diff mbox series

[bpf-next,v2] bpftool: Probe for memcg-based accounting before bumping rlimit

Message ID 20220629111351.47699-1-quentin@isovalent.com (mailing list archive)
State Accepted
Commit f0cf642c56b76dfbbb5f2be67fa180191d5ab0ef
Delegated to: BPF
Headers show
Series [bpf-next,v2] bpftool: Probe for memcg-based accounting before bumping rlimit | expand

Checks

Context Check Description
netdev/tree_selection success Clearly marked for bpf-next
netdev/fixes_present success Fixes tag not required for -next series
netdev/subject_prefix success Link
netdev/cover_letter success Single patches do not need cover letters
netdev/patch_count success Link
netdev/header_inline success No static functions without inline keyword in header files
netdev/build_32bit success Errors and warnings before: 0 this patch: 0
netdev/cc_maintainers success CCed 11 of 11 maintainers
netdev/build_clang success Errors and warnings before: 0 this patch: 0
netdev/module_param success Was 0 now: 0
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/check_selftest success No net selftest shell script
netdev/verify_fixes success No Fixes tag
netdev/build_allmodconfig_warn success Errors and warnings before: 0 this patch: 0
netdev/checkpatch success total: 0 errors, 0 warnings, 0 checks, 93 lines checked
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0
bpf/vmtest-bpf-next-VM_Test-1 success Logs for Kernel LATEST on ubuntu-latest with gcc
bpf/vmtest-bpf-next-VM_Test-2 success Logs for Kernel LATEST on ubuntu-latest with llvm-15
bpf/vmtest-bpf-next-PR fail PR summary
bpf/vmtest-bpf-next-VM_Test-3 fail Logs for Kernel LATEST on z15 with gcc

Commit Message

Quentin Monnet June 29, 2022, 11:13 a.m. UTC
Bpftool used to bump the memlock rlimit to make sure to be able to load
BPF objects. After the kernel has switched to memcg-based memory
accounting [0] in 5.11, bpftool has relied on libbpf to probe the system
for memcg-based accounting support and for raising the rlimit if
necessary [1]. But this was later reverted, because the probe would
sometimes fail, resulting in bpftool not being able to load all required
objects [2].

Here we add a more efficient probe, in bpftool itself. We first lower
the rlimit to 0, then we attempt to load a BPF object (and finally reset
the rlimit): if the load succeeds, then memcg-based memory accounting is
supported.

This approach was earlier proposed for the probe in libbpf itself [3],
but given that the library may be used in multithreaded applications,
the probe could have undesirable consequences if one thread attempts to
lock kernel memory while memlock rlimit is at 0. Since bpftool is
single-threaded and the rlimit is process-based, this is fine to do in
bpftool itself.

This probe was inspired by the similar one from the cilium/ebpf Go
library [4].

v2:
- Simply use sizeof(attr) instead of hardcoding a size via
  offsetofend().
- Set r0 = 0 before returning in sample program.

[0] commit 97306be45fbe ("Merge branch 'switch to memcg-based memory accounting'")
[1] commit a777e18f1bcd ("bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK")
[2] commit 6b4384ff1088 ("Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK"")
[3] https://lore.kernel.org/bpf/20220609143614.97837-1-quentin@isovalent.com/t/#u
[4] https://github.com/cilium/ebpf/blob/v0.9.0/rlimit/rlimit.go#L39

Cc: Stanislav Fomichev <sdf@google.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
---
 tools/bpf/bpftool/common.c | 71 ++++++++++++++++++++++++++++++++++++--
 1 file changed, 68 insertions(+), 3 deletions(-)

Comments

Yafang Shao June 29, 2022, 2:24 p.m. UTC | #1
On Wed, Jun 29, 2022 at 7:13 PM Quentin Monnet <quentin@isovalent.com> wrote:
>
> Bpftool used to bump the memlock rlimit to make sure to be able to load
> BPF objects. After the kernel has switched to memcg-based memory
> accounting [0] in 5.11, bpftool has relied on libbpf to probe the system
> for memcg-based accounting support and for raising the rlimit if
> necessary [1]. But this was later reverted, because the probe would
> sometimes fail, resulting in bpftool not being able to load all required
> objects [2].
>
> Here we add a more efficient probe, in bpftool itself. We first lower
> the rlimit to 0, then we attempt to load a BPF object (and finally reset
> the rlimit): if the load succeeds, then memcg-based memory accounting is
> supported.
>
> This approach was earlier proposed for the probe in libbpf itself [3],
> but given that the library may be used in multithreaded applications,
> the probe could have undesirable consequences if one thread attempts to
> lock kernel memory while memlock rlimit is at 0. Since bpftool is
> single-threaded and the rlimit is process-based, this is fine to do in
> bpftool itself.
>
> This probe was inspired by the similar one from the cilium/ebpf Go
> library [4].
>
> v2:
> - Simply use sizeof(attr) instead of hardcoding a size via
>   offsetofend().
> - Set r0 = 0 before returning in sample program.
>
> [0] commit 97306be45fbe ("Merge branch 'switch to memcg-based memory accounting'")
> [1] commit a777e18f1bcd ("bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK")
> [2] commit 6b4384ff1088 ("Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK"")
> [3] https://lore.kernel.org/bpf/20220609143614.97837-1-quentin@isovalent.com/t/#u
> [4] https://github.com/cilium/ebpf/blob/v0.9.0/rlimit/rlimit.go#L39
>
> Cc: Stanislav Fomichev <sdf@google.com>
> Cc: Yafang Shao <laoar.shao@gmail.com>
> Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
> Signed-off-by: Quentin Monnet <quentin@isovalent.com>

LGTM

Acked-by: Yafang Shao <laoar.shao@gmail.com>

> ---
>  tools/bpf/bpftool/common.c | 71 ++++++++++++++++++++++++++++++++++++--
>  1 file changed, 68 insertions(+), 3 deletions(-)
>
> diff --git a/tools/bpf/bpftool/common.c b/tools/bpf/bpftool/common.c
> index a0d4acd7c54a..fc8172a4969a 100644
> --- a/tools/bpf/bpftool/common.c
> +++ b/tools/bpf/bpftool/common.c
> @@ -13,14 +13,17 @@
>  #include <stdlib.h>
>  #include <string.h>
>  #include <unistd.h>
> -#include <linux/limits.h>
> -#include <linux/magic.h>
>  #include <net/if.h>
>  #include <sys/mount.h>
>  #include <sys/resource.h>
>  #include <sys/stat.h>
>  #include <sys/vfs.h>
>
> +#include <linux/filter.h>
> +#include <linux/limits.h>
> +#include <linux/magic.h>
> +#include <linux/unistd.h>
> +
>  #include <bpf/bpf.h>
>  #include <bpf/hashmap.h>
>  #include <bpf/libbpf.h> /* libbpf_num_possible_cpus */
> @@ -73,11 +76,73 @@ static bool is_bpffs(char *path)
>         return (unsigned long)st_fs.f_type == BPF_FS_MAGIC;
>  }
>
> +/* Probe whether kernel switched from memlock-based (RLIMIT_MEMLOCK) to
> + * memcg-based memory accounting for BPF maps and programs. This was done in
> + * commit 97306be45fbe ("Merge branch 'switch to memcg-based memory
> + * accounting'"), in Linux 5.11.
> + *
> + * Libbpf also offers to probe for memcg-based accounting vs rlimit, but does
> + * so by checking for the availability of a given BPF helper and this has
> + * failed on some kernels with backports in the past, see commit 6b4384ff1088
> + * ("Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK"").
> + * Instead, we can probe by lowering the process-based rlimit to 0, trying to
> + * load a BPF object, and resetting the rlimit. If the load succeeds then
> + * memcg-based accounting is supported.
> + *
> + * This would be too dangerous to do in the library, because multithreaded
> + * applications might attempt to load items while the rlimit is at 0. Given
> + * that bpftool is single-threaded, this is fine to do here.
> + */
> +static bool known_to_need_rlimit(void)
> +{
> +       struct rlimit rlim_init, rlim_cur_zero = {};
> +       struct bpf_insn insns[] = {
> +               BPF_MOV64_IMM(BPF_REG_0, 0),
> +               BPF_EXIT_INSN(),
> +       };
> +       size_t insn_cnt = ARRAY_SIZE(insns);
> +       union bpf_attr attr;
> +       int prog_fd, err;
> +
> +       memset(&attr, 0, sizeof(attr));
> +       attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
> +       attr.insns = ptr_to_u64(insns);
> +       attr.insn_cnt = insn_cnt;
> +       attr.license = ptr_to_u64("GPL");
> +
> +       if (getrlimit(RLIMIT_MEMLOCK, &rlim_init))
> +               return false;
> +
> +       /* Drop the soft limit to zero. We maintain the hard limit to its
> +        * current value, because lowering it would be a permanent operation
> +        * for unprivileged users.
> +        */
> +       rlim_cur_zero.rlim_max = rlim_init.rlim_max;
> +       if (setrlimit(RLIMIT_MEMLOCK, &rlim_cur_zero))
> +               return false;
> +
> +       /* Do not use bpf_prog_load() from libbpf here, because it calls
> +        * bump_rlimit_memlock(), interfering with the current probe.
> +        */
> +       prog_fd = syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr));
> +       err = errno;
> +
> +       /* reset soft rlimit to its initial value */
> +       setrlimit(RLIMIT_MEMLOCK, &rlim_init);
> +
> +       if (prog_fd < 0)
> +               return err == EPERM;
> +
> +       close(prog_fd);
> +       return false;
> +}
> +
>  void set_max_rlimit(void)
>  {
>         struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
>
> -       setrlimit(RLIMIT_MEMLOCK, &rinf);
> +       if (known_to_need_rlimit())
> +               setrlimit(RLIMIT_MEMLOCK, &rinf);
>  }
>
>  static int
> --
> 2.34.1
>
Stanislav Fomichev June 29, 2022, 4:19 p.m. UTC | #2
On 06/29, Quentin Monnet wrote:
> Bpftool used to bump the memlock rlimit to make sure to be able to load
> BPF objects. After the kernel has switched to memcg-based memory
> accounting [0] in 5.11, bpftool has relied on libbpf to probe the system
> for memcg-based accounting support and for raising the rlimit if
> necessary [1]. But this was later reverted, because the probe would
> sometimes fail, resulting in bpftool not being able to load all required
> objects [2].

> Here we add a more efficient probe, in bpftool itself. We first lower
> the rlimit to 0, then we attempt to load a BPF object (and finally reset
> the rlimit): if the load succeeds, then memcg-based memory accounting is
> supported.

> This approach was earlier proposed for the probe in libbpf itself [3],
> but given that the library may be used in multithreaded applications,
> the probe could have undesirable consequences if one thread attempts to
> lock kernel memory while memlock rlimit is at 0. Since bpftool is
> single-threaded and the rlimit is process-based, this is fine to do in
> bpftool itself.

> This probe was inspired by the similar one from the cilium/ebpf Go
> library [4].

> v2:
> - Simply use sizeof(attr) instead of hardcoding a size via
>    offsetofend().
> - Set r0 = 0 before returning in sample program.

> [0] commit 97306be45fbe ("Merge branch 'switch to memcg-based memory  
> accounting'")
> [1] commit a777e18f1bcd ("bpftool: Use libbpf 1.0 API mode instead of  
> RLIMIT_MEMLOCK")
> [2] commit 6b4384ff1088 ("Revert "bpftool: Use libbpf 1.0 API mode  
> instead of RLIMIT_MEMLOCK"")
> [3]  
> https://lore.kernel.org/bpf/20220609143614.97837-1-quentin@isovalent.com/t/#u
> [4] https://github.com/cilium/ebpf/blob/v0.9.0/rlimit/rlimit.go#L39

> Cc: Stanislav Fomichev <sdf@google.com>

Reviewed-by: Stanislav Fomichev <sdf@google.com>
patchwork-bot+netdevbpf@kernel.org June 29, 2022, 9:40 p.m. UTC | #3
Hello:

This patch was applied to bpf/bpf-next.git (master)
by Daniel Borkmann <daniel@iogearbox.net>:

On Wed, 29 Jun 2022 12:13:51 +0100 you wrote:
> Bpftool used to bump the memlock rlimit to make sure to be able to load
> BPF objects. After the kernel has switched to memcg-based memory
> accounting [0] in 5.11, bpftool has relied on libbpf to probe the system
> for memcg-based accounting support and for raising the rlimit if
> necessary [1]. But this was later reverted, because the probe would
> sometimes fail, resulting in bpftool not being able to load all required
> objects [2].
> 
> [...]

Here is the summary with links:
  - [bpf-next,v2] bpftool: Probe for memcg-based accounting before bumping rlimit
    https://git.kernel.org/bpf/bpf-next/c/f0cf642c56b7

You are awesome, thank you!
diff mbox series

Patch

diff --git a/tools/bpf/bpftool/common.c b/tools/bpf/bpftool/common.c
index a0d4acd7c54a..fc8172a4969a 100644
--- a/tools/bpf/bpftool/common.c
+++ b/tools/bpf/bpftool/common.c
@@ -13,14 +13,17 @@ 
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
-#include <linux/limits.h>
-#include <linux/magic.h>
 #include <net/if.h>
 #include <sys/mount.h>
 #include <sys/resource.h>
 #include <sys/stat.h>
 #include <sys/vfs.h>
 
+#include <linux/filter.h>
+#include <linux/limits.h>
+#include <linux/magic.h>
+#include <linux/unistd.h>
+
 #include <bpf/bpf.h>
 #include <bpf/hashmap.h>
 #include <bpf/libbpf.h> /* libbpf_num_possible_cpus */
@@ -73,11 +76,73 @@  static bool is_bpffs(char *path)
 	return (unsigned long)st_fs.f_type == BPF_FS_MAGIC;
 }
 
+/* Probe whether kernel switched from memlock-based (RLIMIT_MEMLOCK) to
+ * memcg-based memory accounting for BPF maps and programs. This was done in
+ * commit 97306be45fbe ("Merge branch 'switch to memcg-based memory
+ * accounting'"), in Linux 5.11.
+ *
+ * Libbpf also offers to probe for memcg-based accounting vs rlimit, but does
+ * so by checking for the availability of a given BPF helper and this has
+ * failed on some kernels with backports in the past, see commit 6b4384ff1088
+ * ("Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK"").
+ * Instead, we can probe by lowering the process-based rlimit to 0, trying to
+ * load a BPF object, and resetting the rlimit. If the load succeeds then
+ * memcg-based accounting is supported.
+ *
+ * This would be too dangerous to do in the library, because multithreaded
+ * applications might attempt to load items while the rlimit is at 0. Given
+ * that bpftool is single-threaded, this is fine to do here.
+ */
+static bool known_to_need_rlimit(void)
+{
+	struct rlimit rlim_init, rlim_cur_zero = {};
+	struct bpf_insn insns[] = {
+		BPF_MOV64_IMM(BPF_REG_0, 0),
+		BPF_EXIT_INSN(),
+	};
+	size_t insn_cnt = ARRAY_SIZE(insns);
+	union bpf_attr attr;
+	int prog_fd, err;
+
+	memset(&attr, 0, sizeof(attr));
+	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
+	attr.insns = ptr_to_u64(insns);
+	attr.insn_cnt = insn_cnt;
+	attr.license = ptr_to_u64("GPL");
+
+	if (getrlimit(RLIMIT_MEMLOCK, &rlim_init))
+		return false;
+
+	/* Drop the soft limit to zero. We maintain the hard limit to its
+	 * current value, because lowering it would be a permanent operation
+	 * for unprivileged users.
+	 */
+	rlim_cur_zero.rlim_max = rlim_init.rlim_max;
+	if (setrlimit(RLIMIT_MEMLOCK, &rlim_cur_zero))
+		return false;
+
+	/* Do not use bpf_prog_load() from libbpf here, because it calls
+	 * bump_rlimit_memlock(), interfering with the current probe.
+	 */
+	prog_fd = syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr));
+	err = errno;
+
+	/* reset soft rlimit to its initial value */
+	setrlimit(RLIMIT_MEMLOCK, &rlim_init);
+
+	if (prog_fd < 0)
+		return err == EPERM;
+
+	close(prog_fd);
+	return false;
+}
+
 void set_max_rlimit(void)
 {
 	struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
 
-	setrlimit(RLIMIT_MEMLOCK, &rinf);
+	if (known_to_need_rlimit())
+		setrlimit(RLIMIT_MEMLOCK, &rinf);
 }
 
 static int