) { > >> + pass_count++; > >> + if (pass_count == 3) { > >> + good_pass = i - 1; > >> + break; > >> + } > >> + } else { > >> + pass_count = 0; > >> + } > >> + } > >> + > >> + /* No good setting for this frequency */ > >> + if (good_pass < 0) > >> + return -1; > >> + > >> + /* We have at least one pass of margin, let's use first pass */ > >> + if (chip->cs == 0) { > >> + fread_timing_val &= mask; > >> + fread_timing_val |= FREAD_TPASS(good_pass) << shift; > >> + writel(fread_timing_val, aspi->regs + data->timing); > >> + } > >> + dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]", > >> + good_pass, fread_timing_val); > >> + return 0; > >> +} > >> + > >> +static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size) { > >> + const u32 *tb32 = (const u32 *)test_buf; > >> + u32 i, cnt = 0; > >> + > >> + /* We check if we have enough words that are neither all 0 > >> + * nor all 1's so the calibration can be considered valid. > >> + * > >> + * I use an arbitrary threshold for now of 64 > >> + */ > >> + size >>= 2; > >> + for (i = 0; i < size; i++) { > >> + if (tb32[i] != 0 && tb32[i] != 0xffffffff) > >> + cnt++; > >> + } > >> + return cnt >= 64; > >> +} > >> + > >> +static const u32 aspeed_spi_hclk_divs[] = { > >> + 0xf, /* HCLK */ > >> + 0x7, /* HCLK/2 */ > >> + 0xe, /* HCLK/3 */ > >> + 0x6, /* HCLK/4 */ > >> + 0xd, /* HCLK/5 */ > >> +}; > >> + > >> +#define ASPEED_SPI_HCLK_DIV(i) \ > >> + (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT) > >> + > >> +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip) { > >> + struct aspeed_spi *aspi = chip->aspi; > >> + const struct aspeed_spi_data *data = aspi->data; > >> + u32 ahb_freq = aspi->clk_freq; > >> + u32 max_freq = chip->clk_freq; > >> + u32 ctl_val; > >> + u8 *golden_buf = NULL; > >> + u8 *test_buf = NULL; > >> + int i, rc, best_div = -1; > >> + > >> + dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz", > >> + ahb_freq / 1000000); > >> + > >> + /* > >> + * use the related low frequency to get check calibration data > >> + * and get golden data. > >> + */ > >> + ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask; > >> + writel(ctl_val, chip->ctl); > >> + > >> + test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL); > >> + if (!test_buf) > >> + return -ENOMEM; > >> + > >> + golden_buf = test_buf + CALIBRATE_BUF_SIZE; > >> + > >> + memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); > >> + if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) { > >> + dev_info(aspi->dev, "Calibration area too uniform, using low speed"); > >> + goto no_calib; > >> + } > >> + > >> +#if defined(VERBOSE_DEBUG) > >> + print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE, > >> + golden_buf, 0x100); > >> +#endif > >> + > >> + /* Now we iterate the HCLK dividers until we find our breaking point */ > >> + for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) { > >> + u32 tv, freq; > >> + > >> + freq = ahb_freq / i; > >> + if (freq > max_freq) > >> + continue; > >> + > >> + /* Set the timing */ > >> + tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i); > >> + writel(tv, chip->ctl); > >> + dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv); > >> + rc = data->calibrate(chip, i, golden_buf, test_buf); > >> + if (rc == 0) > >> + best_div = i; > >> + } > >> + > >> + /* Nothing found ? */ > >> + if (best_div < 0) { > >> + dev_warn(aspi->dev, "No good frequency, using dumb slow"); > >> + } else { > >> + dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", > >> best_div); > >> + > >> + /* Record the freq */ > >> + for (i = 0; i < ASPEED_SPI_MAX; i++) > >> + chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) | > >> + ASPEED_SPI_HCLK_DIV(best_div); > >> + } > >> + > >> +no_calib: > > > > - Maybe, if the calibration process is not executed, the frequency setting > calculated from max_frequency in the device tree can be filled in FMC10 > instead of using dumb slow one, 12.5MHz, always. > > Indeed. > > > For example, except for uniform content case, the calibration process will > be ignored when SPI clock frequency in the device tree is smaller than 40MHz. > > - The function, aspeed_2600_spi_clk_basic_setting, in [2] can be added to > support lower SPI clock frequency, e.g., 4MHz. > > For AST2600, SPI clock frequency can be calculated by > HCLK/(FMC10[27:24] + FMC10[11:8]). > > Could you please send patches on top of this series ? Here are the branches : > Of course. How do I provide you the patch? By private mail or send a PR? Besides, I may add a new callback function for this part due to difference between AST2500 and AST2600. Thanks. Chin-Ting > https://github.com/legoater/linux/commits/openbmc-5.15 > https://github.com/legoater/linux/commits/aspeed (mainline) > > I can include them when I resend a v5. > > Thanks, > > C. > > > > > >> + writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > >> + kfree(test_buf); > >> + return 0; > >> +} > >> + > >> +#define TIMING_DELAY_DI BIT(3) > >> +#define TIMING_DELAY_HCYCLE_MAX 5 > >> +#define TIMING_REG_AST2600(chip) \ > >> + ((chip)->aspi->regs + (chip)->aspi->data->timing + \ > >> + (chip)->cs * 4) > >> + > >> +static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip > >> +*chip, u32 > >> hdiv, > >> + const u8 *golden_buf, u8 *test_buf) { > >> + struct aspeed_spi *aspi = chip->aspi; > >> + int hcycle; > >> + u32 shift = (hdiv - 2) << 3; > >> + u32 mask = ~(0xfu << shift); > >> + u32 fread_timing_val = 0; > >> + > >> + for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) { > >> + int delay_ns; > >> + bool pass = false; > >> + > >> + fread_timing_val &= mask; > >> + fread_timing_val |= hcycle << shift; > >> + > >> + /* no DI input delay first */ > >> + writel(fread_timing_val, TIMING_REG_AST2600(chip)); > >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > >> + dev_dbg(aspi->dev, > >> + " * [%08x] %d HCLK delay, DI delay none : %s", > >> + fread_timing_val, hcycle, pass ? "PASS" : "FAIL"); > >> + if (pass) > >> + return 0; > >> + > >> + /* Add DI input delays */ > >> + fread_timing_val &= mask; > >> + fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift; > >> + > >> + for (delay_ns = 0; delay_ns < 0x10; delay_ns++) { > >> + fread_timing_val &= ~(0xf << (4 + shift)); > >> + fread_timing_val |= delay_ns << (4 + shift); > >> + > >> + writel(fread_timing_val, TIMING_REG_AST2600(chip)); > >> + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); > >> + dev_dbg(aspi->dev, > >> + " * [%08x] %d HCLK delay, DI delay %d.%dns : %s", > >> + fread_timing_val, hcycle, (delay_ns + 1) / 2, > >> + (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL"); > >> + /* > >> + * TODO: This is optimistic. We should look > >> + * for a working interval and save the middle > >> + * value in the read timing register. > >> + */ > >> + if (pass) > >> + return 0; > >> + } > >> + } > >> + > >> + /* No good setting for this frequency */ > >> + return -1; > >> +} > >> + > >> /* > >> * Platform definitions > >> */ > >> @@ -820,6 +1077,10 @@ static const struct aspeed_spi_data > >> ast2400_fmc_data = { > >> .hastype = true, > >> .we0 = 16, > >> .ctl0 = CE0_CTRL_REG, > >> + .timing = CE0_TIMING_COMPENSATION_REG, > >> + .hclk_mask = 0xfffff0ff, > >> + .hdiv_max = 1, > >> + .calibrate = aspeed_spi_calibrate, > >> .segment_start = aspeed_spi_segment_start, > >> .segment_end = aspeed_spi_segment_end, > >> .segment_reg = aspeed_spi_segment_reg, > >> @@ -830,6 +1091,10 @@ static const struct aspeed_spi_data > >> ast2400_spi_data = { > >> .hastype = false, > >> .we0 = 0, > >> .ctl0 = 0x04, > >> + .timing = 0x14, > >> + .hclk_mask = 0xfffff0ff, > >> + .hdiv_max = 1, > >> + .calibrate = aspeed_spi_calibrate, > >> /* No segment registers */ > >> }; > >> > >> @@ -838,6 +1103,10 @@ static const struct aspeed_spi_data > >> ast2500_fmc_data = { > >> .hastype = true, > >> .we0 = 16, > >> .ctl0 = CE0_CTRL_REG, > >> + .timing = CE0_TIMING_COMPENSATION_REG, > >> + .hclk_mask = 0xfffff0ff, > >> + .hdiv_max = 1, > >> + .calibrate = aspeed_spi_calibrate, > >> .segment_start = aspeed_spi_segment_start, > >> .segment_end = aspeed_spi_segment_end, > >> .segment_reg = aspeed_spi_segment_reg, > >> @@ -848,6 +1117,10 @@ static const struct aspeed_spi_data > >> ast2500_spi_data = { > >> .hastype = false, > >> .we0 = 16, > >> .ctl0 = CE0_CTRL_REG, > >> + .timing = CE0_TIMING_COMPENSATION_REG, > >> + .hclk_mask = 0xfffff0ff, > >> + .hdiv_max = 1, > >> + .calibrate = aspeed_spi_calibrate, > >> .segment_start = aspeed_spi_segment_start, > >> .segment_end = aspeed_spi_segment_end, > >> .segment_reg = aspeed_spi_segment_reg, > >> @@ -859,6 +1132,10 @@ static const struct aspeed_spi_data > >> ast2600_fmc_data = { > >> .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, > >> .we0 = 16, > >> .ctl0 = CE0_CTRL_REG, > >> + .timing = CE0_TIMING_COMPENSATION_REG, > >> + .hclk_mask = 0xf0fff0ff, > >> + .hdiv_max = 2, > >> + .calibrate = aspeed_spi_ast2600_calibrate, > >> .segment_start = aspeed_spi_segment_ast2600_start, > >> .segment_end = aspeed_spi_segment_ast2600_end, > >> .segment_reg = aspeed_spi_segment_ast2600_reg, > >> @@ -870,6 +1147,10 @@ static const struct aspeed_spi_data > >> ast2600_spi_data = { > >> .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, > >> .we0 = 16, > >> .ctl0 = CE0_CTRL_REG, > >> + .timing = CE0_TIMING_COMPENSATION_REG, > >> + .hclk_mask = 0xf0fff0ff, > >> + .hdiv_max = 2, > >> + .calibrate = aspeed_spi_ast2600_calibrate, > >> .segment_start = aspeed_spi_segment_ast2600_start, > >> .segment_end = aspeed_spi_segment_ast2600_end, > >> .segment_reg = aspeed_spi_segment_ast2600_reg, > >> -- > >> 2.34.1 > > > > > > Best Wishes, > > Chin-Ting
Hello Chin-Ting, >>> - Maybe, if the calibration process is not executed, the frequency setting >> calculated from max_frequency in the device tree can be filled in FMC10 >> instead of using dumb slow one, 12.5MHz, always. >> >> Indeed. >> >>> For example, except for uniform content case, the calibration process will >> be ignored when SPI clock frequency in the device tree is smaller than 40MHz. >>> - The function, aspeed_2600_spi_clk_basic_setting, in [2] can be added to >> support lower SPI clock frequency, e.g., 4MHz. >>> For AST2600, SPI clock frequency can be calculated by >> HCLK/(FMC10[27:24] + FMC10[11:8]). >> >> Could you please send patches on top of this series ? Here are the branches : >> > > Of course. How do I provide you the patch? By private mail or send a PR? We should discuss first by email on the openbmc@ and linux-aspeed@ lists. Please send as follow ups on top of v4. Using the openbmc tree should be easier : https://github.com/legoater/linux/commits/openbmc-5.15 > Besides, I may add a new callback function for this part due to difference > between AST2500 and AST2600. ok. Given all the reviews and tests that were done on AST2400, AST2500, AST2600 platforms, I will be careful not to break the existing proposal. Thanks, C.
Hi Cédric, > -----Original Message----- > From: Cédric Le Goater <clg@kaod.org> > Sent: Thursday, March 31, 2022 3:16 PM > To: Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>; linux-spi@vger.kernel.org; > linux-mtd@lists.infradead.org > Subject: Re: [PATCH v4 08/11] spi: aspeed: Calibrate read timings > > Hello Chin-Ting, > > >>> - Maybe, if the calibration process is not executed, the frequency > >>> setting > >> calculated from max_frequency in the device tree can be filled in > >> FMC10 instead of using dumb slow one, 12.5MHz, always. > >> > >> Indeed. > >> > >>> For example, except for uniform content case, the calibration > >>> process will > >> be ignored when SPI clock frequency in the device tree is smaller than > 40MHz. > >>> - The function, aspeed_2600_spi_clk_basic_setting, in [2] can be > >>> added to > >> support lower SPI clock frequency, e.g., 4MHz. > >>> For AST2600, SPI clock frequency can be calculated by > >> HCLK/(FMC10[27:24] + FMC10[11:8]). > >> > >> Could you please send patches on top of this series ? Here are the > branches : > >> > > > > Of course. How do I provide you the patch? By private mail or send a PR? > > We should discuss first by email on the openbmc@ and linux-aspeed@ lists. > Please send as follow ups on top of v4. > Okay. > Using the openbmc tree should be easier : > > https://github.com/legoater/linux/commits/openbmc-5.15 > > > Besides, I may add a new callback function for this part due to > > difference between AST2500 and AST2600. > > ok. > > Given all the reviews and tests that were done on AST2400, AST2500, AST2600 > platforms, I will be careful not to break the existing proposal. > > Thanks, > > C.
Hi, On 25/03/22 11:08AM, Cédric Le Goater wrote: > To accommodate the different response time of SPI transfers on different > boards and different SPI NOR devices, the Aspeed controllers provide a > set of Read Timing Compensation registers to tune the timing delays > depending on the frequency being used. The AST2600 SoC has one of these > registers per device. On the AST2500 and AST2400 SoCs, the timing > register is shared by all devices which is problematic to get good > results other than for one device. > > The algorithm first reads a golden buffer at low speed and then performs > reads with different clocks and delay cycle settings to find a breaking > point. This selects a default good frequency for the CEx control register. > The current settings are a bit optimistic as we pick the first delay giving > good results. A safer approach would be to determine an interval and > choose the middle value. > > Calibration is performed when the direct mapping for reads is created. > Since the underlying spi-nor object needs to be initialized to create > the spi_mem operation for direct mapping, we should be fine. Having a > specific API would clarify the requirements though. > > Cc: Pratyush Yadav <p.yadav@ti.com> > Reviewed-by: Joel Stanley <joel@jms.id.au> > Tested-by: Joel Stanley <joel@jms.id.au> > Tested-by: Tao Ren <rentao.bupt@gmail.com> > Signed-off-by: Cédric Le Goater <clg@kaod.org> > --- > drivers/spi/spi-aspeed-smc.c | 281 +++++++++++++++++++++++++++++++++++ > 1 file changed, 281 insertions(+) > [...] > @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip, > return 0; > } > > +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); > + > static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) > { > struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master); > @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) > chip->ctl_val[ASPEED_SPI_READ] = ctl_val; > writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > > + ret = aspeed_spi_do_calibration(chip); > + I am still not convinced this is a good idea. The API does not say anywhere what dirmap_create must be called after the flash is completely initialized, though that is what is done currently in practice. I think an explicit API to mark flash as "ready for calibration" would be a better idea. Tudor/Mark/Miquel, what do you think? > dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", > chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]); > [...]
On 3/31/22 18:41, Pratyush Yadav wrote: > Hi, > > On 25/03/22 11:08AM, Cédric Le Goater wrote: >> To accommodate the different response time of SPI transfers on different >> boards and different SPI NOR devices, the Aspeed controllers provide a >> set of Read Timing Compensation registers to tune the timing delays >> depending on the frequency being used. The AST2600 SoC has one of these >> registers per device. On the AST2500 and AST2400 SoCs, the timing >> register is shared by all devices which is problematic to get good >> results other than for one device. >> >> The algorithm first reads a golden buffer at low speed and then performs >> reads with different clocks and delay cycle settings to find a breaking >> point. This selects a default good frequency for the CEx control register. >> The current settings are a bit optimistic as we pick the first delay giving >> good results. A safer approach would be to determine an interval and >> choose the middle value. >> >> Calibration is performed when the direct mapping for reads is created. >> Since the underlying spi-nor object needs to be initialized to create >> the spi_mem operation for direct mapping, we should be fine. Having a >> specific API would clarify the requirements though. >> >> Cc: Pratyush Yadav <p.yadav@ti.com> >> Reviewed-by: Joel Stanley <joel@jms.id.au> >> Tested-by: Joel Stanley <joel@jms.id.au> >> Tested-by: Tao Ren <rentao.bupt@gmail.com> >> Signed-off-by: Cédric Le Goater <clg@kaod.org> >> --- >> drivers/spi/spi-aspeed-smc.c | 281 +++++++++++++++++++++++++++++++++++ >> 1 file changed, 281 insertions(+) >> > [...] >> @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip, >> return 0; >> } >> >> +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); >> + >> static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) >> { >> struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master); >> @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) >> chip->ctl_val[ASPEED_SPI_READ] = ctl_val; >> writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); >> >> + ret = aspeed_spi_do_calibration(chip); >> + > > I am still not convinced this is a good idea. The API does not say > anywhere what dirmap_create must be called after the flash is completely > initialized, though that is what is done currently in practice. Yes because we wouldn't have a correct 'spi_mem_dirmap_info' if it wasn't the case. May be change the documentation ? > I think > an explicit API to mark flash as "ready for calibration" would be a > better idea. OK. Since the above is a oneliner, it should not be a problem to move it under a new handler if needed. The dirmap_create() handler expects the spi-mem descriptor and the field 'desc->info.op_tmpl' to be correctly initialized in order to compute the control register value, which is a requirement for dirmap_read(). The calibration sequence simply comes after. AFAICT, there is nothing incorrect today. > Tudor/Mark/Miquel, what do you think? Thanks, C.
On 04/04/22 09:30AM, Cédric Le Goater wrote: > On 3/31/22 18:41, Pratyush Yadav wrote: > > Hi, > > > > On 25/03/22 11:08AM, Cédric Le Goater wrote: > > > To accommodate the different response time of SPI transfers on different > > > boards and different SPI NOR devices, the Aspeed controllers provide a > > > set of Read Timing Compensation registers to tune the timing delays > > > depending on the frequency being used. The AST2600 SoC has one of these > > > registers per device. On the AST2500 and AST2400 SoCs, the timing > > > register is shared by all devices which is problematic to get good > > > results other than for one device. > > > > > > The algorithm first reads a golden buffer at low speed and then performs > > > reads with different clocks and delay cycle settings to find a breaking > > > point. This selects a default good frequency for the CEx control register. > > > The current settings are a bit optimistic as we pick the first delay giving > > > good results. A safer approach would be to determine an interval and > > > choose the middle value. > > > > > > Calibration is performed when the direct mapping for reads is created. > > > Since the underlying spi-nor object needs to be initialized to create > > > the spi_mem operation for direct mapping, we should be fine. Having a > > > specific API would clarify the requirements though. > > > > > > Cc: Pratyush Yadav <p.yadav@ti.com> > > > Reviewed-by: Joel Stanley <joel@jms.id.au> > > > Tested-by: Joel Stanley <joel@jms.id.au> > > > Tested-by: Tao Ren <rentao.bupt@gmail.com> > > > Signed-off-by: Cédric Le Goater <clg@kaod.org> > > > --- > > > drivers/spi/spi-aspeed-smc.c | 281 +++++++++++++++++++++++++++++++++++ > > > 1 file changed, 281 insertions(+) > > > > > [...] > > > @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip, > > > return 0; > > > } > > > +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); > > > + > > > static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) > > > { > > > struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master); > > > @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) > > > chip->ctl_val[ASPEED_SPI_READ] = ctl_val; > > > writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); > > > + ret = aspeed_spi_do_calibration(chip); > > > + > > > > I am still not convinced this is a good idea. The API does not say > > anywhere what dirmap_create must be called after the flash is completely > > initialized, though that is what is done currently in practice. > > Yes because we wouldn't have a correct 'spi_mem_dirmap_info' if it wasn't > the case. May be change the documentation ? SPI NOR knows what protocol and opcodes it would use before it actually puts the flash in that mode. So in theory it could call dirmap_create() before it has put the flash in say 8D-8D-8D mode. I don't see much reason to do so in practice, but who knows, that might change. This is why I would like to hear what other people think. > > > I think > > an explicit API to mark flash as "ready for calibration" would be a > > better idea. > > OK. Since the above is a oneliner, it should not be a problem to move > it under a new handler if needed. > > The dirmap_create() handler expects the spi-mem descriptor and the field > 'desc->info.op_tmpl' to be correctly initialized in order to compute the > control register value, which is a requirement for dirmap_read(). The > calibration sequence simply comes after. > > AFAICT, there is nothing incorrect today. In practice, no there is nothing incorrect. But as I explained above, it is certainly possible to call dirmap_create() before the flash is ready. > > > Tudor/Mark/Miquel, what do you think? > > > Thanks, > > C.
diff --git a/drivers/spi/spi-aspeed-smc.c b/drivers/spi/spi-aspeed-smc.c index 7f306da7c44e..660451667a39 100644 --- a/drivers/spi/spi-aspeed-smc.c +++ b/drivers/spi/spi-aspeed-smc.c @@ -33,6 +33,8 @@ #define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */ #define CTRL_IO_DUMMY_SET(dummy) \ (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6)) +#define CTRL_FREQ_SEL_SHIFT 8 +#define CTRL_FREQ_SEL_MASK GENMASK(11, CTRL_FREQ_SEL_SHIFT) #define CTRL_CE_STOP_ACTIVE BIT(2) #define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0) #define CTRL_IO_MODE_NORMAL 0x0 @@ -45,6 +47,9 @@ /* CEx Address Decoding Range Register */ #define CE0_SEGMENT_ADDR_REG 0x30 +/* CEx Read timing compensation register */ +#define CE0_TIMING_COMPENSATION_REG 0x94 + enum aspeed_spi_ctl_reg_value { ASPEED_SPI_BASE, ASPEED_SPI_READ, @@ -70,10 +75,15 @@ struct aspeed_spi_data { bool hastype; u32 mode_bits; u32 we0; + u32 timing; + u32 hclk_mask; + u32 hdiv_max; u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg); u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg); u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end); + int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv, + const u8 *golden_buf, u8 *test_buf); }; #define ASPEED_SPI_MAX_NUM_CS 5 @@ -517,6 +527,8 @@ static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip, return 0; } +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip); + static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master); @@ -565,6 +577,8 @@ static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) chip->ctl_val[ASPEED_SPI_READ] = ctl_val; writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); + ret = aspeed_spi_do_calibration(chip); + dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n", chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]); @@ -812,6 +826,249 @@ static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi, ((end - 1) & AST2600_SEG_ADDR_MASK); } +/* + * Read timing compensation sequences + */ + +#define CALIBRATE_BUF_SIZE SZ_16K + +static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip, + const u8 *golden_buf, u8 *test_buf) +{ + int i; + + for (i = 0; i < 10; i++) { + memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); + if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) { +#if defined(VERBOSE_DEBUG) + print_hex_dump_bytes(DEVICE_NAME " fail: ", DUMP_PREFIX_NONE, + test_buf, 0x100); +#endif + return false; + } + } + return true; +} + +#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8)) + +/* + * The timing register is shared by all devices. Only update for CE0. + */ +static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, + const u8 *golden_buf, u8 *test_buf) +{ + struct aspeed_spi *aspi = chip->aspi; + const struct aspeed_spi_data *data = aspi->data; + int i; + int good_pass = -1, pass_count = 0; + u32 shift = (hdiv - 1) << 2; + u32 mask = ~(0xfu << shift); + u32 fread_timing_val = 0; + + /* Try HCLK delay 0..5, each one with/without delay and look for a + * good pair. + */ + for (i = 0; i < 12; i++) { + bool pass; + + if (chip->cs == 0) { + fread_timing_val &= mask; + fread_timing_val |= FREAD_TPASS(i) << shift; + writel(fread_timing_val, aspi->regs + data->timing); + } + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); + dev_dbg(aspi->dev, + " * [%08x] %d HCLK delay, %dns DI delay : %s", + fread_timing_val, i / 2, (i & 1) ? 0 : 4, + pass ? "PASS" : "FAIL"); + if (pass) { + pass_count++; + if (pass_count == 3) { + good_pass = i - 1; + break; + } + } else { + pass_count = 0; + } + } + + /* No good setting for this frequency */ + if (good_pass < 0) + return -1; + + /* We have at least one pass of margin, let's use first pass */ + if (chip->cs == 0) { + fread_timing_val &= mask; + fread_timing_val |= FREAD_TPASS(good_pass) << shift; + writel(fread_timing_val, aspi->regs + data->timing); + } + dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]", + good_pass, fread_timing_val); + return 0; +} + +static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size) +{ + const u32 *tb32 = (const u32 *)test_buf; + u32 i, cnt = 0; + + /* We check if we have enough words that are neither all 0 + * nor all 1's so the calibration can be considered valid. + * + * I use an arbitrary threshold for now of 64 + */ + size >>= 2; + for (i = 0; i < size; i++) { + if (tb32[i] != 0 && tb32[i] != 0xffffffff) + cnt++; + } + return cnt >= 64; +} + +static const u32 aspeed_spi_hclk_divs[] = { + 0xf, /* HCLK */ + 0x7, /* HCLK/2 */ + 0xe, /* HCLK/3 */ + 0x6, /* HCLK/4 */ + 0xd, /* HCLK/5 */ +}; + +#define ASPEED_SPI_HCLK_DIV(i) \ + (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT) + +static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip) +{ + struct aspeed_spi *aspi = chip->aspi; + const struct aspeed_spi_data *data = aspi->data; + u32 ahb_freq = aspi->clk_freq; + u32 max_freq = chip->clk_freq; + u32 ctl_val; + u8 *golden_buf = NULL; + u8 *test_buf = NULL; + int i, rc, best_div = -1; + + dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz", + ahb_freq / 1000000); + + /* + * use the related low frequency to get check calibration data + * and get golden data. + */ + ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask; + writel(ctl_val, chip->ctl); + + test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL); + if (!test_buf) + return -ENOMEM; + + golden_buf = test_buf + CALIBRATE_BUF_SIZE; + + memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE); + if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) { + dev_info(aspi->dev, "Calibration area too uniform, using low speed"); + goto no_calib; + } + +#if defined(VERBOSE_DEBUG) + print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE, + golden_buf, 0x100); +#endif + + /* Now we iterate the HCLK dividers until we find our breaking point */ + for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) { + u32 tv, freq; + + freq = ahb_freq / i; + if (freq > max_freq) + continue; + + /* Set the timing */ + tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i); + writel(tv, chip->ctl); + dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv); + rc = data->calibrate(chip, i, golden_buf, test_buf); + if (rc == 0) + best_div = i; + } + + /* Nothing found ? */ + if (best_div < 0) { + dev_warn(aspi->dev, "No good frequency, using dumb slow"); + } else { + dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div); + + /* Record the freq */ + for (i = 0; i < ASPEED_SPI_MAX; i++) + chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) | + ASPEED_SPI_HCLK_DIV(best_div); + } + +no_calib: + writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl); + kfree(test_buf); + return 0; +} + +#define TIMING_DELAY_DI BIT(3) +#define TIMING_DELAY_HCYCLE_MAX 5 +#define TIMING_REG_AST2600(chip) \ + ((chip)->aspi->regs + (chip)->aspi->data->timing + \ + (chip)->cs * 4) + +static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv, + const u8 *golden_buf, u8 *test_buf) +{ + struct aspeed_spi *aspi = chip->aspi; + int hcycle; + u32 shift = (hdiv - 2) << 3; + u32 mask = ~(0xfu << shift); + u32 fread_timing_val = 0; + + for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) { + int delay_ns; + bool pass = false; + + fread_timing_val &= mask; + fread_timing_val |= hcycle << shift; + + /* no DI input delay first */ + writel(fread_timing_val, TIMING_REG_AST2600(chip)); + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); + dev_dbg(aspi->dev, + " * [%08x] %d HCLK delay, DI delay none : %s", + fread_timing_val, hcycle, pass ? "PASS" : "FAIL"); + if (pass) + return 0; + + /* Add DI input delays */ + fread_timing_val &= mask; + fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift; + + for (delay_ns = 0; delay_ns < 0x10; delay_ns++) { + fread_timing_val &= ~(0xf << (4 + shift)); + fread_timing_val |= delay_ns << (4 + shift); + + writel(fread_timing_val, TIMING_REG_AST2600(chip)); + pass = aspeed_spi_check_reads(chip, golden_buf, test_buf); + dev_dbg(aspi->dev, + " * [%08x] %d HCLK delay, DI delay %d.%dns : %s", + fread_timing_val, hcycle, (delay_ns + 1) / 2, + (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL"); + /* + * TODO: This is optimistic. We should look + * for a working interval and save the middle + * value in the read timing register. + */ + if (pass) + return 0; + } + } + + /* No good setting for this frequency */ + return -1; +} + /* * Platform definitions */ @@ -820,6 +1077,10 @@ static const struct aspeed_spi_data ast2400_fmc_data = { .hastype = true, .we0 = 16, .ctl0 = CE0_CTRL_REG, + .timing = CE0_TIMING_COMPENSATION_REG, + .hclk_mask = 0xfffff0ff, + .hdiv_max = 1, + .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, @@ -830,6 +1091,10 @@ static const struct aspeed_spi_data ast2400_spi_data = { .hastype = false, .we0 = 0, .ctl0 = 0x04, + .timing = 0x14, + .hclk_mask = 0xfffff0ff, + .hdiv_max = 1, + .calibrate = aspeed_spi_calibrate, /* No segment registers */ }; @@ -838,6 +1103,10 @@ static const struct aspeed_spi_data ast2500_fmc_data = { .hastype = true, .we0 = 16, .ctl0 = CE0_CTRL_REG, + .timing = CE0_TIMING_COMPENSATION_REG, + .hclk_mask = 0xfffff0ff, + .hdiv_max = 1, + .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, @@ -848,6 +1117,10 @@ static const struct aspeed_spi_data ast2500_spi_data = { .hastype = false, .we0 = 16, .ctl0 = CE0_CTRL_REG, + .timing = CE0_TIMING_COMPENSATION_REG, + .hclk_mask = 0xfffff0ff, + .hdiv_max = 1, + .calibrate = aspeed_spi_calibrate, .segment_start = aspeed_spi_segment_start, .segment_end = aspeed_spi_segment_end, .segment_reg = aspeed_spi_segment_reg, @@ -859,6 +1132,10 @@ static const struct aspeed_spi_data ast2600_fmc_data = { .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, .we0 = 16, .ctl0 = CE0_CTRL_REG, + .timing = CE0_TIMING_COMPENSATION_REG, + .hclk_mask = 0xf0fff0ff, + .hdiv_max = 2, + .calibrate = aspeed_spi_ast2600_calibrate, .segment_start = aspeed_spi_segment_ast2600_start, .segment_end = aspeed_spi_segment_ast2600_end, .segment_reg = aspeed_spi_segment_ast2600_reg, @@ -870,6 +1147,10 @@ static const struct aspeed_spi_data ast2600_spi_data = { .mode_bits = SPI_RX_QUAD | SPI_RX_QUAD, .we0 = 16, .ctl0 = CE0_CTRL_REG, + .timing = CE0_TIMING_COMPENSATION_REG, + .hclk_mask = 0xf0fff0ff, + .hdiv_max = 2, + .calibrate = aspeed_spi_ast2600_calibrate, .segment_start = aspeed_spi_segment_ast2600_start, .segment_end = aspeed_spi_segment_ast2600_end, .segment_reg = aspeed_spi_segment_ast2600_reg,