Message ID | 20230327211548.462509-2-jiaqiyan@google.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | Memory poison recovery in khugepaged collapsing | expand |
On Mon, Mar 27, 2023 at 2:15 PM Jiaqi Yan <jiaqiyan@google.com> wrote: > > Make __collapse_huge_page_copy return whether copying anonymous pages > succeeded, and make collapse_huge_page handle the return status. > > Break existing PTE scan loop into two for-loops. The first loop copies > source pages into target huge page, and can fail gracefully when running > into memory errors in source pages. If copying all pages succeeds, the > second loop releases and clears up these normal pages. Otherwise, the > second loop rolls back the page table and page states by: > - re-establishing the original PTEs-to-PMD connection. > - releasing source pages back to their LRU list. > > Tested manually: > 0. Enable khugepaged on system under test. > 1. Start a two-thread application. Each thread allocates a chunk of > non-huge anonymous memory buffer. > 2. Pick 4 random buffer locations (2 in each thread) and inject > uncorrectable memory errors at corresponding physical addresses. > 3. Signal both threads to make their memory buffer collapsible, i.e. > calling madvise(MADV_HUGEPAGE). > 4. Wait and check kernel log: khugepaged is able to recover from poisoned > pages and skips collapsing them. > 5. Signal both threads to inspect their buffer contents and make sure no > data corruption. > > Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Just a nit below: > --- > include/trace/events/huge_memory.h | 3 +- > mm/khugepaged.c | 114 +++++++++++++++++++++++++---- > 2 files changed, 103 insertions(+), 14 deletions(-) > > diff --git a/include/trace/events/huge_memory.h b/include/trace/events/huge_memory.h > index 3e6fb05852f9a..46cce509957ba 100644 > --- a/include/trace/events/huge_memory.h > +++ b/include/trace/events/huge_memory.h > @@ -36,7 +36,8 @@ > EM( SCAN_ALLOC_HUGE_PAGE_FAIL, "alloc_huge_page_failed") \ > EM( SCAN_CGROUP_CHARGE_FAIL, "ccgroup_charge_failed") \ > EM( SCAN_TRUNCATED, "truncated") \ > - EMe(SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ > + EM( SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ > + EMe(SCAN_COPY_MC, "copy_poisoned_page") \ > > #undef EM > #undef EMe > diff --git a/mm/khugepaged.c b/mm/khugepaged.c > index bee7fd7db380a..bef68286345c8 100644 > --- a/mm/khugepaged.c > +++ b/mm/khugepaged.c > @@ -55,6 +55,7 @@ enum scan_result { > SCAN_CGROUP_CHARGE_FAIL, > SCAN_TRUNCATED, > SCAN_PAGE_HAS_PRIVATE, > + SCAN_COPY_MC, > }; > > #define CREATE_TRACE_POINTS > @@ -681,20 +682,22 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma, > return result; > } > > -static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > - struct vm_area_struct *vma, > - unsigned long address, > - spinlock_t *ptl, > - struct list_head *compound_pagelist) > +static void __collapse_huge_page_copy_succeeded(pte_t *pte, > + pmd_t *pmd, > + struct vm_area_struct *vma, > + unsigned long address, > + spinlock_t *ptl, > + struct list_head *compound_pagelist) > { > - struct page *src_page, *tmp; > + struct page *src_page; > + struct page *tmp; > pte_t *_pte; > - for (_pte = pte; _pte < pte + HPAGE_PMD_NR; > - _pte++, page++, address += PAGE_SIZE) { > - pte_t pteval = *_pte; > + pte_t pteval; > > + for (_pte = pte; _pte < pte + HPAGE_PMD_NR; > + _pte++, address += PAGE_SIZE) { > + pteval = *_pte; > if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { > - clear_user_highpage(page, address); > add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); > if (is_zero_pfn(pte_pfn(pteval))) { > /* > @@ -706,7 +709,6 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > } > } else { > src_page = pte_page(pteval); > - copy_user_highpage(page, src_page, address, vma); > if (!PageCompound(src_page)) > release_pte_page(src_page); > /* > @@ -733,6 +735,88 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > } > } > > +static void __collapse_huge_page_copy_failed(pte_t *pte, > + pmd_t *pmd, > + pmd_t orig_pmd, > + struct vm_area_struct *vma, > + unsigned long address, It looks like "address" is not used at all. It could be removed. > + struct list_head *compound_pagelist) > +{ > + spinlock_t *pmd_ptl; > + > + /* > + * Re-establish the PMD to point to the original page table > + * entry. Restoring PMD needs to be done prior to releasing > + * pages. Since pages are still isolated and locked here, > + * acquiring anon_vma_lock_write is unnecessary. > + */ > + pmd_ptl = pmd_lock(vma->vm_mm, pmd); > + pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); > + spin_unlock(pmd_ptl); > + /* > + * Release both raw and compound pages isolated > + * in __collapse_huge_page_isolate. > + */ > + release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); > +} > + > +/* > + * __collapse_huge_page_copy - attempts to copy memory contents from raw > + * pages to a hugepage. Cleans up the raw pages if copying succeeds; > + * otherwise restores the original page table and releases isolated raw pages. > + * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. > + * > + * @pte: starting of the PTEs to copy from > + * @page: the new hugepage to copy contents to > + * @pmd: pointer to the new hugepage's PMD > + * @orig_pmd: the original raw pages' PMD > + * @vma: the original raw pages' virtual memory area > + * @address: starting address to copy > + * @pte_ptl: lock on raw pages' PTEs > + * @compound_pagelist: list that stores compound pages > + */ > +static int __collapse_huge_page_copy(pte_t *pte, > + struct page *page, > + pmd_t *pmd, > + pmd_t orig_pmd, > + struct vm_area_struct *vma, > + unsigned long address, > + spinlock_t *pte_ptl, > + struct list_head *compound_pagelist) > +{ > + struct page *src_page; > + pte_t *_pte; > + pte_t pteval; > + unsigned long _address; > + int result = SCAN_SUCCEED; > + > + /* > + * Copying pages' contents is subject to memory poison at any iteration. > + */ > + for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; > + _pte++, page++, _address += PAGE_SIZE) { > + pteval = *_pte; > + if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { > + clear_user_highpage(page, _address); > + continue; > + } > + src_page = pte_page(pteval); > + if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { > + result = SCAN_COPY_MC; > + break; > + } > + } > + > + if (likely(result == SCAN_SUCCEED)) > + __collapse_huge_page_copy_succeeded(pte, pmd, vma, address, > + pte_ptl, compound_pagelist); > + else > + __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, > + address, compound_pagelist); > + > + return result; > +} > + > static void khugepaged_alloc_sleep(void) > { > DEFINE_WAIT(wait); > @@ -1106,9 +1190,13 @@ static int collapse_huge_page(struct mm_struct *mm, unsigned long address, > */ > anon_vma_unlock_write(vma->anon_vma); > > - __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, > - &compound_pagelist); > + result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, > + vma, address, pte_ptl, > + &compound_pagelist); > pte_unmap(pte); > + if (unlikely(result != SCAN_SUCCEED)) > + goto out_up_write; > + > /* > * spin_lock() below is not the equivalent of smp_wmb(), but > * the smp_wmb() inside __SetPageUptodate() can be reused to > -- > 2.40.0.348.gf938b09366-goog >
On Tue, Mar 28, 2023 at 8:59 AM Yang Shi <shy828301@gmail.com> wrote: > > On Mon, Mar 27, 2023 at 2:15 PM Jiaqi Yan <jiaqiyan@google.com> wrote: > > > > Make __collapse_huge_page_copy return whether copying anonymous pages > > succeeded, and make collapse_huge_page handle the return status. > > > > Break existing PTE scan loop into two for-loops. The first loop copies > > source pages into target huge page, and can fail gracefully when running > > into memory errors in source pages. If copying all pages succeeds, the > > second loop releases and clears up these normal pages. Otherwise, the > > second loop rolls back the page table and page states by: > > - re-establishing the original PTEs-to-PMD connection. > > - releasing source pages back to their LRU list. > > > > Tested manually: > > 0. Enable khugepaged on system under test. > > 1. Start a two-thread application. Each thread allocates a chunk of > > non-huge anonymous memory buffer. > > 2. Pick 4 random buffer locations (2 in each thread) and inject > > uncorrectable memory errors at corresponding physical addresses. > > 3. Signal both threads to make their memory buffer collapsible, i.e. > > calling madvise(MADV_HUGEPAGE). > > 4. Wait and check kernel log: khugepaged is able to recover from poisoned > > pages and skips collapsing them. > > 5. Signal both threads to inspect their buffer contents and make sure no > > data corruption. > > > > Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> > > Reviewed-by: Yang Shi <shy828301@gmail.com> > > Just a nit below: > > > --- > > include/trace/events/huge_memory.h | 3 +- > > mm/khugepaged.c | 114 +++++++++++++++++++++++++---- > > 2 files changed, 103 insertions(+), 14 deletions(-) > > > > diff --git a/include/trace/events/huge_memory.h b/include/trace/events/huge_memory.h > > index 3e6fb05852f9a..46cce509957ba 100644 > > --- a/include/trace/events/huge_memory.h > > +++ b/include/trace/events/huge_memory.h > > @@ -36,7 +36,8 @@ > > EM( SCAN_ALLOC_HUGE_PAGE_FAIL, "alloc_huge_page_failed") \ > > EM( SCAN_CGROUP_CHARGE_FAIL, "ccgroup_charge_failed") \ > > EM( SCAN_TRUNCATED, "truncated") \ > > - EMe(SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ > > + EM( SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ > > + EMe(SCAN_COPY_MC, "copy_poisoned_page") \ > > > > #undef EM > > #undef EMe > > diff --git a/mm/khugepaged.c b/mm/khugepaged.c > > index bee7fd7db380a..bef68286345c8 100644 > > --- a/mm/khugepaged.c > > +++ b/mm/khugepaged.c > > @@ -55,6 +55,7 @@ enum scan_result { > > SCAN_CGROUP_CHARGE_FAIL, > > SCAN_TRUNCATED, > > SCAN_PAGE_HAS_PRIVATE, > > + SCAN_COPY_MC, > > }; > > > > #define CREATE_TRACE_POINTS > > @@ -681,20 +682,22 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma, > > return result; > > } > > > > -static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > > - struct vm_area_struct *vma, > > - unsigned long address, > > - spinlock_t *ptl, > > - struct list_head *compound_pagelist) > > +static void __collapse_huge_page_copy_succeeded(pte_t *pte, > > + pmd_t *pmd, > > + struct vm_area_struct *vma, > > + unsigned long address, > > + spinlock_t *ptl, > > + struct list_head *compound_pagelist) > > { > > - struct page *src_page, *tmp; > > + struct page *src_page; > > + struct page *tmp; > > pte_t *_pte; > > - for (_pte = pte; _pte < pte + HPAGE_PMD_NR; > > - _pte++, page++, address += PAGE_SIZE) { > > - pte_t pteval = *_pte; > > + pte_t pteval; > > > > + for (_pte = pte; _pte < pte + HPAGE_PMD_NR; > > + _pte++, address += PAGE_SIZE) { > > + pteval = *_pte; > > if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { > > - clear_user_highpage(page, address); > > add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); > > if (is_zero_pfn(pte_pfn(pteval))) { > > /* > > @@ -706,7 +709,6 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > > } > > } else { > > src_page = pte_page(pteval); > > - copy_user_highpage(page, src_page, address, vma); > > if (!PageCompound(src_page)) > > release_pte_page(src_page); > > /* > > @@ -733,6 +735,88 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, > > } > > } > > > > +static void __collapse_huge_page_copy_failed(pte_t *pte, > > + pmd_t *pmd, > > + pmd_t orig_pmd, > > + struct vm_area_struct *vma, > > + unsigned long address, > > It looks like "address" is not used at all. It could be removed. Thanks for catching this! pmd in __collapse_huge_page_copy_succeeded can also be dropped. > > > + struct list_head *compound_pagelist) > > +{ > > + spinlock_t *pmd_ptl; > > + > > + /* > > + * Re-establish the PMD to point to the original page table > > + * entry. Restoring PMD needs to be done prior to releasing > > + * pages. Since pages are still isolated and locked here, > > + * acquiring anon_vma_lock_write is unnecessary. > > + */ > > + pmd_ptl = pmd_lock(vma->vm_mm, pmd); > > + pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); > > + spin_unlock(pmd_ptl); > > + /* > > + * Release both raw and compound pages isolated > > + * in __collapse_huge_page_isolate. > > + */ > > + release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); > > +} > > + > > +/* > > + * __collapse_huge_page_copy - attempts to copy memory contents from raw > > + * pages to a hugepage. Cleans up the raw pages if copying succeeds; > > + * otherwise restores the original page table and releases isolated raw pages. > > + * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. > > + * > > + * @pte: starting of the PTEs to copy from > > + * @page: the new hugepage to copy contents to > > + * @pmd: pointer to the new hugepage's PMD > > + * @orig_pmd: the original raw pages' PMD > > + * @vma: the original raw pages' virtual memory area > > + * @address: starting address to copy > > + * @pte_ptl: lock on raw pages' PTEs > > + * @compound_pagelist: list that stores compound pages > > + */ > > +static int __collapse_huge_page_copy(pte_t *pte, > > + struct page *page, > > + pmd_t *pmd, > > + pmd_t orig_pmd, > > + struct vm_area_struct *vma, > > + unsigned long address, > > + spinlock_t *pte_ptl, > > + struct list_head *compound_pagelist) > > +{ > > + struct page *src_page; > > + pte_t *_pte; > > + pte_t pteval; > > + unsigned long _address; > > + int result = SCAN_SUCCEED; > > + > > + /* > > + * Copying pages' contents is subject to memory poison at any iteration. > > + */ > > + for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; > > + _pte++, page++, _address += PAGE_SIZE) { > > + pteval = *_pte; > > + if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { > > + clear_user_highpage(page, _address); > > + continue; > > + } > > + src_page = pte_page(pteval); > > + if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { > > + result = SCAN_COPY_MC; > > + break; > > + } > > + } > > + > > + if (likely(result == SCAN_SUCCEED)) > > + __collapse_huge_page_copy_succeeded(pte, pmd, vma, address, > > + pte_ptl, compound_pagelist); > > + else > > + __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, > > + address, compound_pagelist); > > + > > + return result; > > +} > > + > > static void khugepaged_alloc_sleep(void) > > { > > DEFINE_WAIT(wait); > > @@ -1106,9 +1190,13 @@ static int collapse_huge_page(struct mm_struct *mm, unsigned long address, > > */ > > anon_vma_unlock_write(vma->anon_vma); > > > > - __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, > > - &compound_pagelist); > > + result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, > > + vma, address, pte_ptl, > > + &compound_pagelist); > > pte_unmap(pte); > > + if (unlikely(result != SCAN_SUCCEED)) > > + goto out_up_write; > > + > > /* > > * spin_lock() below is not the equivalent of smp_wmb(), but > > * the smp_wmb() inside __SetPageUptodate() can be reused to > > -- > > 2.40.0.348.gf938b09366-goog > >
diff --git a/include/trace/events/huge_memory.h b/include/trace/events/huge_memory.h index 3e6fb05852f9a..46cce509957ba 100644 --- a/include/trace/events/huge_memory.h +++ b/include/trace/events/huge_memory.h @@ -36,7 +36,8 @@ EM( SCAN_ALLOC_HUGE_PAGE_FAIL, "alloc_huge_page_failed") \ EM( SCAN_CGROUP_CHARGE_FAIL, "ccgroup_charge_failed") \ EM( SCAN_TRUNCATED, "truncated") \ - EMe(SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ + EM( SCAN_PAGE_HAS_PRIVATE, "page_has_private") \ + EMe(SCAN_COPY_MC, "copy_poisoned_page") \ #undef EM #undef EMe diff --git a/mm/khugepaged.c b/mm/khugepaged.c index bee7fd7db380a..bef68286345c8 100644 --- a/mm/khugepaged.c +++ b/mm/khugepaged.c @@ -55,6 +55,7 @@ enum scan_result { SCAN_CGROUP_CHARGE_FAIL, SCAN_TRUNCATED, SCAN_PAGE_HAS_PRIVATE, + SCAN_COPY_MC, }; #define CREATE_TRACE_POINTS @@ -681,20 +682,22 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma, return result; } -static void __collapse_huge_page_copy(pte_t *pte, struct page *page, - struct vm_area_struct *vma, - unsigned long address, - spinlock_t *ptl, - struct list_head *compound_pagelist) +static void __collapse_huge_page_copy_succeeded(pte_t *pte, + pmd_t *pmd, + struct vm_area_struct *vma, + unsigned long address, + spinlock_t *ptl, + struct list_head *compound_pagelist) { - struct page *src_page, *tmp; + struct page *src_page; + struct page *tmp; pte_t *_pte; - for (_pte = pte; _pte < pte + HPAGE_PMD_NR; - _pte++, page++, address += PAGE_SIZE) { - pte_t pteval = *_pte; + pte_t pteval; + for (_pte = pte; _pte < pte + HPAGE_PMD_NR; + _pte++, address += PAGE_SIZE) { + pteval = *_pte; if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { - clear_user_highpage(page, address); add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); if (is_zero_pfn(pte_pfn(pteval))) { /* @@ -706,7 +709,6 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, } } else { src_page = pte_page(pteval); - copy_user_highpage(page, src_page, address, vma); if (!PageCompound(src_page)) release_pte_page(src_page); /* @@ -733,6 +735,88 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, } } +static void __collapse_huge_page_copy_failed(pte_t *pte, + pmd_t *pmd, + pmd_t orig_pmd, + struct vm_area_struct *vma, + unsigned long address, + struct list_head *compound_pagelist) +{ + spinlock_t *pmd_ptl; + + /* + * Re-establish the PMD to point to the original page table + * entry. Restoring PMD needs to be done prior to releasing + * pages. Since pages are still isolated and locked here, + * acquiring anon_vma_lock_write is unnecessary. + */ + pmd_ptl = pmd_lock(vma->vm_mm, pmd); + pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); + spin_unlock(pmd_ptl); + /* + * Release both raw and compound pages isolated + * in __collapse_huge_page_isolate. + */ + release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); +} + +/* + * __collapse_huge_page_copy - attempts to copy memory contents from raw + * pages to a hugepage. Cleans up the raw pages if copying succeeds; + * otherwise restores the original page table and releases isolated raw pages. + * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. + * + * @pte: starting of the PTEs to copy from + * @page: the new hugepage to copy contents to + * @pmd: pointer to the new hugepage's PMD + * @orig_pmd: the original raw pages' PMD + * @vma: the original raw pages' virtual memory area + * @address: starting address to copy + * @pte_ptl: lock on raw pages' PTEs + * @compound_pagelist: list that stores compound pages + */ +static int __collapse_huge_page_copy(pte_t *pte, + struct page *page, + pmd_t *pmd, + pmd_t orig_pmd, + struct vm_area_struct *vma, + unsigned long address, + spinlock_t *pte_ptl, + struct list_head *compound_pagelist) +{ + struct page *src_page; + pte_t *_pte; + pte_t pteval; + unsigned long _address; + int result = SCAN_SUCCEED; + + /* + * Copying pages' contents is subject to memory poison at any iteration. + */ + for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; + _pte++, page++, _address += PAGE_SIZE) { + pteval = *_pte; + if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { + clear_user_highpage(page, _address); + continue; + } + src_page = pte_page(pteval); + if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { + result = SCAN_COPY_MC; + break; + } + } + + if (likely(result == SCAN_SUCCEED)) + __collapse_huge_page_copy_succeeded(pte, pmd, vma, address, + pte_ptl, compound_pagelist); + else + __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, + address, compound_pagelist); + + return result; +} + static void khugepaged_alloc_sleep(void) { DEFINE_WAIT(wait); @@ -1106,9 +1190,13 @@ static int collapse_huge_page(struct mm_struct *mm, unsigned long address, */ anon_vma_unlock_write(vma->anon_vma); - __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, - &compound_pagelist); + result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, + vma, address, pte_ptl, + &compound_pagelist); pte_unmap(pte); + if (unlikely(result != SCAN_SUCCEED)) + goto out_up_write; + /* * spin_lock() below is not the equivalent of smp_wmb(), but * the smp_wmb() inside __SetPageUptodate() can be reused to
Make __collapse_huge_page_copy return whether copying anonymous pages succeeded, and make collapse_huge_page handle the return status. Break existing PTE scan loop into two for-loops. The first loop copies source pages into target huge page, and can fail gracefully when running into memory errors in source pages. If copying all pages succeeds, the second loop releases and clears up these normal pages. Otherwise, the second loop rolls back the page table and page states by: - re-establishing the original PTEs-to-PMD connection. - releasing source pages back to their LRU list. Tested manually: 0. Enable khugepaged on system under test. 1. Start a two-thread application. Each thread allocates a chunk of non-huge anonymous memory buffer. 2. Pick 4 random buffer locations (2 in each thread) and inject uncorrectable memory errors at corresponding physical addresses. 3. Signal both threads to make their memory buffer collapsible, i.e. calling madvise(MADV_HUGEPAGE). 4. Wait and check kernel log: khugepaged is able to recover from poisoned pages and skips collapsing them. 5. Signal both threads to inspect their buffer contents and make sure no data corruption. Signed-off-by: Jiaqi Yan <jiaqiyan@google.com> --- include/trace/events/huge_memory.h | 3 +- mm/khugepaged.c | 114 +++++++++++++++++++++++++---- 2 files changed, 103 insertions(+), 14 deletions(-)