Message ID | 20230301111323.1532479-3-martyn.welch@collabora.com (mailing list archive) |
---|---|
State | Superseded |
Headers | show |
Series | [v2,1/3] dt-bindings: remoteproc: k3-m4f: Add bindings for K3 AM64x SoCs | expand |
Hi Martyn, On Wed, 1 Mar 2023 at 04:13, Martyn Welch <martyn.welch@collabora.com> wrote: > > From: Hari Nagalla <hnagalla@ti.com> > > The AM64x SoC of TI K3 family has a Cortex M4F core in the MCU > domain. This core is typically used for safety applications in a stand > alone mode. However, some application (non safety related) may want to > use the M4F core as a generic remote processor with IPC to the host > processor. The M4F core has internal IRAM and DRAM memories and are > exposed to the system bus for code and data loading. > > A remoteproc driver is added to support this subsystem to be able to > load and boot M4F core. Loading includes to M4F internal memories and > to any predefined external code/data memory. The carveouts for external > contiguous memory is defined in the M4F device node and should match > with the external memory declarations in the M4F image binary. The M4F > subsystem has two resets. One reset is for the entire subsystem i.e > including the internal memories and ther other, a local reset is only > for the M4F processing core. For loading the image remote processor driver > first releases the subsystem reset, loads the firmware image and then > releases the local reset to let the M4F processing core to run. > > Signed-off-by: Hari Nagalla <hnagalla@ti.com> > [Martyn Welch: Address minor review comments] > Signed-off-by: Martyn Welch <martyn.welch@collabora.com> > --- > > Changes since v1: > - Addressed minor review comments (refactoring completed in separate > patch) > Several of my comments, both in the previous and this patch, have been ignored. As such I am dropping this patchset. I am also expecting a proper cover letter for the next revision. > drivers/remoteproc/Kconfig | 13 + > drivers/remoteproc/Makefile | 1 + > drivers/remoteproc/ti_k3_m4_remoteproc.c | 899 +++++++++++++++++++++++ > 3 files changed, 913 insertions(+) > create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > index a850e9f486dd..ff65b73d7e59 100644 > --- a/drivers/remoteproc/Kconfig > +++ b/drivers/remoteproc/Kconfig > @@ -339,6 +339,19 @@ config TI_K3_DSP_REMOTEPROC > It's safe to say N here if you're not interested in utilizing > the DSP slave processors. > > +config TI_K3_M4_REMOTEPROC > + tristate "TI K3 M4 remoteproc support" > + depends on ARCH_K3 > + select MAILBOX > + select OMAP2PLUS_MBOX > + help > + Say m here to support TI's M4 remote processor subsystems > + on various TI K3 family of SoCs through the remote processor > + framework. > + > + It's safe to say N here if you're not interested in utilizing > + a remote processor. > + > config TI_K3_R5_REMOTEPROC > tristate "TI K3 R5 remoteproc support" > depends on ARCH_K3 > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index 91314a9b43ce..5ff4e2fee4ab 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -37,5 +37,6 @@ obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o > obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o > diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c > new file mode 100644 > index 000000000000..66301eb69f6f > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c > @@ -0,0 +1,899 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * TI K3 Cortex-M4 Remote Processor(s) driver > + * > + * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com/ > + * Hari Nagalla <hnagalla@ti.com> > + */ > + > +#include <linux/io.h> > +#include <linux/mailbox_client.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/of_reserved_mem.h> > +#include <linux/omap-mailbox.h> > +#include <linux/platform_device.h> > +#include <linux/remoteproc.h> > +#include <linux/reset.h> > +#include <linux/slab.h> > + > +#include "omap_remoteproc.h" > +#include "remoteproc_internal.h" > +#include "ti_sci_proc.h" > + > +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) > + > +/** > + * struct k3_m4_mem - internal memory structure > + * @cpu_addr: MPU virtual address of the memory region > + * @bus_addr: Bus address used to access the memory region > + * @dev_addr: Device address of the memory region from DSP view > + * @size: Size of the memory region > + */ > +struct k3_m4_mem { > + void __iomem *cpu_addr; > + phys_addr_t bus_addr; > + u32 dev_addr; > + size_t size; > +}; > + > +/** > + * struct k3_m4_mem_data - memory definitions for a DSP > + * @name: name for this memory entry > + * @dev_addr: device address for the memory entry > + */ > +struct k3_m4_mem_data { > + const char *name; > + const u32 dev_addr; > +}; > + > +/** > + * struct k3_m4_dev_data - device data structure for a DSP > + * @mems: pointer to memory definitions for a DSP > + * @num_mems: number of memory regions in @mems > + * @boot_align_addr: boot vector address alignment granularity > + * @uses_lreset: flag to denote the need for local reset management > + */ > +struct k3_m4_dev_data { > + const struct k3_m4_mem_data *mems; > + u32 num_mems; > + u32 boot_align_addr; > + bool uses_lreset; > +}; > + > +/** > + * struct k3_m4_rproc - k3 M4 remote processor driver structure > + * @dev: cached device pointer > + * @rproc: remoteproc device handle > + * @mem: internal memory regions data > + * @num_mems: number of internal memory regions > + * @rmem: reserved memory regions data > + * @num_rmems: number of reserved memory regions > + * @reset: reset control handle > + * @data: pointer to M4-specific device data > + * @tsp: TI-SCI processor control handle > + * @ti_sci: TI-SCI handle > + * @ti_sci_id: TI-SCI device identifier > + * @mbox: mailbox channel handle > + * @client: mailbox client to request the mailbox channel > + * @ipc_only: flag to indicate IPC-only mode > + */ > +struct k3_m4_rproc { > + struct device *dev; > + struct rproc *rproc; > + struct k3_m4_mem *mem; > + int num_mems; > + struct k3_m4_mem *rmem; > + int num_rmems; > + struct reset_control *reset; > + const struct k3_m4_dev_data *data; > + struct ti_sci_proc *tsp; > + const struct ti_sci_handle *ti_sci; > + u32 ti_sci_id; > + struct mbox_chan *mbox; > + struct mbox_client client; > + bool ipc_only; > +}; > + > +/** > + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler > + * @client: mailbox client pointer used for requesting the mailbox channel > + * @data: mailbox payload > + * > + * This handler is invoked by the OMAP mailbox driver whenever a mailbox > + * message is received. Usually, the mailbox payload simply contains > + * the index of the virtqueue that is kicked by the remote processor, > + * and we let remoteproc core handle it. > + * > + * In addition to virtqueue indices, we also have some out-of-band values > + * that indicate different events. Those values are deliberately very > + * large so they don't coincide with virtqueue indices. > + */ > +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) > +{ > + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, > + client); > + struct device *dev = kproc->rproc->dev.parent; > + const char *name = kproc->rproc->name; > + u32 msg = omap_mbox_message(data); > + > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > + > + switch (msg) { > + case RP_MBOX_CRASH: > + /* > + * remoteproc detected an exception, but error recovery is not > + * supported. So, just log this for now > + */ > + dev_err(dev, "K3 M4 rproc %s crashed\n", name); > + break; > + case RP_MBOX_ECHO_REPLY: > + dev_info(dev, "received echo reply from %s\n", name); > + break; > + default: > + /* silently handle all other valid messages */ > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > + return; > + if (msg > kproc->rproc->max_notifyid) { > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > + return; > + } > + /* msg contains the index of the triggered vring */ > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > + } > +} > + > +/* > + * Kick the remote processor to notify about pending unprocessed messages. > + * The vqid usage is not used and is inconsequential, as the kick is performed > + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > + * the remote processor is expected to process both its Tx and Rx virtqueues. > + */ > +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = rproc->dev.parent; > + mbox_msg_t msg = (mbox_msg_t)vqid; > + int ret; > + > + /* send the index of the triggered virtqueue in the mailbox payload */ > + ret = mbox_send_message(kproc->mbox, (void *)msg); > + if (ret < 0) > + dev_err(dev, "failed to send mailbox message, status = %d\n", > + ret); > +} > + > +/* Put the M4 processor into reset */ > +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + ret = reset_control_assert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > + return ret; > + } > + > + if (kproc->data->uses_lreset) > + return ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + if (reset_control_deassert(kproc->reset)) > + dev_warn(dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > + > +/* Release the M4 processor from reset */ > +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + if (kproc->data->uses_lreset) > + goto lreset; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > + return ret; > + } > + > + dev_info(dev, "released m4 reset\n"); > + > +lreset: > + ret = reset_control_deassert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id)) > + dev_warn(dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_m4_rproc_request_mbox(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct mbox_client *client = &kproc->client; > + struct device *dev = kproc->dev; > + int ret; > + > + client->dev = dev; > + client->tx_done = NULL; > + client->rx_callback = k3_m4_rproc_mbox_callback; > + client->tx_block = false; > + client->knows_txdone = false; > + > + kproc->mbox = mbox_request_channel(client, 0); > + if (IS_ERR(kproc->mbox)) { > + ret = -EBUSY; > + dev_err(dev, "mbox_request_channel failed: %ld\n", > + PTR_ERR(kproc->mbox)); > + return ret; > + } > + > + /* > + * Ping the remote processor, this is only for sanity-sake for now; > + * there is no functional effect whatsoever. > + * > + * Note that the reply will _not_ arrive immediately: this message > + * will wait in the mailbox fifo until the remote processor is booted. > + */ > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > + if (ret < 0) { > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > + mbox_free_channel(kproc->mbox); > + return ret; > + } > + > + return 0; > +} > + > +/* > + * The M4F cores have a local reset that affects only the CPU, and a > + * generic module reset that powers on the device and allows the M4 internal > + * memories to be accessed while the local reset is asserted. This function is > + * used to release the global reset on M4F to allow loading into the M4F > + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > + * firmware loading, and is followed by the .start() ops after loading to > + * actually let the M4F core run. > + */ > +static int k3_m4_rproc_prepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + /* IPC-only mode does not require the core to be released from reset */ > + if (kproc->ipc_only) > + return 0; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > + ret); > + > + return ret; > +} > + > +/* > + * This function implements the .unprepare() ops and performs the complimentary > + * operations to that of the .prepare() ops. The function is used to assert the > + * global reset on applicable M4F cores. This completes the second portion of > + * powering down the M4F cores. The cores themselves are only halted in the > + * .stop() callback through the local reset, and the .unprepare() ops is invoked > + * by the remoteproc core after the remoteproc is stopped to balance the global > + * reset. > + */ > +static int k3_m4_rproc_unprepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + /* do not put back the cores into reset in IPC-only mode */ > + if (kproc->ipc_only) > + return 0; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + > + return ret; > +} > + > +/* > + * Power up the M4F remote processor. > + * > + * This function will be invoked only after the firmware for this rproc > + * was loaded, parsed successfully, and all of its resource requirements > + * were met. > + */ > +static int k3_m4_rproc_start(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + u32 boot_addr; > + int ret; > + > + if (kproc->ipc_only) { > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > + __func__); > + return -EINVAL; > + } > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + boot_addr = rproc->bootaddr; > + ret = k3_m4_rproc_release(kproc); > + if (ret) > + goto put_mbox; > + > + return 0; > + > +put_mbox: > + mbox_free_channel(kproc->mbox); > + return ret; > +} > + > +/* > + * Stop the M4 remote processor. > + * > + * This function puts the M4 processor into reset, and finishes processing > + * of any pending messages. > + */ > +static int k3_m4_rproc_stop(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (kproc->ipc_only) { > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > + __func__); > + return -EINVAL; > + } > + > + mbox_free_channel(kproc->mbox); > + > + k3_m4_rproc_reset(kproc); > + > + return 0; > +} > + > +/* > + * Attach to a running M4 remote processor (IPC-only mode) > + * > + * This rproc attach callback only needs to request the mailbox, the remote > + * processor is already booted, so there is no need to issue any TI-SCI > + * commands to boot the M4 core. > + */ > +static int k3_m4_rproc_attach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_DETACHED state\n"); > + return -EINVAL; > + } > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + dev_err(dev, "M4 initialized in IPC-only mode\n"); > + return 0; > +} > + > +/* > + * Detach from a running M4 remote processor (IPC-only mode) > + * > + * This rproc detach callback performs the opposite operation to attach callback > + * and only needs to release the mailbox, the M4 core is not stopped and will > + * be left to continue to run its booted firmware. > + */ > +static int k3_m4_rproc_detach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_ATTACHED state\n"); > + return -EINVAL; > + } > + > + mbox_free_channel(kproc->mbox); > + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); > + return 0; > +} > + > +/* > + * This function implements the .get_loaded_rsc_table() callback and is used > + * to provide the resource table for a booted M4 in IPC-only mode. The K3 M4 > + * firmwares follow a design-by-contract approach and are expected to have the > + * resource table at the base of the DDR region reserved for firmware usage. > + * This provides flexibility for the remote processor to be booted by different > + * bootloaders that may or may not have the ability to publish the resource table > + * address and size through a DT property. > + */ > +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, > + size_t *rsc_table_sz) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->rmem[0].cpu_addr) { > + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > + return ERR_PTR(-ENOMEM); > + } > + > + /* > + * NOTE: The resource table size is currently hard-coded to a maximum > + * of 256 bytes. The most common resource table usage for K3 firmwares > + * is to only have the vdev resource entry and an optional trace entry. > + * The exact size could be computed based on resource table address, but > + * the hard-coded value suffices to support the IPC-only mode. > + */ > + *rsc_table_sz = 256; > + return (struct resource_table *)kproc->rmem[0].cpu_addr; > +} > + > +/* > + * Custom function to translate a M4 device address (internal RAMs only) to a > + * kernel virtual address. The M4s can access their RAMs at either an internal > + * address visible only from a M4, or at the SoC-level bus address. Both these > + * addresses need to be looked through for translation. The translated addresses > + * can be used either by the remoteproc core for loading (when using kernel > + * remoteproc loader), or by any rpmsg bus drivers. > + */ > +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + void __iomem *va = NULL; > + phys_addr_t bus_addr; > + u32 dev_addr, offset; > + size_t size; > + int i; > + > + if (len == 0) > + return NULL; > + > + for (i = 0; i < kproc->num_mems; i++) { > + bus_addr = kproc->mem[i].bus_addr; > + dev_addr = kproc->mem[i].dev_addr; > + size = kproc->mem[i].size; > + > + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > + /* handle M4-view addresses */ > + if (da >= dev_addr && > + ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } else { > + /* handle SoC-view addresses */ > + if (da >= bus_addr && > + (da + len) <= (bus_addr + size)) { > + offset = da - bus_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + } > + > + /* handle static DDR reserved memory regions */ > + for (i = 0; i < kproc->num_rmems; i++) { > + dev_addr = kproc->rmem[i].dev_addr; > + size = kproc->rmem[i].size; > + > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->rmem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + return NULL; > +} > + > +static const struct rproc_ops k3_m4_rproc_ops = { > + .start = k3_m4_rproc_start, > + .stop = k3_m4_rproc_stop, > + .attach = k3_m4_rproc_attach, > + .detach = k3_m4_rproc_detach, > + .kick = k3_m4_rproc_kick, > + .da_to_va = k3_m4_rproc_da_to_va, > + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, > +}; > + > +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, > + struct k3_m4_rproc *kproc) > +{ > + const struct k3_m4_dev_data *data = kproc->data; > + struct device *dev = &pdev->dev; > + struct resource *res; > + int num_mems = 0; > + int i; > + > + num_mems = kproc->data->num_mems; > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > + sizeof(*kproc->mem), GFP_KERNEL); > + if (!kproc->mem) > + return -ENOMEM; > + > + for (i = 0; i < num_mems; i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + data->mems[i].name); > + if (!res) { > + dev_err(dev, "found no memory resource for %s\n", > + data->mems[i].name); > + return -EINVAL; > + } > + if (!devm_request_mem_region(dev, res->start, > + resource_size(res), > + dev_name(dev))) { > + dev_err(dev, "could not request %s region for resource\n", > + data->mems[i].name); > + return -EBUSY; > + } > + > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > + resource_size(res)); > + if (!kproc->mem[i].cpu_addr) { > + dev_err(dev, "failed to map %s memory\n", > + data->mems[i].name); > + return -ENOMEM; > + } > + kproc->mem[i].bus_addr = res->start; > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > + kproc->mem[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + data->mems[i].name, &kproc->mem[i].bus_addr, > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > + kproc->mem[i].dev_addr); > + } > + kproc->num_mems = num_mems; > + > + return 0; > +} > + > +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + struct device_node *np = dev->of_node; > + struct device_node *rmem_np; > + struct reserved_mem *rmem; > + int num_rmems; > + int ret, i; > + > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > + sizeof(phandle)); > + if (num_rmems <= 0) { > + dev_err(dev, "device does not reserved memory regions, ret = %d\n", > + num_rmems); > + return -EINVAL; > + } > + if (num_rmems < 2) { > + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > + num_rmems); > + return -EINVAL; > + } > + > + /* use reserved memory region 0 for vring DMA allocations */ > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > + if (ret) { > + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > + ret); > + return ret; > + } > + > + num_rmems--; > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > + if (!kproc->rmem) { > + ret = -ENOMEM; > + goto release_rmem; > + } > + > + /* use remaining reserved memory regions for static carveouts */ > + for (i = 0; i < num_rmems; i++) { > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > + if (!rmem_np) { > + ret = -EINVAL; > + goto unmap_rmem; > + } > + > + rmem = of_reserved_mem_lookup(rmem_np); > + if (!rmem) { > + of_node_put(rmem_np); > + ret = -EINVAL; > + goto unmap_rmem; > + } > + of_node_put(rmem_np); > + > + kproc->rmem[i].bus_addr = rmem->base; > + /* 64-bit address regions currently not supported */ > + kproc->rmem[i].dev_addr = (u32)rmem->base; > + kproc->rmem[i].size = rmem->size; > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > + if (!kproc->rmem[i].cpu_addr) { > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > + i + 1, &rmem->base, &rmem->size); > + ret = -ENOMEM; > + goto unmap_rmem; > + } > + > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + i + 1, &kproc->rmem[i].bus_addr, > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > + kproc->rmem[i].dev_addr); > + } > + kproc->num_rmems = num_rmems; > + > + return 0; > + > +unmap_rmem: > + for (i--; i >= 0; i--) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > +release_rmem: > + of_reserved_mem_device_release(kproc->dev); > + return ret; > +} > + > +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) > +{ > + int i; > + > + for (i = 0; i < kproc->num_rmems; i++) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > + > + of_reserved_mem_device_release(kproc->dev); > +} > + > +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci) > +{ > + struct ti_sci_proc *tsp; > + u32 temp[2]; > + int ret; > + > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > + temp, 2); > + if (ret < 0) > + return ERR_PTR(ret); > + > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > + if (!tsp) > + return ERR_PTR(-ENOMEM); > + > + tsp->dev = dev; > + tsp->sci = sci; > + tsp->ops = &sci->ops.proc_ops; > + tsp->proc_id = temp[0]; > + tsp->host_id = temp[1]; > + > + return tsp; > +} > + > +static int k3_m4_rproc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + const struct k3_m4_dev_data *data; > + struct k3_m4_rproc *kproc; > + struct rproc *rproc; > + const char *fw_name; > + bool r_state = false; > + bool p_state = false; > + int ret = 0; > + int ret1; > + > + data = of_device_get_match_data(dev); > + if (!data) > + return -ENODEV; > + > + ret = rproc_of_parse_firmware(dev, 0, &fw_name); > + if (ret) { > + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", > + ret); > + return ret; > + } > + > + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, > + sizeof(*kproc)); > + if (!rproc) > + return -ENOMEM; > + > + rproc->has_iommu = false; > + rproc->recovery_disabled = true; > + if (data->uses_lreset) { > + rproc->ops->prepare = k3_m4_rproc_prepare; > + rproc->ops->unprepare = k3_m4_rproc_unprepare; > + } > + kproc = rproc->priv; > + kproc->rproc = rproc; > + kproc->dev = dev; > + kproc->data = data; > + > + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); > + if (IS_ERR(kproc->ti_sci)) { > + ret = PTR_ERR(kproc->ti_sci); > + if (ret != -EPROBE_DEFER) { > + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", > + ret); > + } > + kproc->ti_sci = NULL; > + goto free_rproc; > + } > + > + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); > + goto put_sci; > + } > + > + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); > + if (IS_ERR(kproc->reset)) { > + ret = PTR_ERR(kproc->reset); > + dev_err(dev, "failed to get reset, status = %d\n", ret); > + goto put_sci; > + } > + > + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); > + if (IS_ERR(kproc->tsp)) { > + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", > + ret); > + ret = PTR_ERR(kproc->tsp); > + goto put_sci; > + } > + > + ret = ti_sci_proc_request(kproc->tsp); > + if (ret < 0) { > + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); > + goto free_tsp; > + } > + > + ret = k3_m4_rproc_of_get_memories(pdev, kproc); > + if (ret) > + goto release_tsp; > + > + ret = k3_m4_reserved_mem_init(kproc); > + if (ret) { > + dev_err(dev, "reserved memory init failed, ret = %d\n", ret); > + goto release_tsp; > + } > + > + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, > + &r_state, &p_state); > + if (ret) { > + dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", > + ret); > + goto release_mem; > + } > + > + /* configure devices for either remoteproc or IPC-only mode */ > + if (p_state) { > + dev_err(dev, "configured M4 for IPC-only mode\n"); > + rproc->state = RPROC_DETACHED; > + kproc->ipc_only = true; > + } else { > + dev_err(dev, "configured M4 for remoteproc mode\n"); > + /* > + * ensure the M4 local reset is asserted to ensure the core > + * doesn't execute bogus code in .prepare() when the module > + * reset is released. > + */ > + if (data->uses_lreset) { > + ret = reset_control_status(kproc->reset); > + if (ret < 0) { > + dev_err(dev, "failed to get reset status, status = %d\n", > + ret); > + goto release_mem; > + } else if (ret == 0) { > + dev_warn(dev, "local reset is deasserted for device\n"); > + k3_m4_rproc_reset(kproc); > + } > + } > + } > + > + ret = rproc_add(rproc); > + if (ret) { > + dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", > + ret); > + goto release_mem; > + } > + > + platform_set_drvdata(pdev, kproc); > + > + return 0; > + > +release_mem: > + k3_m4_reserved_mem_exit(kproc); > +release_tsp: > + ret1 = ti_sci_proc_release(kproc->tsp); > + if (ret1) > + dev_err(dev, "failed to release proc, ret = %d\n", ret1); > +free_tsp: > + kfree(kproc->tsp); > +put_sci: > + ret1 = ti_sci_put_handle(kproc->ti_sci); > + if (ret1) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); > +free_rproc: > + rproc_free(rproc); > + return ret; > +} > + > +static int k3_m4_rproc_remove(struct platform_device *pdev) > +{ > + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + int ret; > + > + rproc_del(kproc->rproc); > + > + ret = ti_sci_proc_release(kproc->tsp); > + if (ret) > + dev_err(dev, "failed to release proc, ret = %d\n", ret); > + > + kfree(kproc->tsp); > + > + ret = ti_sci_put_handle(kproc->ti_sci); > + if (ret) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); > + > + k3_m4_reserved_mem_exit(kproc); > + rproc_free(kproc->rproc); > + > + return 0; > +} > + > +static const struct k3_m4_mem_data am64_m4_mems[] = { > + { .name = "iram", .dev_addr = 0x0 }, > + { .name = "dram", .dev_addr = 0x30000 }, > +}; > + > +static const struct k3_m4_dev_data am64_m4_data = { > + .mems = am64_m4_mems, > + .num_mems = ARRAY_SIZE(am64_m4_mems), > + .boot_align_addr = SZ_1K, > + .uses_lreset = true, > +}; > + > +static const struct of_device_id k3_m4_of_match[] = { > + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, > + { /* sentinel */ }, > +}; > +MODULE_DEVICE_TABLE(of, k3_m4_of_match); > + > +static struct platform_driver k3_m4_rproc_driver = { > + .probe = k3_m4_rproc_probe, > + .remove = k3_m4_rproc_remove, > + .driver = { > + .name = "k3-m4-rproc", > + .of_match_table = k3_m4_of_match, > + }, > +}; > + > +module_platform_driver(k3_m4_rproc_driver); > + > +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); > +MODULE_LICENSE("GPL v2"); > +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); > -- > 2.39.1 >
On Wed, 2023-03-01 at 11:19 -0700, Mathieu Poirier wrote: > Hi Martyn, > > On Wed, 1 Mar 2023 at 04:13, Martyn Welch > <martyn.welch@collabora.com> wrote: > > > > From: Hari Nagalla <hnagalla@ti.com> > > > > The AM64x SoC of TI K3 family has a Cortex M4F core in the MCU > > domain. This core is typically used for safety applications in a > > stand > > alone mode. However, some application (non safety related) may want > > to > > use the M4F core as a generic remote processor with IPC to the host > > processor. The M4F core has internal IRAM and DRAM memories and are > > exposed to the system bus for code and data loading. > > > > A remoteproc driver is added to support this subsystem to be able > > to > > load and boot M4F core. Loading includes to M4F internal memories > > and > > to any predefined external code/data memory. The carveouts for > > external > > contiguous memory is defined in the M4F device node and should > > match > > with the external memory declarations in the M4F image binary. The > > M4F > > subsystem has two resets. One reset is for the entire subsystem i.e > > including the internal memories and ther other, a local reset is > > only > > for the M4F processing core. For loading the image remote processor > > driver > > first releases the subsystem reset, loads the firmware image and > > then > > releases the local reset to let the M4F processing core to run. > > > > Signed-off-by: Hari Nagalla <hnagalla@ti.com> > > [Martyn Welch: Address minor review comments] > > Signed-off-by: Martyn Welch <martyn.welch@collabora.com> > > --- > > > > Changes since v1: > > - Addressed minor review comments (refactoring completed in > > separate > > patch) > > > > Several of my comments, both in the previous and this patch, have > been > ignored. As such I am dropping this patchset. I am also expecting a > proper cover letter for the next revision. > Hi Mathieu, Sorry I must have missed a few. I'll go back and look again. Also, sorry for the missing cover letter - I prepared one, but it seems that my usual incantation of git send-email has failed to send that to the addresses I'd expected. Martyn > > drivers/remoteproc/Kconfig | 13 + > > drivers/remoteproc/Makefile | 1 + > > drivers/remoteproc/ti_k3_m4_remoteproc.c | 899 > > +++++++++++++++++++++++ > > 3 files changed, 913 insertions(+) > > create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c > > > > diff --git a/drivers/remoteproc/Kconfig > > b/drivers/remoteproc/Kconfig > > index a850e9f486dd..ff65b73d7e59 100644 > > --- a/drivers/remoteproc/Kconfig > > +++ b/drivers/remoteproc/Kconfig > > @@ -339,6 +339,19 @@ config TI_K3_DSP_REMOTEPROC > > It's safe to say N here if you're not interested in > > utilizing > > the DSP slave processors. > > > > +config TI_K3_M4_REMOTEPROC > > + tristate "TI K3 M4 remoteproc support" > > + depends on ARCH_K3 > > + select MAILBOX > > + select OMAP2PLUS_MBOX > > + help > > + Say m here to support TI's M4 remote processor subsystems > > + on various TI K3 family of SoCs through the remote > > processor > > + framework. > > + > > + It's safe to say N here if you're not interested in > > utilizing > > + a remote processor. > > + > > config TI_K3_R5_REMOTEPROC > > tristate "TI K3 R5 remoteproc support" > > depends on ARCH_K3 > > diff --git a/drivers/remoteproc/Makefile > > b/drivers/remoteproc/Makefile > > index 91314a9b43ce..5ff4e2fee4ab 100644 > > --- a/drivers/remoteproc/Makefile > > +++ b/drivers/remoteproc/Makefile > > @@ -37,5 +37,6 @@ obj-$(CONFIG_ST_REMOTEPROC) += > > st_remoteproc.o > > obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > > obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > > +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o > > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > > obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o > > diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c > > b/drivers/remoteproc/ti_k3_m4_remoteproc.c > > new file mode 100644 > > index 000000000000..66301eb69f6f > > --- /dev/null > > +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c > > @@ -0,0 +1,899 @@ > > +// SPDX-License-Identifier: GPL-2.0-only > > +/* > > + * TI K3 Cortex-M4 Remote Processor(s) driver > > + * > > + * Copyright (C) 2021 Texas Instruments Incorporated - > > https://www.ti.com/ > > + * Hari Nagalla <hnagalla@ti.com> > > + */ > > + > > +#include <linux/io.h> > > +#include <linux/mailbox_client.h> > > +#include <linux/module.h> > > +#include <linux/of_device.h> > > +#include <linux/of_reserved_mem.h> > > +#include <linux/omap-mailbox.h> > > +#include <linux/platform_device.h> > > +#include <linux/remoteproc.h> > > +#include <linux/reset.h> > > +#include <linux/slab.h> > > + > > +#include "omap_remoteproc.h" > > +#include "remoteproc_internal.h" > > +#include "ti_sci_proc.h" > > + > > +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) > > + > > +/** > > + * struct k3_m4_mem - internal memory structure > > + * @cpu_addr: MPU virtual address of the memory region > > + * @bus_addr: Bus address used to access the memory region > > + * @dev_addr: Device address of the memory region from DSP view > > + * @size: Size of the memory region > > + */ > > +struct k3_m4_mem { > > + void __iomem *cpu_addr; > > + phys_addr_t bus_addr; > > + u32 dev_addr; > > + size_t size; > > +}; > > + > > +/** > > + * struct k3_m4_mem_data - memory definitions for a DSP > > + * @name: name for this memory entry > > + * @dev_addr: device address for the memory entry > > + */ > > +struct k3_m4_mem_data { > > + const char *name; > > + const u32 dev_addr; > > +}; > > + > > +/** > > + * struct k3_m4_dev_data - device data structure for a DSP > > + * @mems: pointer to memory definitions for a DSP > > + * @num_mems: number of memory regions in @mems > > + * @boot_align_addr: boot vector address alignment granularity > > + * @uses_lreset: flag to denote the need for local reset > > management > > + */ > > +struct k3_m4_dev_data { > > + const struct k3_m4_mem_data *mems; > > + u32 num_mems; > > + u32 boot_align_addr; > > + bool uses_lreset; > > +}; > > + > > +/** > > + * struct k3_m4_rproc - k3 M4 remote processor driver structure > > + * @dev: cached device pointer > > + * @rproc: remoteproc device handle > > + * @mem: internal memory regions data > > + * @num_mems: number of internal memory regions > > + * @rmem: reserved memory regions data > > + * @num_rmems: number of reserved memory regions > > + * @reset: reset control handle > > + * @data: pointer to M4-specific device data > > + * @tsp: TI-SCI processor control handle > > + * @ti_sci: TI-SCI handle > > + * @ti_sci_id: TI-SCI device identifier > > + * @mbox: mailbox channel handle > > + * @client: mailbox client to request the mailbox channel > > + * @ipc_only: flag to indicate IPC-only mode > > + */ > > +struct k3_m4_rproc { > > + struct device *dev; > > + struct rproc *rproc; > > + struct k3_m4_mem *mem; > > + int num_mems; > > + struct k3_m4_mem *rmem; > > + int num_rmems; > > + struct reset_control *reset; > > + const struct k3_m4_dev_data *data; > > + struct ti_sci_proc *tsp; > > + const struct ti_sci_handle *ti_sci; > > + u32 ti_sci_id; > > + struct mbox_chan *mbox; > > + struct mbox_client client; > > + bool ipc_only; > > +}; > > + > > +/** > > + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler > > + * @client: mailbox client pointer used for requesting the mailbox > > channel > > + * @data: mailbox payload > > + * > > + * This handler is invoked by the OMAP mailbox driver whenever a > > mailbox > > + * message is received. Usually, the mailbox payload simply > > contains > > + * the index of the virtqueue that is kicked by the remote > > processor, > > + * and we let remoteproc core handle it. > > + * > > + * In addition to virtqueue indices, we also have some out-of-band > > values > > + * that indicate different events. Those values are deliberately > > very > > + * large so they don't coincide with virtqueue indices. > > + */ > > +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, > > void *data) > > +{ > > + struct k3_m4_rproc *kproc = container_of(client, struct > > k3_m4_rproc, > > + client); > > + struct device *dev = kproc->rproc->dev.parent; > > + const char *name = kproc->rproc->name; > > + u32 msg = omap_mbox_message(data); > > + > > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > > + > > + switch (msg) { > > + case RP_MBOX_CRASH: > > + /* > > + * remoteproc detected an exception, but error > > recovery is not > > + * supported. So, just log this for now > > + */ > > + dev_err(dev, "K3 M4 rproc %s crashed\n", name); > > + break; > > + case RP_MBOX_ECHO_REPLY: > > + dev_info(dev, "received echo reply from %s\n", > > name); > > + break; > > + default: > > + /* silently handle all other valid messages */ > > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > > + return; > > + if (msg > kproc->rproc->max_notifyid) { > > + dev_dbg(dev, "dropping unknown message > > 0x%x", msg); > > + return; > > + } > > + /* msg contains the index of the triggered vring */ > > + if (rproc_vq_interrupt(kproc->rproc, msg) == > > IRQ_NONE) > > + dev_dbg(dev, "no message was found in vqid > > %d\n", msg); > > + } > > +} > > + > > +/* > > + * Kick the remote processor to notify about pending unprocessed > > messages. > > + * The vqid usage is not used and is inconsequential, as the kick > > is performed > > + * through a simulated GPIO (a bit in an IPC interrupt-triggering > > register), > > + * the remote processor is expected to process both its Tx and Rx > > virtqueues. > > + */ > > +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = rproc->dev.parent; > > + mbox_msg_t msg = (mbox_msg_t)vqid; > > + int ret; > > + > > + /* send the index of the triggered virtqueue in the mailbox > > payload */ > > + ret = mbox_send_message(kproc->mbox, (void *)msg); > > + if (ret < 0) > > + dev_err(dev, "failed to send mailbox message, > > status = %d\n", > > + ret); > > +} > > + > > +/* Put the M4 processor into reset */ > > +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + ret = reset_control_assert(kproc->reset); > > + if (ret) { > > + dev_err(dev, "local-reset assert failed, ret = > > %d\n", ret); > > + return ret; > > + } > > + > > + if (kproc->data->uses_lreset) > > + return ret; > > + > > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > > + kproc- > > >ti_sci_id); > > + if (ret) { > > + dev_err(dev, "module-reset assert failed, ret = > > %d\n", ret); > > + if (reset_control_deassert(kproc->reset)) > > + dev_warn(dev, "local-reset deassert back > > failed\n"); > > + } > > + > > + return ret; > > +} > > + > > +/* Release the M4 processor from reset */ > > +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + if (kproc->data->uses_lreset) > > + goto lreset; > > + > > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > > + kproc- > > >ti_sci_id); > > + if (ret) { > > + dev_err(dev, "module-reset deassert failed, ret = > > %d\n", ret); > > + return ret; > > + } > > + > > + dev_info(dev, "released m4 reset\n"); > > + > > +lreset: > > + ret = reset_control_deassert(kproc->reset); > > + if (ret) { > > + dev_err(dev, "local-reset deassert failed, ret = > > %d\n", ret); > > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc- > > >ti_sci, > > + kproc- > > >ti_sci_id)) > > + dev_warn(dev, "module-reset assert back > > failed\n"); > > + } > > + > > + return ret; > > +} > > + > > +static int k3_m4_rproc_request_mbox(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct mbox_client *client = &kproc->client; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + client->dev = dev; > > + client->tx_done = NULL; > > + client->rx_callback = k3_m4_rproc_mbox_callback; > > + client->tx_block = false; > > + client->knows_txdone = false; > > + > > + kproc->mbox = mbox_request_channel(client, 0); > > + if (IS_ERR(kproc->mbox)) { > > + ret = -EBUSY; > > + dev_err(dev, "mbox_request_channel failed: %ld\n", > > + PTR_ERR(kproc->mbox)); > > + return ret; > > + } > > + > > + /* > > + * Ping the remote processor, this is only for sanity-sake > > for now; > > + * there is no functional effect whatsoever. > > + * > > + * Note that the reply will _not_ arrive immediately: this > > message > > + * will wait in the mailbox fifo until the remote processor > > is booted. > > + */ > > + ret = mbox_send_message(kproc->mbox, (void > > *)RP_MBOX_ECHO_REQUEST); > > + if (ret < 0) { > > + dev_err(dev, "mbox_send_message failed: %d\n", > > ret); > > + mbox_free_channel(kproc->mbox); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +/* > > + * The M4F cores have a local reset that affects only the CPU, and > > a > > + * generic module reset that powers on the device and allows the > > M4 internal > > + * memories to be accessed while the local reset is asserted. This > > function is > > + * used to release the global reset on M4F to allow loading into > > the M4F > > + * internal RAMs. The .prepare() ops is invoked by remoteproc core > > before any > > + * firmware loading, and is followed by the .start() ops after > > loading to > > + * actually let the M4F core run. > > + */ > > +static int k3_m4_rproc_prepare(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + /* IPC-only mode does not require the core to be released > > from reset */ > > + if (kproc->ipc_only) > > + return 0; > > + > > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > > + kproc- > > >ti_sci_id); > > + if (ret) > > + dev_err(dev, "module-reset deassert failed, cannot > > enable internal RAM loading, ret = %d\n", > > + ret); > > + > > + return ret; > > +} > > + > > +/* > > + * This function implements the .unprepare() ops and performs the > > complimentary > > + * operations to that of the .prepare() ops. The function is used > > to assert the > > + * global reset on applicable M4F cores. This completes the second > > portion of > > + * powering down the M4F cores. The cores themselves are only > > halted in the > > + * .stop() callback through the local reset, and the .unprepare() > > ops is invoked > > + * by the remoteproc core after the remoteproc is stopped to > > balance the global > > + * reset. > > + */ > > +static int k3_m4_rproc_unprepare(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + /* do not put back the cores into reset in IPC-only mode */ > > + if (kproc->ipc_only) > > + return 0; > > + > > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > > + kproc- > > >ti_sci_id); > > + if (ret) > > + dev_err(dev, "module-reset assert failed, ret = > > %d\n", ret); > > + > > + return ret; > > +} > > + > > +/* > > + * Power up the M4F remote processor. > > + * > > + * This function will be invoked only after the firmware for this > > rproc > > + * was loaded, parsed successfully, and all of its resource > > requirements > > + * were met. > > + */ > > +static int k3_m4_rproc_start(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + u32 boot_addr; > > + int ret; > > + > > + if (kproc->ipc_only) { > > + dev_err(dev, "%s cannot be invoked in IPC-only > > mode\n", > > + __func__); > > + return -EINVAL; > > + } > > + > > + ret = k3_m4_rproc_request_mbox(rproc); > > + if (ret) > > + return ret; > > + > > + boot_addr = rproc->bootaddr; > > + ret = k3_m4_rproc_release(kproc); > > + if (ret) > > + goto put_mbox; > > + > > + return 0; > > + > > +put_mbox: > > + mbox_free_channel(kproc->mbox); > > + return ret; > > +} > > + > > +/* > > + * Stop the M4 remote processor. > > + * > > + * This function puts the M4 processor into reset, and finishes > > processing > > + * of any pending messages. > > + */ > > +static int k3_m4_rproc_stop(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (kproc->ipc_only) { > > + dev_err(dev, "%s cannot be invoked in IPC-only > > mode\n", > > + __func__); > > + return -EINVAL; > > + } > > + > > + mbox_free_channel(kproc->mbox); > > + > > + k3_m4_rproc_reset(kproc); > > + > > + return 0; > > +} > > + > > +/* > > + * Attach to a running M4 remote processor (IPC-only mode) > > + * > > + * This rproc attach callback only needs to request the mailbox, > > the remote > > + * processor is already booted, so there is no need to issue any > > TI-SCI > > + * commands to boot the M4 core. > > + */ > > +static int k3_m4_rproc_attach(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { > > + dev_err(dev, "M4 is expected to be in IPC-only mode > > and RPROC_DETACHED state\n"); > > + return -EINVAL; > > + } > > + > > + ret = k3_m4_rproc_request_mbox(rproc); > > + if (ret) > > + return ret; > > + > > + dev_err(dev, "M4 initialized in IPC-only mode\n"); > > + return 0; > > +} > > + > > +/* > > + * Detach from a running M4 remote processor (IPC-only mode) > > + * > > + * This rproc detach callback performs the opposite operation to > > attach callback > > + * and only needs to release the mailbox, the M4 core is not > > stopped and will > > + * be left to continue to run its booted firmware. > > + */ > > +static int k3_m4_rproc_detach(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { > > + dev_err(dev, "M4 is expected to be in IPC-only mode > > and RPROC_ATTACHED state\n"); > > + return -EINVAL; > > + } > > + > > + mbox_free_channel(kproc->mbox); > > + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); > > + return 0; > > +} > > + > > +/* > > + * This function implements the .get_loaded_rsc_table() callback > > and is used > > + * to provide the resource table for a booted M4 in IPC-only mode. > > The K3 M4 > > + * firmwares follow a design-by-contract approach and are expected > > to have the > > + * resource table at the base of the DDR region reserved for > > firmware usage. > > + * This provides flexibility for the remote processor to be booted > > by different > > + * bootloaders that may or may not have the ability to publish the > > resource table > > + * address and size through a DT property. > > + */ > > +static struct resource_table *k3_m4_get_loaded_rsc_table(struct > > rproc *rproc, > > + size_t > > *rsc_table_sz) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (!kproc->rmem[0].cpu_addr) { > > + dev_err(dev, "memory-region #1 does not exist, > > loaded rsc table can't be found"); > > + return ERR_PTR(-ENOMEM); > > + } > > + > > + /* > > + * NOTE: The resource table size is currently hard-coded to > > a maximum > > + * of 256 bytes. The most common resource table usage for > > K3 firmwares > > + * is to only have the vdev resource entry and an optional > > trace entry. > > + * The exact size could be computed based on resource table > > address, but > > + * the hard-coded value suffices to support the IPC-only > > mode. > > + */ > > + *rsc_table_sz = 256; > > + return (struct resource_table *)kproc->rmem[0].cpu_addr; > > +} > > + > > +/* > > + * Custom function to translate a M4 device address (internal RAMs > > only) to a > > + * kernel virtual address. The M4s can access their RAMs at > > either an internal > > + * address visible only from a M4, or at the SoC-level bus > > address. Both these > > + * addresses need to be looked through for translation. The > > translated addresses > > + * can be used either by the remoteproc core for loading (when > > using kernel > > + * remoteproc loader), or by any rpmsg bus drivers. > > + */ > > +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, > > size_t len, bool *is_iomem) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + void __iomem *va = NULL; > > + phys_addr_t bus_addr; > > + u32 dev_addr, offset; > > + size_t size; > > + int i; > > + > > + if (len == 0) > > + return NULL; > > + > > + for (i = 0; i < kproc->num_mems; i++) { > > + bus_addr = kproc->mem[i].bus_addr; > > + dev_addr = kproc->mem[i].dev_addr; > > + size = kproc->mem[i].size; > > + > > + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > > + /* handle M4-view addresses */ > > + if (da >= dev_addr && > > + ((da + len) <= (dev_addr + size))) { > > + offset = da - dev_addr; > > + va = kproc->mem[i].cpu_addr + > > offset; > > + return (__force void *)va; > > + } > > + } else { > > + /* handle SoC-view addresses */ > > + if (da >= bus_addr && > > + (da + len) <= (bus_addr + size)) { > > + offset = da - bus_addr; > > + va = kproc->mem[i].cpu_addr + > > offset; > > + return (__force void *)va; > > + } > > + } > > + } > > + > > + /* handle static DDR reserved memory regions */ > > + for (i = 0; i < kproc->num_rmems; i++) { > > + dev_addr = kproc->rmem[i].dev_addr; > > + size = kproc->rmem[i].size; > > + > > + if (da >= dev_addr && ((da + len) <= (dev_addr + > > size))) { > > + offset = da - dev_addr; > > + va = kproc->rmem[i].cpu_addr + offset; > > + return (__force void *)va; > > + } > > + } > > + > > + return NULL; > > +} > > + > > +static const struct rproc_ops k3_m4_rproc_ops = { > > + .start = k3_m4_rproc_start, > > + .stop = k3_m4_rproc_stop, > > + .attach = k3_m4_rproc_attach, > > + .detach = k3_m4_rproc_detach, > > + .kick = k3_m4_rproc_kick, > > + .da_to_va = k3_m4_rproc_da_to_va, > > + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, > > +}; > > + > > +static int k3_m4_rproc_of_get_memories(struct platform_device > > *pdev, > > + struct k3_m4_rproc *kproc) > > +{ > > + const struct k3_m4_dev_data *data = kproc->data; > > + struct device *dev = &pdev->dev; > > + struct resource *res; > > + int num_mems = 0; > > + int i; > > + > > + num_mems = kproc->data->num_mems; > > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > > + sizeof(*kproc->mem), GFP_KERNEL); > > + if (!kproc->mem) > > + return -ENOMEM; > > + > > + for (i = 0; i < num_mems; i++) { > > + res = platform_get_resource_byname(pdev, > > IORESOURCE_MEM, > > + data- > > >mems[i].name); > > + if (!res) { > > + dev_err(dev, "found no memory resource for > > %s\n", > > + data->mems[i].name); > > + return -EINVAL; > > + } > > + if (!devm_request_mem_region(dev, res->start, > > + resource_size(res), > > + dev_name(dev))) { > > + dev_err(dev, "could not request %s region > > for resource\n", > > + data->mems[i].name); > > + return -EBUSY; > > + } > > + > > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res- > > >start, > > + > > resource_size(res)); > > + if (!kproc->mem[i].cpu_addr) { > > + dev_err(dev, "failed to map %s memory\n", > > + data->mems[i].name); > > + return -ENOMEM; > > + } > > + kproc->mem[i].bus_addr = res->start; > > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > > + kproc->mem[i].size = resource_size(res); > > + > > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx > > va %pK da 0x%x\n", > > + data->mems[i].name, &kproc- > > >mem[i].bus_addr, > > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > > + kproc->mem[i].dev_addr); > > + } > > + kproc->num_mems = num_mems; > > + > > + return 0; > > +} > > + > > +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + struct device_node *np = dev->of_node; > > + struct device_node *rmem_np; > > + struct reserved_mem *rmem; > > + int num_rmems; > > + int ret, i; > > + > > + num_rmems = of_property_count_elems_of_size(np, "memory- > > region", > > + > > sizeof(phandle)); > > + if (num_rmems <= 0) { > > + dev_err(dev, "device does not reserved memory > > regions, ret = %d\n", > > + num_rmems); > > + return -EINVAL; > > + } > > + if (num_rmems < 2) { > > + dev_err(dev, "device needs at least two memory > > regions to be defined, num = %d\n", > > + num_rmems); > > + return -EINVAL; > > + } > > + > > + /* use reserved memory region 0 for vring DMA allocations > > */ > > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > > + if (ret) { > > + dev_err(dev, "device cannot initialize DMA pool, > > ret = %d\n", > > + ret); > > + return ret; > > + } > > + > > + num_rmems--; > > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), > > GFP_KERNEL); > > + if (!kproc->rmem) { > > + ret = -ENOMEM; > > + goto release_rmem; > > + } > > + > > + /* use remaining reserved memory regions for static > > carveouts */ > > + for (i = 0; i < num_rmems; i++) { > > + rmem_np = of_parse_phandle(np, "memory-region", i + > > 1); > > + if (!rmem_np) { > > + ret = -EINVAL; > > + goto unmap_rmem; > > + } > > + > > + rmem = of_reserved_mem_lookup(rmem_np); > > + if (!rmem) { > > + of_node_put(rmem_np); > > + ret = -EINVAL; > > + goto unmap_rmem; > > + } > > + of_node_put(rmem_np); > > + > > + kproc->rmem[i].bus_addr = rmem->base; > > + /* 64-bit address regions currently not supported > > */ > > + kproc->rmem[i].dev_addr = (u32)rmem->base; > > + kproc->rmem[i].size = rmem->size; > > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, > > rmem->size); > > + if (!kproc->rmem[i].cpu_addr) { > > + dev_err(dev, "failed to map reserved > > memory#%d at %pa of size %pa\n", > > + i + 1, &rmem->base, &rmem->size); > > + ret = -ENOMEM; > > + goto unmap_rmem; > > + } > > + > > + dev_dbg(dev, "reserved memory%d: bus addr %pa size > > 0x%zx va %pK da 0x%x\n", > > + i + 1, &kproc->rmem[i].bus_addr, > > + kproc->rmem[i].size, kproc- > > >rmem[i].cpu_addr, > > + kproc->rmem[i].dev_addr); > > + } > > + kproc->num_rmems = num_rmems; > > + > > + return 0; > > + > > +unmap_rmem: > > + for (i--; i >= 0; i--) > > + iounmap(kproc->rmem[i].cpu_addr); > > + kfree(kproc->rmem); > > +release_rmem: > > + of_reserved_mem_device_release(kproc->dev); > > + return ret; > > +} > > + > > +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) > > +{ > > + int i; > > + > > + for (i = 0; i < kproc->num_rmems; i++) > > + iounmap(kproc->rmem[i].cpu_addr); > > + kfree(kproc->rmem); > > + > > + of_reserved_mem_device_release(kproc->dev); > > +} > > + > > +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device > > *dev, > > + const struct > > ti_sci_handle *sci) > > +{ > > + struct ti_sci_proc *tsp; > > + u32 temp[2]; > > + int ret; > > + > > + ret = of_property_read_u32_array(dev->of_node, "ti,sci- > > proc-ids", > > + temp, 2); > > + if (ret < 0) > > + return ERR_PTR(ret); > > + > > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > > + if (!tsp) > > + return ERR_PTR(-ENOMEM); > > + > > + tsp->dev = dev; > > + tsp->sci = sci; > > + tsp->ops = &sci->ops.proc_ops; > > + tsp->proc_id = temp[0]; > > + tsp->host_id = temp[1]; > > + > > + return tsp; > > +} > > + > > +static int k3_m4_rproc_probe(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + struct device_node *np = dev->of_node; > > + const struct k3_m4_dev_data *data; > > + struct k3_m4_rproc *kproc; > > + struct rproc *rproc; > > + const char *fw_name; > > + bool r_state = false; > > + bool p_state = false; > > + int ret = 0; > > + int ret1; > > + > > + data = of_device_get_match_data(dev); > > + if (!data) > > + return -ENODEV; > > + > > + ret = rproc_of_parse_firmware(dev, 0, &fw_name); > > + if (ret) { > > + dev_err(dev, "failed to parse firmware-name > > property, ret = %d\n", > > + ret); > > + return ret; > > + } > > + > > + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, > > fw_name, > > + sizeof(*kproc)); > > + if (!rproc) > > + return -ENOMEM; > > + > > + rproc->has_iommu = false; > > + rproc->recovery_disabled = true; > > + if (data->uses_lreset) { > > + rproc->ops->prepare = k3_m4_rproc_prepare; > > + rproc->ops->unprepare = k3_m4_rproc_unprepare; > > + } > > + kproc = rproc->priv; > > + kproc->rproc = rproc; > > + kproc->dev = dev; > > + kproc->data = data; > > + > > + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); > > + if (IS_ERR(kproc->ti_sci)) { > > + ret = PTR_ERR(kproc->ti_sci); > > + if (ret != -EPROBE_DEFER) { > > + dev_err(dev, "failed to get ti-sci handle, > > ret = %d\n", > > + ret); > > + } > > + kproc->ti_sci = NULL; > > + goto free_rproc; > > + } > > + > > + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc- > > >ti_sci_id); > > + if (ret) { > > + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); > > + goto put_sci; > > + } > > + > > + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); > > + if (IS_ERR(kproc->reset)) { > > + ret = PTR_ERR(kproc->reset); > > + dev_err(dev, "failed to get reset, status = %d\n", > > ret); > > + goto put_sci; > > + } > > + > > + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); > > + if (IS_ERR(kproc->tsp)) { > > + dev_err(dev, "failed to construct ti-sci proc > > control, ret = %d\n", > > + ret); > > + ret = PTR_ERR(kproc->tsp); > > + goto put_sci; > > + } > > + > > + ret = ti_sci_proc_request(kproc->tsp); > > + if (ret < 0) { > > + dev_err(dev, "ti_sci_proc_request failed, ret = > > %d\n", ret); > > + goto free_tsp; > > + } > > + > > + ret = k3_m4_rproc_of_get_memories(pdev, kproc); > > + if (ret) > > + goto release_tsp; > > + > > + ret = k3_m4_reserved_mem_init(kproc); > > + if (ret) { > > + dev_err(dev, "reserved memory init failed, ret = > > %d\n", ret); > > + goto release_tsp; > > + } > > + > > + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, > > kproc->ti_sci_id, > > + &r_state, &p_state); > > + if (ret) { > > + dev_err(dev, "failed to get initial state, mode > > cannot be determined, ret = %d\n", > > + ret); > > + goto release_mem; > > + } > > + > > + /* configure devices for either remoteproc or IPC-only mode > > */ > > + if (p_state) { > > + dev_err(dev, "configured M4 for IPC-only mode\n"); > > + rproc->state = RPROC_DETACHED; > > + kproc->ipc_only = true; > > + } else { > > + dev_err(dev, "configured M4 for remoteproc > > mode\n"); > > + /* > > + * ensure the M4 local reset is asserted to ensure > > the core > > + * doesn't execute bogus code in .prepare() when > > the module > > + * reset is released. > > + */ > > + if (data->uses_lreset) { > > + ret = reset_control_status(kproc->reset); > > + if (ret < 0) { > > + dev_err(dev, "failed to get reset > > status, status = %d\n", > > + ret); > > + goto release_mem; > > + } else if (ret == 0) { > > + dev_warn(dev, "local reset is > > deasserted for device\n"); > > + k3_m4_rproc_reset(kproc); > > + } > > + } > > + } > > + > > + ret = rproc_add(rproc); > > + if (ret) { > > + dev_err(dev, "failed to add register device with > > remoteproc core, status = %d\n", > > + ret); > > + goto release_mem; > > + } > > + > > + platform_set_drvdata(pdev, kproc); > > + > > + return 0; > > + > > +release_mem: > > + k3_m4_reserved_mem_exit(kproc); > > +release_tsp: > > + ret1 = ti_sci_proc_release(kproc->tsp); > > + if (ret1) > > + dev_err(dev, "failed to release proc, ret = %d\n", > > ret1); > > +free_tsp: > > + kfree(kproc->tsp); > > +put_sci: > > + ret1 = ti_sci_put_handle(kproc->ti_sci); > > + if (ret1) > > + dev_err(dev, "failed to put ti_sci handle, ret = > > %d\n", ret1); > > +free_rproc: > > + rproc_free(rproc); > > + return ret; > > +} > > + > > +static int k3_m4_rproc_remove(struct platform_device *pdev) > > +{ > > + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); > > + struct device *dev = &pdev->dev; > > + int ret; > > + > > + rproc_del(kproc->rproc); > > + > > + ret = ti_sci_proc_release(kproc->tsp); > > + if (ret) > > + dev_err(dev, "failed to release proc, ret = %d\n", > > ret); > > + > > + kfree(kproc->tsp); > > + > > + ret = ti_sci_put_handle(kproc->ti_sci); > > + if (ret) > > + dev_err(dev, "failed to put ti_sci handle, ret = > > %d\n", ret); > > + > > + k3_m4_reserved_mem_exit(kproc); > > + rproc_free(kproc->rproc); > > + > > + return 0; > > +} > > + > > +static const struct k3_m4_mem_data am64_m4_mems[] = { > > + { .name = "iram", .dev_addr = 0x0 }, > > + { .name = "dram", .dev_addr = 0x30000 }, > > +}; > > + > > +static const struct k3_m4_dev_data am64_m4_data = { > > + .mems = am64_m4_mems, > > + .num_mems = ARRAY_SIZE(am64_m4_mems), > > + .boot_align_addr = SZ_1K, > > + .uses_lreset = true, > > +}; > > + > > +static const struct of_device_id k3_m4_of_match[] = { > > + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, > > + { /* sentinel */ }, > > +}; > > +MODULE_DEVICE_TABLE(of, k3_m4_of_match); > > + > > +static struct platform_driver k3_m4_rproc_driver = { > > + .probe = k3_m4_rproc_probe, > > + .remove = k3_m4_rproc_remove, > > + .driver = { > > + .name = "k3-m4-rproc", > > + .of_match_table = k3_m4_of_match, > > + }, > > +}; > > + > > +module_platform_driver(k3_m4_rproc_driver); > > + > > +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); > > +MODULE_LICENSE("GPL v2"); > > +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); > > -- > > 2.39.1 > >
diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig index a850e9f486dd..ff65b73d7e59 100644 --- a/drivers/remoteproc/Kconfig +++ b/drivers/remoteproc/Kconfig @@ -339,6 +339,19 @@ config TI_K3_DSP_REMOTEPROC It's safe to say N here if you're not interested in utilizing the DSP slave processors. +config TI_K3_M4_REMOTEPROC + tristate "TI K3 M4 remoteproc support" + depends on ARCH_K3 + select MAILBOX + select OMAP2PLUS_MBOX + help + Say m here to support TI's M4 remote processor subsystems + on various TI K3 family of SoCs through the remote processor + framework. + + It's safe to say N here if you're not interested in utilizing + a remote processor. + config TI_K3_R5_REMOTEPROC tristate "TI K3 R5 remoteproc support" depends on ARCH_K3 diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile index 91314a9b43ce..5ff4e2fee4ab 100644 --- a/drivers/remoteproc/Makefile +++ b/drivers/remoteproc/Makefile @@ -37,5 +37,6 @@ obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c new file mode 100644 index 000000000000..66301eb69f6f --- /dev/null +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c @@ -0,0 +1,899 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * TI K3 Cortex-M4 Remote Processor(s) driver + * + * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com/ + * Hari Nagalla <hnagalla@ti.com> + */ + +#include <linux/io.h> +#include <linux/mailbox_client.h> +#include <linux/module.h> +#include <linux/of_device.h> +#include <linux/of_reserved_mem.h> +#include <linux/omap-mailbox.h> +#include <linux/platform_device.h> +#include <linux/remoteproc.h> +#include <linux/reset.h> +#include <linux/slab.h> + +#include "omap_remoteproc.h" +#include "remoteproc_internal.h" +#include "ti_sci_proc.h" + +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) + +/** + * struct k3_m4_mem - internal memory structure + * @cpu_addr: MPU virtual address of the memory region + * @bus_addr: Bus address used to access the memory region + * @dev_addr: Device address of the memory region from DSP view + * @size: Size of the memory region + */ +struct k3_m4_mem { + void __iomem *cpu_addr; + phys_addr_t bus_addr; + u32 dev_addr; + size_t size; +}; + +/** + * struct k3_m4_mem_data - memory definitions for a DSP + * @name: name for this memory entry + * @dev_addr: device address for the memory entry + */ +struct k3_m4_mem_data { + const char *name; + const u32 dev_addr; +}; + +/** + * struct k3_m4_dev_data - device data structure for a DSP + * @mems: pointer to memory definitions for a DSP + * @num_mems: number of memory regions in @mems + * @boot_align_addr: boot vector address alignment granularity + * @uses_lreset: flag to denote the need for local reset management + */ +struct k3_m4_dev_data { + const struct k3_m4_mem_data *mems; + u32 num_mems; + u32 boot_align_addr; + bool uses_lreset; +}; + +/** + * struct k3_m4_rproc - k3 M4 remote processor driver structure + * @dev: cached device pointer + * @rproc: remoteproc device handle + * @mem: internal memory regions data + * @num_mems: number of internal memory regions + * @rmem: reserved memory regions data + * @num_rmems: number of reserved memory regions + * @reset: reset control handle + * @data: pointer to M4-specific device data + * @tsp: TI-SCI processor control handle + * @ti_sci: TI-SCI handle + * @ti_sci_id: TI-SCI device identifier + * @mbox: mailbox channel handle + * @client: mailbox client to request the mailbox channel + * @ipc_only: flag to indicate IPC-only mode + */ +struct k3_m4_rproc { + struct device *dev; + struct rproc *rproc; + struct k3_m4_mem *mem; + int num_mems; + struct k3_m4_mem *rmem; + int num_rmems; + struct reset_control *reset; + const struct k3_m4_dev_data *data; + struct ti_sci_proc *tsp; + const struct ti_sci_handle *ti_sci; + u32 ti_sci_id; + struct mbox_chan *mbox; + struct mbox_client client; + bool ipc_only; +}; + +/** + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler + * @client: mailbox client pointer used for requesting the mailbox channel + * @data: mailbox payload + * + * This handler is invoked by the OMAP mailbox driver whenever a mailbox + * message is received. Usually, the mailbox payload simply contains + * the index of the virtqueue that is kicked by the remote processor, + * and we let remoteproc core handle it. + * + * In addition to virtqueue indices, we also have some out-of-band values + * that indicate different events. Those values are deliberately very + * large so they don't coincide with virtqueue indices. + */ +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) +{ + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, + client); + struct device *dev = kproc->rproc->dev.parent; + const char *name = kproc->rproc->name; + u32 msg = omap_mbox_message(data); + + dev_dbg(dev, "mbox msg: 0x%x\n", msg); + + switch (msg) { + case RP_MBOX_CRASH: + /* + * remoteproc detected an exception, but error recovery is not + * supported. So, just log this for now + */ + dev_err(dev, "K3 M4 rproc %s crashed\n", name); + break; + case RP_MBOX_ECHO_REPLY: + dev_info(dev, "received echo reply from %s\n", name); + break; + default: + /* silently handle all other valid messages */ + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) + return; + if (msg > kproc->rproc->max_notifyid) { + dev_dbg(dev, "dropping unknown message 0x%x", msg); + return; + } + /* msg contains the index of the triggered vring */ + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) + dev_dbg(dev, "no message was found in vqid %d\n", msg); + } +} + +/* + * Kick the remote processor to notify about pending unprocessed messages. + * The vqid usage is not used and is inconsequential, as the kick is performed + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), + * the remote processor is expected to process both its Tx and Rx virtqueues. + */ +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = rproc->dev.parent; + mbox_msg_t msg = (mbox_msg_t)vqid; + int ret; + + /* send the index of the triggered virtqueue in the mailbox payload */ + ret = mbox_send_message(kproc->mbox, (void *)msg); + if (ret < 0) + dev_err(dev, "failed to send mailbox message, status = %d\n", + ret); +} + +/* Put the M4 processor into reset */ +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + int ret; + + ret = reset_control_assert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); + return ret; + } + + if (kproc->data->uses_lreset) + return ret; + + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); + if (reset_control_deassert(kproc->reset)) + dev_warn(dev, "local-reset deassert back failed\n"); + } + + return ret; +} + +/* Release the M4 processor from reset */ +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + int ret; + + if (kproc->data->uses_lreset) + goto lreset; + + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); + return ret; + } + + dev_info(dev, "released m4 reset\n"); + +lreset: + ret = reset_control_deassert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id)) + dev_warn(dev, "module-reset assert back failed\n"); + } + + return ret; +} + +static int k3_m4_rproc_request_mbox(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct mbox_client *client = &kproc->client; + struct device *dev = kproc->dev; + int ret; + + client->dev = dev; + client->tx_done = NULL; + client->rx_callback = k3_m4_rproc_mbox_callback; + client->tx_block = false; + client->knows_txdone = false; + + kproc->mbox = mbox_request_channel(client, 0); + if (IS_ERR(kproc->mbox)) { + ret = -EBUSY; + dev_err(dev, "mbox_request_channel failed: %ld\n", + PTR_ERR(kproc->mbox)); + return ret; + } + + /* + * Ping the remote processor, this is only for sanity-sake for now; + * there is no functional effect whatsoever. + * + * Note that the reply will _not_ arrive immediately: this message + * will wait in the mailbox fifo until the remote processor is booted. + */ + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); + if (ret < 0) { + dev_err(dev, "mbox_send_message failed: %d\n", ret); + mbox_free_channel(kproc->mbox); + return ret; + } + + return 0; +} + +/* + * The M4F cores have a local reset that affects only the CPU, and a + * generic module reset that powers on the device and allows the M4 internal + * memories to be accessed while the local reset is asserted. This function is + * used to release the global reset on M4F to allow loading into the M4F + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any + * firmware loading, and is followed by the .start() ops after loading to + * actually let the M4F core run. + */ +static int k3_m4_rproc_prepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* IPC-only mode does not require the core to be released from reset */ + if (kproc->ipc_only) + return 0; + + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", + ret); + + return ret; +} + +/* + * This function implements the .unprepare() ops and performs the complimentary + * operations to that of the .prepare() ops. The function is used to assert the + * global reset on applicable M4F cores. This completes the second portion of + * powering down the M4F cores. The cores themselves are only halted in the + * .stop() callback through the local reset, and the .unprepare() ops is invoked + * by the remoteproc core after the remoteproc is stopped to balance the global + * reset. + */ +static int k3_m4_rproc_unprepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* do not put back the cores into reset in IPC-only mode */ + if (kproc->ipc_only) + return 0; + + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); + + return ret; +} + +/* + * Power up the M4F remote processor. + * + * This function will be invoked only after the firmware for this rproc + * was loaded, parsed successfully, and all of its resource requirements + * were met. + */ +static int k3_m4_rproc_start(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + u32 boot_addr; + int ret; + + if (kproc->ipc_only) { + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", + __func__); + return -EINVAL; + } + + ret = k3_m4_rproc_request_mbox(rproc); + if (ret) + return ret; + + boot_addr = rproc->bootaddr; + ret = k3_m4_rproc_release(kproc); + if (ret) + goto put_mbox; + + return 0; + +put_mbox: + mbox_free_channel(kproc->mbox); + return ret; +} + +/* + * Stop the M4 remote processor. + * + * This function puts the M4 processor into reset, and finishes processing + * of any pending messages. + */ +static int k3_m4_rproc_stop(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (kproc->ipc_only) { + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", + __func__); + return -EINVAL; + } + + mbox_free_channel(kproc->mbox); + + k3_m4_rproc_reset(kproc); + + return 0; +} + +/* + * Attach to a running M4 remote processor (IPC-only mode) + * + * This rproc attach callback only needs to request the mailbox, the remote + * processor is already booted, so there is no need to issue any TI-SCI + * commands to boot the M4 core. + */ +static int k3_m4_rproc_attach(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_DETACHED state\n"); + return -EINVAL; + } + + ret = k3_m4_rproc_request_mbox(rproc); + if (ret) + return ret; + + dev_err(dev, "M4 initialized in IPC-only mode\n"); + return 0; +} + +/* + * Detach from a running M4 remote processor (IPC-only mode) + * + * This rproc detach callback performs the opposite operation to attach callback + * and only needs to release the mailbox, the M4 core is not stopped and will + * be left to continue to run its booted firmware. + */ +static int k3_m4_rproc_detach(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_ATTACHED state\n"); + return -EINVAL; + } + + mbox_free_channel(kproc->mbox); + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); + return 0; +} + +/* + * This function implements the .get_loaded_rsc_table() callback and is used + * to provide the resource table for a booted M4 in IPC-only mode. The K3 M4 + * firmwares follow a design-by-contract approach and are expected to have the + * resource table at the base of the DDR region reserved for firmware usage. + * This provides flexibility for the remote processor to be booted by different + * bootloaders that may or may not have the ability to publish the resource table + * address and size through a DT property. + */ +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, + size_t *rsc_table_sz) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (!kproc->rmem[0].cpu_addr) { + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); + return ERR_PTR(-ENOMEM); + } + + /* + * NOTE: The resource table size is currently hard-coded to a maximum + * of 256 bytes. The most common resource table usage for K3 firmwares + * is to only have the vdev resource entry and an optional trace entry. + * The exact size could be computed based on resource table address, but + * the hard-coded value suffices to support the IPC-only mode. + */ + *rsc_table_sz = 256; + return (struct resource_table *)kproc->rmem[0].cpu_addr; +} + +/* + * Custom function to translate a M4 device address (internal RAMs only) to a + * kernel virtual address. The M4s can access their RAMs at either an internal + * address visible only from a M4, or at the SoC-level bus address. Both these + * addresses need to be looked through for translation. The translated addresses + * can be used either by the remoteproc core for loading (when using kernel + * remoteproc loader), or by any rpmsg bus drivers. + */ +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) +{ + struct k3_m4_rproc *kproc = rproc->priv; + void __iomem *va = NULL; + phys_addr_t bus_addr; + u32 dev_addr, offset; + size_t size; + int i; + + if (len == 0) + return NULL; + + for (i = 0; i < kproc->num_mems; i++) { + bus_addr = kproc->mem[i].bus_addr; + dev_addr = kproc->mem[i].dev_addr; + size = kproc->mem[i].size; + + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { + /* handle M4-view addresses */ + if (da >= dev_addr && + ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + } else { + /* handle SoC-view addresses */ + if (da >= bus_addr && + (da + len) <= (bus_addr + size)) { + offset = da - bus_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + } + } + + /* handle static DDR reserved memory regions */ + for (i = 0; i < kproc->num_rmems; i++) { + dev_addr = kproc->rmem[i].dev_addr; + size = kproc->rmem[i].size; + + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->rmem[i].cpu_addr + offset; + return (__force void *)va; + } + } + + return NULL; +} + +static const struct rproc_ops k3_m4_rproc_ops = { + .start = k3_m4_rproc_start, + .stop = k3_m4_rproc_stop, + .attach = k3_m4_rproc_attach, + .detach = k3_m4_rproc_detach, + .kick = k3_m4_rproc_kick, + .da_to_va = k3_m4_rproc_da_to_va, + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, +}; + +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, + struct k3_m4_rproc *kproc) +{ + const struct k3_m4_dev_data *data = kproc->data; + struct device *dev = &pdev->dev; + struct resource *res; + int num_mems = 0; + int i; + + num_mems = kproc->data->num_mems; + kproc->mem = devm_kcalloc(kproc->dev, num_mems, + sizeof(*kproc->mem), GFP_KERNEL); + if (!kproc->mem) + return -ENOMEM; + + for (i = 0; i < num_mems; i++) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + data->mems[i].name); + if (!res) { + dev_err(dev, "found no memory resource for %s\n", + data->mems[i].name); + return -EINVAL; + } + if (!devm_request_mem_region(dev, res->start, + resource_size(res), + dev_name(dev))) { + dev_err(dev, "could not request %s region for resource\n", + data->mems[i].name); + return -EBUSY; + } + + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, + resource_size(res)); + if (!kproc->mem[i].cpu_addr) { + dev_err(dev, "failed to map %s memory\n", + data->mems[i].name); + return -ENOMEM; + } + kproc->mem[i].bus_addr = res->start; + kproc->mem[i].dev_addr = data->mems[i].dev_addr; + kproc->mem[i].size = resource_size(res); + + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", + data->mems[i].name, &kproc->mem[i].bus_addr, + kproc->mem[i].size, kproc->mem[i].cpu_addr, + kproc->mem[i].dev_addr); + } + kproc->num_mems = num_mems; + + return 0; +} + +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + struct device_node *np = dev->of_node; + struct device_node *rmem_np; + struct reserved_mem *rmem; + int num_rmems; + int ret, i; + + num_rmems = of_property_count_elems_of_size(np, "memory-region", + sizeof(phandle)); + if (num_rmems <= 0) { + dev_err(dev, "device does not reserved memory regions, ret = %d\n", + num_rmems); + return -EINVAL; + } + if (num_rmems < 2) { + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", + num_rmems); + return -EINVAL; + } + + /* use reserved memory region 0 for vring DMA allocations */ + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); + if (ret) { + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", + ret); + return ret; + } + + num_rmems--; + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); + if (!kproc->rmem) { + ret = -ENOMEM; + goto release_rmem; + } + + /* use remaining reserved memory regions for static carveouts */ + for (i = 0; i < num_rmems; i++) { + rmem_np = of_parse_phandle(np, "memory-region", i + 1); + if (!rmem_np) { + ret = -EINVAL; + goto unmap_rmem; + } + + rmem = of_reserved_mem_lookup(rmem_np); + if (!rmem) { + of_node_put(rmem_np); + ret = -EINVAL; + goto unmap_rmem; + } + of_node_put(rmem_np); + + kproc->rmem[i].bus_addr = rmem->base; + /* 64-bit address regions currently not supported */ + kproc->rmem[i].dev_addr = (u32)rmem->base; + kproc->rmem[i].size = rmem->size; + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); + if (!kproc->rmem[i].cpu_addr) { + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", + i + 1, &rmem->base, &rmem->size); + ret = -ENOMEM; + goto unmap_rmem; + } + + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", + i + 1, &kproc->rmem[i].bus_addr, + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, + kproc->rmem[i].dev_addr); + } + kproc->num_rmems = num_rmems; + + return 0; + +unmap_rmem: + for (i--; i >= 0; i--) + iounmap(kproc->rmem[i].cpu_addr); + kfree(kproc->rmem); +release_rmem: + of_reserved_mem_device_release(kproc->dev); + return ret; +} + +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) +{ + int i; + + for (i = 0; i < kproc->num_rmems; i++) + iounmap(kproc->rmem[i].cpu_addr); + kfree(kproc->rmem); + + of_reserved_mem_device_release(kproc->dev); +} + +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, + const struct ti_sci_handle *sci) +{ + struct ti_sci_proc *tsp; + u32 temp[2]; + int ret; + + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", + temp, 2); + if (ret < 0) + return ERR_PTR(ret); + + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); + if (!tsp) + return ERR_PTR(-ENOMEM); + + tsp->dev = dev; + tsp->sci = sci; + tsp->ops = &sci->ops.proc_ops; + tsp->proc_id = temp[0]; + tsp->host_id = temp[1]; + + return tsp; +} + +static int k3_m4_rproc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + const struct k3_m4_dev_data *data; + struct k3_m4_rproc *kproc; + struct rproc *rproc; + const char *fw_name; + bool r_state = false; + bool p_state = false; + int ret = 0; + int ret1; + + data = of_device_get_match_data(dev); + if (!data) + return -ENODEV; + + ret = rproc_of_parse_firmware(dev, 0, &fw_name); + if (ret) { + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", + ret); + return ret; + } + + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, + sizeof(*kproc)); + if (!rproc) + return -ENOMEM; + + rproc->has_iommu = false; + rproc->recovery_disabled = true; + if (data->uses_lreset) { + rproc->ops->prepare = k3_m4_rproc_prepare; + rproc->ops->unprepare = k3_m4_rproc_unprepare; + } + kproc = rproc->priv; + kproc->rproc = rproc; + kproc->dev = dev; + kproc->data = data; + + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); + if (IS_ERR(kproc->ti_sci)) { + ret = PTR_ERR(kproc->ti_sci); + if (ret != -EPROBE_DEFER) { + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", + ret); + } + kproc->ti_sci = NULL; + goto free_rproc; + } + + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); + if (ret) { + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); + goto put_sci; + } + + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); + if (IS_ERR(kproc->reset)) { + ret = PTR_ERR(kproc->reset); + dev_err(dev, "failed to get reset, status = %d\n", ret); + goto put_sci; + } + + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); + if (IS_ERR(kproc->tsp)) { + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", + ret); + ret = PTR_ERR(kproc->tsp); + goto put_sci; + } + + ret = ti_sci_proc_request(kproc->tsp); + if (ret < 0) { + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); + goto free_tsp; + } + + ret = k3_m4_rproc_of_get_memories(pdev, kproc); + if (ret) + goto release_tsp; + + ret = k3_m4_reserved_mem_init(kproc); + if (ret) { + dev_err(dev, "reserved memory init failed, ret = %d\n", ret); + goto release_tsp; + } + + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, + &r_state, &p_state); + if (ret) { + dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", + ret); + goto release_mem; + } + + /* configure devices for either remoteproc or IPC-only mode */ + if (p_state) { + dev_err(dev, "configured M4 for IPC-only mode\n"); + rproc->state = RPROC_DETACHED; + kproc->ipc_only = true; + } else { + dev_err(dev, "configured M4 for remoteproc mode\n"); + /* + * ensure the M4 local reset is asserted to ensure the core + * doesn't execute bogus code in .prepare() when the module + * reset is released. + */ + if (data->uses_lreset) { + ret = reset_control_status(kproc->reset); + if (ret < 0) { + dev_err(dev, "failed to get reset status, status = %d\n", + ret); + goto release_mem; + } else if (ret == 0) { + dev_warn(dev, "local reset is deasserted for device\n"); + k3_m4_rproc_reset(kproc); + } + } + } + + ret = rproc_add(rproc); + if (ret) { + dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", + ret); + goto release_mem; + } + + platform_set_drvdata(pdev, kproc); + + return 0; + +release_mem: + k3_m4_reserved_mem_exit(kproc); +release_tsp: + ret1 = ti_sci_proc_release(kproc->tsp); + if (ret1) + dev_err(dev, "failed to release proc, ret = %d\n", ret1); +free_tsp: + kfree(kproc->tsp); +put_sci: + ret1 = ti_sci_put_handle(kproc->ti_sci); + if (ret1) + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); +free_rproc: + rproc_free(rproc); + return ret; +} + +static int k3_m4_rproc_remove(struct platform_device *pdev) +{ + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); + struct device *dev = &pdev->dev; + int ret; + + rproc_del(kproc->rproc); + + ret = ti_sci_proc_release(kproc->tsp); + if (ret) + dev_err(dev, "failed to release proc, ret = %d\n", ret); + + kfree(kproc->tsp); + + ret = ti_sci_put_handle(kproc->ti_sci); + if (ret) + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); + + k3_m4_reserved_mem_exit(kproc); + rproc_free(kproc->rproc); + + return 0; +} + +static const struct k3_m4_mem_data am64_m4_mems[] = { + { .name = "iram", .dev_addr = 0x0 }, + { .name = "dram", .dev_addr = 0x30000 }, +}; + +static const struct k3_m4_dev_data am64_m4_data = { + .mems = am64_m4_mems, + .num_mems = ARRAY_SIZE(am64_m4_mems), + .boot_align_addr = SZ_1K, + .uses_lreset = true, +}; + +static const struct of_device_id k3_m4_of_match[] = { + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, k3_m4_of_match); + +static struct platform_driver k3_m4_rproc_driver = { + .probe = k3_m4_rproc_probe, + .remove = k3_m4_rproc_remove, + .driver = { + .name = "k3-m4-rproc", + .of_match_table = k3_m4_of_match, + }, +}; + +module_platform_driver(k3_m4_rproc_driver); + +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver");