Message ID | 20230629075538.4063701-20-zhaotianrui@loongson.cn (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Add KVM LoongArch support | expand |
Hi, Tianrui, Via offline discussion now I know that the level2_xxx functions are used to translate GPA to HPA, but the level2_ prefix is very confusing that the first image may be "two level page tables (PMD+PTE, or something like that)". So to make things clear, I think a gpa2hpa_ prefix may be better, and if it is too long, we can use g2hpa_. As an alternative, use hypervisor_ as the prefix may also be considerable. Huacai On Thu, Jun 29, 2023 at 3:56 PM Tianrui Zhao <zhaotianrui@loongson.cn> wrote: > > Implement LoongArch kvm mmu, it is used to switch gpa to hpa when > guest exit because of address translation exception. This patch > implement allocate gpa page table, search gpa from it and flush guest > gpa in the table. > > Reviewed-by: Bibo Mao <maobibo@loongson.cn> > Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> > --- > arch/loongarch/kvm/mmu.c | 725 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 725 insertions(+) > create mode 100644 arch/loongarch/kvm/mmu.c > > diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c > new file mode 100644 > index 000000000000..d75446139546 > --- /dev/null > +++ b/arch/loongarch/kvm/mmu.c > @@ -0,0 +1,725 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited > + */ > + > +#include <linux/highmem.h> > +#include <linux/page-flags.h> > +#include <linux/kvm_host.h> > +#include <linux/uaccess.h> > +#include <asm/mmu_context.h> > +#include <asm/pgalloc.h> > +#include <asm/tlb.h> > + > +/* > + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels > + * for which pages need to be cached. > + */ > +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) > + > +/** > + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. > + * > + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical > + * to host physical page mappings. > + * > + * Returns: Pointer to new KVM GPA page directory. > + * NULL on allocation failure. > + */ > +pgd_t *kvm_pgd_alloc(void) > +{ > + pgd_t *pgd; > + > + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); > + if (pgd) > + pgd_init((void *)pgd); > + > + return pgd; > +} > + > +/** > + * kvm_walk_pgd() - Walk page table with optional allocation. > + * @pgd: Page directory pointer. > + * @addr: Address to index page table using. > + * @cache: MMU page cache to allocate new page tables from, or NULL. > + * > + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the > + * address @addr. If page tables don't exist for @addr, they will be created > + * from the MMU cache if @cache is not NULL. > + * > + * Returns: Pointer to pte_t corresponding to @addr. > + * NULL if a page table doesn't exist for @addr and !@cache. > + * NULL if a page table allocation failed. > + */ > +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, > + unsigned long addr) > +{ > + p4d_t *p4d; > + pud_t *pud; > + pmd_t *pmd; > + > + pgd += pgd_index(addr); > + if (pgd_none(*pgd)) { > + /* Not used yet */ > + BUG(); > + return NULL; > + } > + p4d = p4d_offset(pgd, addr); > + pud = pud_offset(p4d, addr); > + if (pud_none(*pud)) { > + pmd_t *new_pmd; > + > + if (!cache) > + return NULL; > + new_pmd = kvm_mmu_memory_cache_alloc(cache); > + pmd_init((void *)new_pmd); > + pud_populate(NULL, pud, new_pmd); > + } > + pmd = pmd_offset(pud, addr); > + if (pmd_none(*pmd)) { > + pte_t *new_pte; > + > + if (!cache) > + return NULL; > + new_pte = kvm_mmu_memory_cache_alloc(cache); > + clear_page(new_pte); > + pmd_populate_kernel(NULL, pmd, new_pte); > + } > + return pte_offset_kernel(pmd, addr); > +} > + > +/* Caller must hold kvm->mm_lock */ > +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, > + struct kvm_mmu_memory_cache *cache, > + unsigned long addr) > +{ > + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); > +} > + > +/* > + * level2_flush_{pte,pmd,pud,pgd,pt}. > + * Flush a range of guest physical address space from the VM's GPA page tables. > + */ > +static int level2_flush_pte(pmd_t *pmd, unsigned long addr, unsigned long end) > +{ > + pte_t *pte; > + unsigned long next, start; > + int ret; > + > + ret = 0; > + start = addr; > + pte = pte_offset_kernel(pmd, addr); > + do { > + next = addr + PAGE_SIZE; > + if (!pte_present(*pte)) > + continue; > + > + set_pte(pte, __pte(0)); > + ret = 1; > + } while (pte++, addr = next, addr != end); > + > + if (start + PMD_SIZE == end) { > + pte = pte_offset_kernel(pmd, 0); > + pmd_clear(pmd); > + pte_free_kernel(NULL, pte); > + } > + return ret; > +} > + > +static int level2_flush_pmd(pud_t *pud, unsigned long addr, unsigned long end) > +{ > + pmd_t *pmd; > + unsigned long next, start; > + int ret; > + > + ret = 0; > + start = addr; > + pmd = pmd_offset(pud, addr); > + do { > + next = pmd_addr_end(addr, end); > + if (!pmd_present(*pmd)) > + continue; > + > + ret |= level2_flush_pte(pmd, addr, next); > + } while (pmd++, addr = next, addr != end); > + > + if (start + PUD_SIZE == end) { > + pmd = pmd_offset(pud, 0); > + pud_clear(pud); > + pmd_free(NULL, pmd); > + } > + return ret; > +} > + > +static int level2_flush_pud(pgd_t *pgd, unsigned long addr, unsigned long end) > +{ > + p4d_t *p4d; > + pud_t *pud; > + unsigned long next, start; > + int ret; > + > + ret = 0; > + start = addr; > + p4d = p4d_offset(pgd, addr); > + pud = pud_offset(p4d, addr); > + do { > + next = pud_addr_end(addr, end); > + if (!pud_present(*pud)) > + continue; > + > + ret |= level2_flush_pmd(pud, addr, next); > + } while (pud++, addr = next, addr != end); > + > + if (start + PGDIR_SIZE == end) { > + pud = pud_offset(p4d, 0); > + pgd_clear(pgd); > + pud_free(NULL, pud); > + } > + return ret; > +} > + > +static int level2_flush_pgd(pgd_t *pgd, unsigned long addr, unsigned long end) > +{ > + unsigned long next; > + int ret; > + > + ret = 0; > + if (addr > end - 1) > + return ret; > + pgd = pgd + pgd_index(addr); > + do { > + next = pgd_addr_end(addr, end); > + if (!pgd_present(*pgd)) > + continue; > + > + ret |= level2_flush_pud(pgd, addr, next); > + } while (pgd++, addr = next, addr != end); > + > + return ret; > +} > + > +/** > + * level2_flush_range() - Flush a range of guest physical addresses. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Flushes a range of GPA mappings from the GPA page tables. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether its safe to remove the top level page directory because > + * all lower levels have been removed. > + */ > +static bool level2_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > +{ > + return level2_flush_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT); > +} > + > +typedef int (*level2_pte_ops)(void *pte); > +/* > + * level2_mkclean_pte > + * Mark a range of guest physical address space clean (writes fault) in the VM's > + * GPA page table to allow dirty page tracking. > + */ > +static int level2_mkclean_pte(void *pte) > +{ > + pte_t val; > + > + val = *(pte_t *)pte; > + if (pte_dirty(val)) { > + *(pte_t *)pte = pte_mkclean(val); > + return 1; > + } > + return 0; > +} > + > +static int level2_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, > + level2_pte_ops func) > +{ > + pte_t *pte; > + unsigned long next; > + int ret; > + > + ret = 0; > + pte = pte_offset_kernel(pmd, addr); > + do { > + next = addr + PAGE_SIZE; > + if (!pte_present(*pte)) > + continue; > + > + ret |= func(pte); > + } while (pte++, addr = next, addr != end); > + > + return ret; > +} > + > +static int level2_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, > + level2_pte_ops func) > +{ > + pmd_t *pmd; > + unsigned long next; > + int ret; > + > + ret = 0; > + pmd = pmd_offset(pud, addr); > + do { > + next = pmd_addr_end(addr, end); > + if (!pmd_present(*pmd)) > + continue; > + > + ret |= level2_ptw_pte(pmd, addr, next, func); > + } while (pmd++, addr = next, addr != end); > + > + return ret; > +} > + > +static int level2_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, > + level2_pte_ops func) > +{ > + p4d_t *p4d; > + pud_t *pud; > + unsigned long next; > + int ret; > + > + ret = 0; > + p4d = p4d_offset(pgd, addr); > + pud = pud_offset(p4d, addr); > + do { > + next = pud_addr_end(addr, end); > + if (!pud_present(*pud)) > + continue; > + > + ret |= level2_ptw_pmd(pud, addr, next, func); > + } while (pud++, addr = next, addr != end); > + > + return ret; > +} > + > +static int level2_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, > + level2_pte_ops func) > +{ > + unsigned long next; > + int ret; > + > + ret = 0; > + if (addr > end - 1) > + return ret; > + pgd = pgd + pgd_index(addr); > + do { > + next = pgd_addr_end(addr, end); > + if (!pgd_present(*pgd)) > + continue; > + > + ret |= level2_ptw_pud(pgd, addr, next, func); > + } while (pgd++, addr = next, addr != end); > + > + return ret; > +} > + > +/* > + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Make a range of GPA mappings clean so that guest writes will fault and > + * trigger dirty page logging. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether any GPA mappings were modified, which would require > + * derived mappings (GVA page tables & TLB enties) to be > + * invalidated. > + */ > +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > +{ > + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT, level2_mkclean_pte); > +} > + > +/* > + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages > + * @kvm: The KVM pointer > + * @slot: The memory slot associated with mask > + * @gfn_offset: The gfn offset in memory slot > + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory > + * slot to be write protected > + * > + * Walks bits set in mask write protects the associated pte's. Caller must > + * acquire @kvm->mmu_lock. > + */ > +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, > + struct kvm_memory_slot *slot, > + gfn_t gfn_offset, unsigned long mask) > +{ > + gfn_t base_gfn = slot->base_gfn + gfn_offset; > + gfn_t start = base_gfn + __ffs(mask); > + gfn_t end = base_gfn + __fls(mask) + 1; > + > + kvm_mkclean_gpa_pt(kvm, start, end); > +} > + > +void kvm_arch_commit_memory_region(struct kvm *kvm, > + struct kvm_memory_slot *old, > + const struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + int needs_flush; > + > + /* > + * If dirty page logging is enabled, write protect all pages in the slot > + * ready for dirty logging. > + * > + * There is no need to do this in any of the following cases: > + * CREATE: No dirty mappings will already exist. > + * MOVE/DELETE: The old mappings will already have been cleaned up by > + * kvm_arch_flush_shadow_memslot() > + */ > + if (change == KVM_MR_FLAGS_ONLY && > + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && > + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { > + spin_lock(&kvm->mmu_lock); > + /* Write protect GPA page table entries */ > + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, > + new->base_gfn + new->npages); > + if (needs_flush) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > + } > +} > + > +void kvm_arch_flush_shadow_all(struct kvm *kvm) > +{ > + /* Flush whole GPA */ > + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > + /* Flush vpid for each vCPU individually */ > + kvm_flush_remote_tlbs(kvm); > +} > + > +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, > + struct kvm_memory_slot *slot) > +{ > + int ret; > + > + /* > + * The slot has been made invalid (ready for moving or deletion), so we > + * need to ensure that it can no longer be accessed by any guest vCPUs. > + */ > + spin_lock(&kvm->mmu_lock); > + /* Flush slot from GPA */ > + ret = level2_flush_range(kvm, slot->base_gfn, > + slot->base_gfn + slot->npages); > + /* Let implementation do the rest */ > + if (ret) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > +} > + > +void _kvm_destroy_mm(struct kvm *kvm) > +{ > + /* It should always be safe to remove after flushing the whole range */ > + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > + pgd_free(NULL, kvm->arch.gpa_mm.pgd); > + kvm->arch.gpa_mm.pgd = NULL; > +} > + > +/* > + * Mark a range of guest physical address space old (all accesses fault) in the > + * VM's GPA page table to allow detection of commonly used pages. > + */ > +static int level2_mkold_pte(void *pte) > +{ > + pte_t val; > + > + val = *(pte_t *)pte; > + if (pte_young(val)) { > + *(pte_t *)pte = pte_mkold(val); > + return 1; > + } > + return 0; > +} > + > +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + return level2_flush_range(kvm, range->start, range->end); > +} > + > +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t hva_pte = range->pte; > + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + pte_t old_pte; > + > + if (!ptep) > + return false; > + > + /* Mapping may need adjusting depending on memslot flags */ > + old_pte = *ptep; > + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) > + hva_pte = pte_mkclean(hva_pte); > + else if (range->slot->flags & KVM_MEM_READONLY) > + hva_pte = pte_wrprotect(hva_pte); > + > + set_pte(ptep, hva_pte); > + > + /* Replacing an absent or old page doesn't need flushes */ > + if (!pte_present(old_pte) || !pte_young(old_pte)) > + return false; > + > + /* Pages swapped, aged, moved, or cleaned require flushes */ > + return !pte_present(hva_pte) || > + !pte_young(hva_pte) || > + pte_pfn(old_pte) != pte_pfn(hva_pte) || > + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); > +} > + > +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, > + range->end << PAGE_SHIFT, level2_mkold_pte); > +} > + > +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + > + if (ptep && pte_present(*ptep) && pte_young(*ptep)) > + return true; > + > + return false; > +} > + > +/** > + * kvm_map_page_fast() - Fast path GPA fault handler. > + * @vcpu: vCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Perform fast path GPA fault handling, doing all that can be done without > + * calling into KVM. This handles marking old pages young (for idle page > + * tracking), and dirtying of clean pages (for dirty page logging). > + * > + * Returns: 0 on success, in which case we can update derived mappings and > + * resume guest execution. > + * -EFAULT on failure due to absent GPA mapping or write to > + * read-only page, in which case KVM must be consulted. > + */ > +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, > + bool write) > +{ > + struct kvm *kvm = vcpu->kvm; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + pte_t *ptep; > + kvm_pfn_t pfn = 0; > + bool pfn_valid = false; > + int ret = 0; > + > + spin_lock(&kvm->mmu_lock); > + > + /* Fast path - just check GPA page table for an existing entry */ > + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + if (!ptep || !pte_present(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track access to pages marked old */ > + if (!pte_young(*ptep)) { > + set_pte(ptep, pte_mkyoung(*ptep)); > + pfn = pte_pfn(*ptep); > + pfn_valid = true; > + /* call kvm_set_pfn_accessed() after unlock */ > + } > + if (write && !pte_dirty(*ptep)) { > + if (!pte_write(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track dirtying of writeable pages */ > + set_pte(ptep, pte_mkdirty(*ptep)); > + pfn = pte_pfn(*ptep); > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + > +out: > + spin_unlock(&kvm->mmu_lock); > + if (pfn_valid) > + kvm_set_pfn_accessed(pfn); > + return ret; > +} > + > +/** > + * kvm_map_page() - Map a guest physical page. > + * @vcpu: vCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Handle GPA faults by creating a new GPA mapping (or updating an existing > + * one). > + * > + * This takes care of marking pages young or dirty (idle/dirty page tracking), > + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page > + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the > + * caller. > + * > + * Returns: 0 on success > + * -EFAULT if there is no memory region at @gpa or a write was > + * attempted to a read-only memory region. This is usually handled > + * as an MMIO access. > + */ > +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + bool writeable; > + int srcu_idx, err = 0, retry_no = 0; > + unsigned long hva; > + unsigned long mmu_seq; > + unsigned long prot_bits; > + pte_t *ptep, new_pte; > + kvm_pfn_t pfn; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + struct vm_area_struct *vma; > + struct kvm *kvm = vcpu->kvm; > + struct kvm_memory_slot *memslot; > + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; > + > + /* Try the fast path to handle old / clean pages */ > + srcu_idx = srcu_read_lock(&kvm->srcu); > + err = kvm_map_page_fast(vcpu, gpa, write); > + if (!err) > + goto out; > + > + memslot = gfn_to_memslot(kvm, gfn); > + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); > + if (kvm_is_error_hva(hva) || (write && !writeable)) > + goto out; > + > + mmap_read_lock(current->mm); > + vma = find_vma_intersection(current->mm, hva, hva + 1); > + if (unlikely(!vma)) { > + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); > + mmap_read_unlock(current->mm); > + err = -EFAULT; > + goto out; > + } > + mmap_read_unlock(current->mm); > + > + /* We need a minimum of cached pages ready for page table creation */ > + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); > + if (err) > + goto out; > + > +retry: > + /* > + * Used to check for invalidations in progress, of the pfn that is > + * returned by pfn_to_pfn_prot below. > + */ > + mmu_seq = kvm->mmu_invalidate_seq; > + /* > + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in > + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't > + * risk the page we get a reference to getting unmapped before we have a > + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. > + * > + * This smp_rmb() pairs with the effective smp_wmb() of the combination > + * of the pte_unmap_unlock() after the PTE is zapped, and the > + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before > + * mmu_invalidate_seq is incremented. > + */ > + smp_rmb(); > + > + /* Slow path - ask KVM core whether we can access this GPA */ > + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); > + if (is_error_noslot_pfn(pfn)) { > + err = -EFAULT; > + goto out; > + } > + > + spin_lock(&kvm->mmu_lock); > + /* Check if an invalidation has taken place since we got pfn */ > + if (mmu_invalidate_retry(kvm, mmu_seq)) { > + /* > + * This can happen when mappings are changed asynchronously, but > + * also synchronously if a COW is triggered by > + * gfn_to_pfn_prot(). > + */ > + spin_unlock(&kvm->mmu_lock); > + kvm_set_pfn_accessed(pfn); > + kvm_release_pfn_clean(pfn); > + if (retry_no > 100) { > + retry_no = 0; > + schedule(); > + } > + retry_no++; > + goto retry; > + } > + > + /* > + * For emulated devices such virtio device, actual cache attribute is > + * determined by physical machine. > + * For pass through physical device, it should be uncachable > + */ > + prot_bits = _PAGE_PRESENT | __READABLE; > + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) > + prot_bits |= _CACHE_SUC; > + else > + prot_bits |= _CACHE_CC; > + > + if (writeable) { > + prot_bits |= _PAGE_WRITE; > + if (write) { > + prot_bits |= __WRITEABLE; > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + } > + > + /* Ensure page tables are allocated */ > + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); > + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); > + set_pte(ptep, new_pte); > + > + err = 0; > + spin_unlock(&kvm->mmu_lock); > + kvm_release_pfn_clean(pfn); > + kvm_set_pfn_accessed(pfn); > +out: > + srcu_read_unlock(&kvm->srcu, srcu_idx); > + return err; > +} > + > +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + int ret; > + > + ret = kvm_map_page(vcpu, gpa, write); > + if (ret) > + return ret; > + > + /* Invalidate this entry in the TLB */ > + return kvm_flush_tlb_gpa(vcpu, gpa); > +} > + > +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) > +{ > + > +} > + > +int kvm_arch_prepare_memory_region(struct kvm *kvm, > + const struct kvm_memory_slot *old, > + struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + return 0; > +} > + > +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, > + const struct kvm_memory_slot *memslot) > +{ > + kvm_flush_remote_tlbs(kvm); > +} > -- > 2.39.1 > >
在 2023/7/14 11:19, Huacai Chen 写道: > Hi, Tianrui, > > Via offline discussion now I know that the level2_xxx functions are > used to translate GPA to HPA, but the level2_ prefix is very confusing > that the first image may be "two level page tables (PMD+PTE, or > something like that)". > > So to make things clear, I think a gpa2hpa_ prefix may be better, and > if it is too long, we can use g2hpa_. As an alternative, use > hypervisor_ as the prefix may also be considerable. yes I agree, level2 is a little confused, how about kvm_ptw_xxx or lvzm_ptw_xxx? There is no formal name for LoongArch memory virtualziation, g2hpa can not represent memory virtualization, and it can be applied to X86 (with prefix tdp_) and arm64 (with prefix stage2_ ), however each architecture has its own name. Regards Bibo Mao > > Huacai > > On Thu, Jun 29, 2023 at 3:56 PM Tianrui Zhao <zhaotianrui@loongson.cn> wrote: >> >> Implement LoongArch kvm mmu, it is used to switch gpa to hpa when >> guest exit because of address translation exception. This patch >> implement allocate gpa page table, search gpa from it and flush guest >> gpa in the table. >> >> Reviewed-by: Bibo Mao <maobibo@loongson.cn> >> Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> >> --- >> arch/loongarch/kvm/mmu.c | 725 +++++++++++++++++++++++++++++++++++++++ >> 1 file changed, 725 insertions(+) >> create mode 100644 arch/loongarch/kvm/mmu.c >> >> diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c >> new file mode 100644 >> index 000000000000..d75446139546 >> --- /dev/null >> +++ b/arch/loongarch/kvm/mmu.c >> @@ -0,0 +1,725 @@ >> +// SPDX-License-Identifier: GPL-2.0 >> +/* >> + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited >> + */ >> + >> +#include <linux/highmem.h> >> +#include <linux/page-flags.h> >> +#include <linux/kvm_host.h> >> +#include <linux/uaccess.h> >> +#include <asm/mmu_context.h> >> +#include <asm/pgalloc.h> >> +#include <asm/tlb.h> >> + >> +/* >> + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels >> + * for which pages need to be cached. >> + */ >> +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) >> + >> +/** >> + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. >> + * >> + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical >> + * to host physical page mappings. >> + * >> + * Returns: Pointer to new KVM GPA page directory. >> + * NULL on allocation failure. >> + */ >> +pgd_t *kvm_pgd_alloc(void) >> +{ >> + pgd_t *pgd; >> + >> + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); >> + if (pgd) >> + pgd_init((void *)pgd); >> + >> + return pgd; >> +} >> + >> +/** >> + * kvm_walk_pgd() - Walk page table with optional allocation. >> + * @pgd: Page directory pointer. >> + * @addr: Address to index page table using. >> + * @cache: MMU page cache to allocate new page tables from, or NULL. >> + * >> + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the >> + * address @addr. If page tables don't exist for @addr, they will be created >> + * from the MMU cache if @cache is not NULL. >> + * >> + * Returns: Pointer to pte_t corresponding to @addr. >> + * NULL if a page table doesn't exist for @addr and !@cache. >> + * NULL if a page table allocation failed. >> + */ >> +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, >> + unsigned long addr) >> +{ >> + p4d_t *p4d; >> + pud_t *pud; >> + pmd_t *pmd; >> + >> + pgd += pgd_index(addr); >> + if (pgd_none(*pgd)) { >> + /* Not used yet */ >> + BUG(); >> + return NULL; >> + } >> + p4d = p4d_offset(pgd, addr); >> + pud = pud_offset(p4d, addr); >> + if (pud_none(*pud)) { >> + pmd_t *new_pmd; >> + >> + if (!cache) >> + return NULL; >> + new_pmd = kvm_mmu_memory_cache_alloc(cache); >> + pmd_init((void *)new_pmd); >> + pud_populate(NULL, pud, new_pmd); >> + } >> + pmd = pmd_offset(pud, addr); >> + if (pmd_none(*pmd)) { >> + pte_t *new_pte; >> + >> + if (!cache) >> + return NULL; >> + new_pte = kvm_mmu_memory_cache_alloc(cache); >> + clear_page(new_pte); >> + pmd_populate_kernel(NULL, pmd, new_pte); >> + } >> + return pte_offset_kernel(pmd, addr); >> +} >> + >> +/* Caller must hold kvm->mm_lock */ >> +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, >> + struct kvm_mmu_memory_cache *cache, >> + unsigned long addr) >> +{ >> + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); >> +} >> + >> +/* >> + * level2_flush_{pte,pmd,pud,pgd,pt}. >> + * Flush a range of guest physical address space from the VM's GPA page tables. >> + */ >> +static int level2_flush_pte(pmd_t *pmd, unsigned long addr, unsigned long end) >> +{ >> + pte_t *pte; >> + unsigned long next, start; >> + int ret; >> + >> + ret = 0; >> + start = addr; >> + pte = pte_offset_kernel(pmd, addr); >> + do { >> + next = addr + PAGE_SIZE; >> + if (!pte_present(*pte)) >> + continue; >> + >> + set_pte(pte, __pte(0)); >> + ret = 1; >> + } while (pte++, addr = next, addr != end); >> + >> + if (start + PMD_SIZE == end) { >> + pte = pte_offset_kernel(pmd, 0); >> + pmd_clear(pmd); >> + pte_free_kernel(NULL, pte); >> + } >> + return ret; >> +} >> + >> +static int level2_flush_pmd(pud_t *pud, unsigned long addr, unsigned long end) >> +{ >> + pmd_t *pmd; >> + unsigned long next, start; >> + int ret; >> + >> + ret = 0; >> + start = addr; >> + pmd = pmd_offset(pud, addr); >> + do { >> + next = pmd_addr_end(addr, end); >> + if (!pmd_present(*pmd)) >> + continue; >> + >> + ret |= level2_flush_pte(pmd, addr, next); >> + } while (pmd++, addr = next, addr != end); >> + >> + if (start + PUD_SIZE == end) { >> + pmd = pmd_offset(pud, 0); >> + pud_clear(pud); >> + pmd_free(NULL, pmd); >> + } >> + return ret; >> +} >> + >> +static int level2_flush_pud(pgd_t *pgd, unsigned long addr, unsigned long end) >> +{ >> + p4d_t *p4d; >> + pud_t *pud; >> + unsigned long next, start; >> + int ret; >> + >> + ret = 0; >> + start = addr; >> + p4d = p4d_offset(pgd, addr); >> + pud = pud_offset(p4d, addr); >> + do { >> + next = pud_addr_end(addr, end); >> + if (!pud_present(*pud)) >> + continue; >> + >> + ret |= level2_flush_pmd(pud, addr, next); >> + } while (pud++, addr = next, addr != end); >> + >> + if (start + PGDIR_SIZE == end) { >> + pud = pud_offset(p4d, 0); >> + pgd_clear(pgd); >> + pud_free(NULL, pud); >> + } >> + return ret; >> +} >> + >> +static int level2_flush_pgd(pgd_t *pgd, unsigned long addr, unsigned long end) >> +{ >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + if (addr > end - 1) >> + return ret; >> + pgd = pgd + pgd_index(addr); >> + do { >> + next = pgd_addr_end(addr, end); >> + if (!pgd_present(*pgd)) >> + continue; >> + >> + ret |= level2_flush_pud(pgd, addr, next); >> + } while (pgd++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +/** >> + * level2_flush_range() - Flush a range of guest physical addresses. >> + * @kvm: KVM pointer. >> + * @start_gfn: Guest frame number of first page in GPA range to flush. >> + * @end_gfn: Guest frame number of last page in GPA range to flush. >> + * >> + * Flushes a range of GPA mappings from the GPA page tables. >> + * >> + * The caller must hold the @kvm->mmu_lock spinlock. >> + * >> + * Returns: Whether its safe to remove the top level page directory because >> + * all lower levels have been removed. >> + */ >> +static bool level2_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) >> +{ >> + return level2_flush_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, >> + end_gfn << PAGE_SHIFT); >> +} >> + >> +typedef int (*level2_pte_ops)(void *pte); >> +/* >> + * level2_mkclean_pte >> + * Mark a range of guest physical address space clean (writes fault) in the VM's >> + * GPA page table to allow dirty page tracking. >> + */ >> +static int level2_mkclean_pte(void *pte) >> +{ >> + pte_t val; >> + >> + val = *(pte_t *)pte; >> + if (pte_dirty(val)) { >> + *(pte_t *)pte = pte_mkclean(val); >> + return 1; >> + } >> + return 0; >> +} >> + >> +static int level2_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, >> + level2_pte_ops func) >> +{ >> + pte_t *pte; >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + pte = pte_offset_kernel(pmd, addr); >> + do { >> + next = addr + PAGE_SIZE; >> + if (!pte_present(*pte)) >> + continue; >> + >> + ret |= func(pte); >> + } while (pte++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +static int level2_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, >> + level2_pte_ops func) >> +{ >> + pmd_t *pmd; >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + pmd = pmd_offset(pud, addr); >> + do { >> + next = pmd_addr_end(addr, end); >> + if (!pmd_present(*pmd)) >> + continue; >> + >> + ret |= level2_ptw_pte(pmd, addr, next, func); >> + } while (pmd++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +static int level2_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, >> + level2_pte_ops func) >> +{ >> + p4d_t *p4d; >> + pud_t *pud; >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + p4d = p4d_offset(pgd, addr); >> + pud = pud_offset(p4d, addr); >> + do { >> + next = pud_addr_end(addr, end); >> + if (!pud_present(*pud)) >> + continue; >> + >> + ret |= level2_ptw_pmd(pud, addr, next, func); >> + } while (pud++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +static int level2_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, >> + level2_pte_ops func) >> +{ >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + if (addr > end - 1) >> + return ret; >> + pgd = pgd + pgd_index(addr); >> + do { >> + next = pgd_addr_end(addr, end); >> + if (!pgd_present(*pgd)) >> + continue; >> + >> + ret |= level2_ptw_pud(pgd, addr, next, func); >> + } while (pgd++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +/* >> + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. >> + * @kvm: KVM pointer. >> + * @start_gfn: Guest frame number of first page in GPA range to flush. >> + * @end_gfn: Guest frame number of last page in GPA range to flush. >> + * >> + * Make a range of GPA mappings clean so that guest writes will fault and >> + * trigger dirty page logging. >> + * >> + * The caller must hold the @kvm->mmu_lock spinlock. >> + * >> + * Returns: Whether any GPA mappings were modified, which would require >> + * derived mappings (GVA page tables & TLB enties) to be >> + * invalidated. >> + */ >> +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) >> +{ >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, >> + end_gfn << PAGE_SHIFT, level2_mkclean_pte); >> +} >> + >> +/* >> + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages >> + * @kvm: The KVM pointer >> + * @slot: The memory slot associated with mask >> + * @gfn_offset: The gfn offset in memory slot >> + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory >> + * slot to be write protected >> + * >> + * Walks bits set in mask write protects the associated pte's. Caller must >> + * acquire @kvm->mmu_lock. >> + */ >> +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, >> + struct kvm_memory_slot *slot, >> + gfn_t gfn_offset, unsigned long mask) >> +{ >> + gfn_t base_gfn = slot->base_gfn + gfn_offset; >> + gfn_t start = base_gfn + __ffs(mask); >> + gfn_t end = base_gfn + __fls(mask) + 1; >> + >> + kvm_mkclean_gpa_pt(kvm, start, end); >> +} >> + >> +void kvm_arch_commit_memory_region(struct kvm *kvm, >> + struct kvm_memory_slot *old, >> + const struct kvm_memory_slot *new, >> + enum kvm_mr_change change) >> +{ >> + int needs_flush; >> + >> + /* >> + * If dirty page logging is enabled, write protect all pages in the slot >> + * ready for dirty logging. >> + * >> + * There is no need to do this in any of the following cases: >> + * CREATE: No dirty mappings will already exist. >> + * MOVE/DELETE: The old mappings will already have been cleaned up by >> + * kvm_arch_flush_shadow_memslot() >> + */ >> + if (change == KVM_MR_FLAGS_ONLY && >> + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && >> + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { >> + spin_lock(&kvm->mmu_lock); >> + /* Write protect GPA page table entries */ >> + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, >> + new->base_gfn + new->npages); >> + if (needs_flush) >> + kvm_flush_remote_tlbs(kvm); >> + spin_unlock(&kvm->mmu_lock); >> + } >> +} >> + >> +void kvm_arch_flush_shadow_all(struct kvm *kvm) >> +{ >> + /* Flush whole GPA */ >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); >> + /* Flush vpid for each vCPU individually */ >> + kvm_flush_remote_tlbs(kvm); >> +} >> + >> +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, >> + struct kvm_memory_slot *slot) >> +{ >> + int ret; >> + >> + /* >> + * The slot has been made invalid (ready for moving or deletion), so we >> + * need to ensure that it can no longer be accessed by any guest vCPUs. >> + */ >> + spin_lock(&kvm->mmu_lock); >> + /* Flush slot from GPA */ >> + ret = level2_flush_range(kvm, slot->base_gfn, >> + slot->base_gfn + slot->npages); >> + /* Let implementation do the rest */ >> + if (ret) >> + kvm_flush_remote_tlbs(kvm); >> + spin_unlock(&kvm->mmu_lock); >> +} >> + >> +void _kvm_destroy_mm(struct kvm *kvm) >> +{ >> + /* It should always be safe to remove after flushing the whole range */ >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); >> + pgd_free(NULL, kvm->arch.gpa_mm.pgd); >> + kvm->arch.gpa_mm.pgd = NULL; >> +} >> + >> +/* >> + * Mark a range of guest physical address space old (all accesses fault) in the >> + * VM's GPA page table to allow detection of commonly used pages. >> + */ >> +static int level2_mkold_pte(void *pte) >> +{ >> + pte_t val; >> + >> + val = *(pte_t *)pte; >> + if (pte_young(val)) { >> + *(pte_t *)pte = pte_mkold(val); >> + return 1; >> + } >> + return 0; >> +} >> + >> +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + return level2_flush_range(kvm, range->start, range->end); >> +} >> + >> +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + gpa_t gpa = range->start << PAGE_SHIFT; >> + pte_t hva_pte = range->pte; >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); >> + pte_t old_pte; >> + >> + if (!ptep) >> + return false; >> + >> + /* Mapping may need adjusting depending on memslot flags */ >> + old_pte = *ptep; >> + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) >> + hva_pte = pte_mkclean(hva_pte); >> + else if (range->slot->flags & KVM_MEM_READONLY) >> + hva_pte = pte_wrprotect(hva_pte); >> + >> + set_pte(ptep, hva_pte); >> + >> + /* Replacing an absent or old page doesn't need flushes */ >> + if (!pte_present(old_pte) || !pte_young(old_pte)) >> + return false; >> + >> + /* Pages swapped, aged, moved, or cleaned require flushes */ >> + return !pte_present(hva_pte) || >> + !pte_young(hva_pte) || >> + pte_pfn(old_pte) != pte_pfn(hva_pte) || >> + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); >> +} >> + >> +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, >> + range->end << PAGE_SHIFT, level2_mkold_pte); >> +} >> + >> +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + gpa_t gpa = range->start << PAGE_SHIFT; >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); >> + >> + if (ptep && pte_present(*ptep) && pte_young(*ptep)) >> + return true; >> + >> + return false; >> +} >> + >> +/** >> + * kvm_map_page_fast() - Fast path GPA fault handler. >> + * @vcpu: vCPU pointer. >> + * @gpa: Guest physical address of fault. >> + * @write: Whether the fault was due to a write. >> + * >> + * Perform fast path GPA fault handling, doing all that can be done without >> + * calling into KVM. This handles marking old pages young (for idle page >> + * tracking), and dirtying of clean pages (for dirty page logging). >> + * >> + * Returns: 0 on success, in which case we can update derived mappings and >> + * resume guest execution. >> + * -EFAULT on failure due to absent GPA mapping or write to >> + * read-only page, in which case KVM must be consulted. >> + */ >> +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, >> + bool write) >> +{ >> + struct kvm *kvm = vcpu->kvm; >> + gfn_t gfn = gpa >> PAGE_SHIFT; >> + pte_t *ptep; >> + kvm_pfn_t pfn = 0; >> + bool pfn_valid = false; >> + int ret = 0; >> + >> + spin_lock(&kvm->mmu_lock); >> + >> + /* Fast path - just check GPA page table for an existing entry */ >> + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); >> + if (!ptep || !pte_present(*ptep)) { >> + ret = -EFAULT; >> + goto out; >> + } >> + >> + /* Track access to pages marked old */ >> + if (!pte_young(*ptep)) { >> + set_pte(ptep, pte_mkyoung(*ptep)); >> + pfn = pte_pfn(*ptep); >> + pfn_valid = true; >> + /* call kvm_set_pfn_accessed() after unlock */ >> + } >> + if (write && !pte_dirty(*ptep)) { >> + if (!pte_write(*ptep)) { >> + ret = -EFAULT; >> + goto out; >> + } >> + >> + /* Track dirtying of writeable pages */ >> + set_pte(ptep, pte_mkdirty(*ptep)); >> + pfn = pte_pfn(*ptep); >> + mark_page_dirty(kvm, gfn); >> + kvm_set_pfn_dirty(pfn); >> + } >> + >> +out: >> + spin_unlock(&kvm->mmu_lock); >> + if (pfn_valid) >> + kvm_set_pfn_accessed(pfn); >> + return ret; >> +} >> + >> +/** >> + * kvm_map_page() - Map a guest physical page. >> + * @vcpu: vCPU pointer. >> + * @gpa: Guest physical address of fault. >> + * @write: Whether the fault was due to a write. >> + * >> + * Handle GPA faults by creating a new GPA mapping (or updating an existing >> + * one). >> + * >> + * This takes care of marking pages young or dirty (idle/dirty page tracking), >> + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page >> + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the >> + * caller. >> + * >> + * Returns: 0 on success >> + * -EFAULT if there is no memory region at @gpa or a write was >> + * attempted to a read-only memory region. This is usually handled >> + * as an MMIO access. >> + */ >> +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) >> +{ >> + bool writeable; >> + int srcu_idx, err = 0, retry_no = 0; >> + unsigned long hva; >> + unsigned long mmu_seq; >> + unsigned long prot_bits; >> + pte_t *ptep, new_pte; >> + kvm_pfn_t pfn; >> + gfn_t gfn = gpa >> PAGE_SHIFT; >> + struct vm_area_struct *vma; >> + struct kvm *kvm = vcpu->kvm; >> + struct kvm_memory_slot *memslot; >> + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; >> + >> + /* Try the fast path to handle old / clean pages */ >> + srcu_idx = srcu_read_lock(&kvm->srcu); >> + err = kvm_map_page_fast(vcpu, gpa, write); >> + if (!err) >> + goto out; >> + >> + memslot = gfn_to_memslot(kvm, gfn); >> + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); >> + if (kvm_is_error_hva(hva) || (write && !writeable)) >> + goto out; >> + >> + mmap_read_lock(current->mm); >> + vma = find_vma_intersection(current->mm, hva, hva + 1); >> + if (unlikely(!vma)) { >> + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); >> + mmap_read_unlock(current->mm); >> + err = -EFAULT; >> + goto out; >> + } >> + mmap_read_unlock(current->mm); >> + >> + /* We need a minimum of cached pages ready for page table creation */ >> + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); >> + if (err) >> + goto out; >> + >> +retry: >> + /* >> + * Used to check for invalidations in progress, of the pfn that is >> + * returned by pfn_to_pfn_prot below. >> + */ >> + mmu_seq = kvm->mmu_invalidate_seq; >> + /* >> + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in >> + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't >> + * risk the page we get a reference to getting unmapped before we have a >> + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. >> + * >> + * This smp_rmb() pairs with the effective smp_wmb() of the combination >> + * of the pte_unmap_unlock() after the PTE is zapped, and the >> + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before >> + * mmu_invalidate_seq is incremented. >> + */ >> + smp_rmb(); >> + >> + /* Slow path - ask KVM core whether we can access this GPA */ >> + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); >> + if (is_error_noslot_pfn(pfn)) { >> + err = -EFAULT; >> + goto out; >> + } >> + >> + spin_lock(&kvm->mmu_lock); >> + /* Check if an invalidation has taken place since we got pfn */ >> + if (mmu_invalidate_retry(kvm, mmu_seq)) { >> + /* >> + * This can happen when mappings are changed asynchronously, but >> + * also synchronously if a COW is triggered by >> + * gfn_to_pfn_prot(). >> + */ >> + spin_unlock(&kvm->mmu_lock); >> + kvm_set_pfn_accessed(pfn); >> + kvm_release_pfn_clean(pfn); >> + if (retry_no > 100) { >> + retry_no = 0; >> + schedule(); >> + } >> + retry_no++; >> + goto retry; >> + } >> + >> + /* >> + * For emulated devices such virtio device, actual cache attribute is >> + * determined by physical machine. >> + * For pass through physical device, it should be uncachable >> + */ >> + prot_bits = _PAGE_PRESENT | __READABLE; >> + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) >> + prot_bits |= _CACHE_SUC; >> + else >> + prot_bits |= _CACHE_CC; >> + >> + if (writeable) { >> + prot_bits |= _PAGE_WRITE; >> + if (write) { >> + prot_bits |= __WRITEABLE; >> + mark_page_dirty(kvm, gfn); >> + kvm_set_pfn_dirty(pfn); >> + } >> + } >> + >> + /* Ensure page tables are allocated */ >> + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); >> + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); >> + set_pte(ptep, new_pte); >> + >> + err = 0; >> + spin_unlock(&kvm->mmu_lock); >> + kvm_release_pfn_clean(pfn); >> + kvm_set_pfn_accessed(pfn); >> +out: >> + srcu_read_unlock(&kvm->srcu, srcu_idx); >> + return err; >> +} >> + >> +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) >> +{ >> + int ret; >> + >> + ret = kvm_map_page(vcpu, gpa, write); >> + if (ret) >> + return ret; >> + >> + /* Invalidate this entry in the TLB */ >> + return kvm_flush_tlb_gpa(vcpu, gpa); >> +} >> + >> +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) >> +{ >> + >> +} >> + >> +int kvm_arch_prepare_memory_region(struct kvm *kvm, >> + const struct kvm_memory_slot *old, >> + struct kvm_memory_slot *new, >> + enum kvm_mr_change change) >> +{ >> + return 0; >> +} >> + >> +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, >> + const struct kvm_memory_slot *memslot) >> +{ >> + kvm_flush_remote_tlbs(kvm); >> +} >> -- >> 2.39.1 >> >>
On Fri, Jul 14, 2023 at 11:52 AM bibo mao <maobibo@loongson.cn> wrote: > > > > 在 2023/7/14 11:19, Huacai Chen 写道: > > Hi, Tianrui, > > > > Via offline discussion now I know that the level2_xxx functions are > > used to translate GPA to HPA, but the level2_ prefix is very confusing > > that the first image may be "two level page tables (PMD+PTE, or > > something like that)". > > > > So to make things clear, I think a gpa2hpa_ prefix may be better, and > > if it is too long, we can use g2hpa_. As an alternative, use > > hypervisor_ as the prefix may also be considerable. > yes I agree, level2 is a little confused, how about kvm_ptw_xxx or lvzm_ptw_xxx? kvm_ptw_xxx is OK for me. Huacai > > There is no formal name for LoongArch memory virtualziation, g2hpa can not > represent memory virtualization, and it can be applied to X86 (with prefix tdp_) > and arm64 (with prefix stage2_ ), however each architecture has its own name. > > Regards > Bibo Mao > > > > Huacai > > > > On Thu, Jun 29, 2023 at 3:56 PM Tianrui Zhao <zhaotianrui@loongson.cn> wrote: > >> > >> Implement LoongArch kvm mmu, it is used to switch gpa to hpa when > >> guest exit because of address translation exception. This patch > >> implement allocate gpa page table, search gpa from it and flush guest > >> gpa in the table. > >> > >> Reviewed-by: Bibo Mao <maobibo@loongson.cn> > >> Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> > >> --- > >> arch/loongarch/kvm/mmu.c | 725 +++++++++++++++++++++++++++++++++++++++ > >> 1 file changed, 725 insertions(+) > >> create mode 100644 arch/loongarch/kvm/mmu.c > >> > >> diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c > >> new file mode 100644 > >> index 000000000000..d75446139546 > >> --- /dev/null > >> +++ b/arch/loongarch/kvm/mmu.c > >> @@ -0,0 +1,725 @@ > >> +// SPDX-License-Identifier: GPL-2.0 > >> +/* > >> + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited > >> + */ > >> + > >> +#include <linux/highmem.h> > >> +#include <linux/page-flags.h> > >> +#include <linux/kvm_host.h> > >> +#include <linux/uaccess.h> > >> +#include <asm/mmu_context.h> > >> +#include <asm/pgalloc.h> > >> +#include <asm/tlb.h> > >> + > >> +/* > >> + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels > >> + * for which pages need to be cached. > >> + */ > >> +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) > >> + > >> +/** > >> + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. > >> + * > >> + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical > >> + * to host physical page mappings. > >> + * > >> + * Returns: Pointer to new KVM GPA page directory. > >> + * NULL on allocation failure. > >> + */ > >> +pgd_t *kvm_pgd_alloc(void) > >> +{ > >> + pgd_t *pgd; > >> + > >> + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); > >> + if (pgd) > >> + pgd_init((void *)pgd); > >> + > >> + return pgd; > >> +} > >> + > >> +/** > >> + * kvm_walk_pgd() - Walk page table with optional allocation. > >> + * @pgd: Page directory pointer. > >> + * @addr: Address to index page table using. > >> + * @cache: MMU page cache to allocate new page tables from, or NULL. > >> + * > >> + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the > >> + * address @addr. If page tables don't exist for @addr, they will be created > >> + * from the MMU cache if @cache is not NULL. > >> + * > >> + * Returns: Pointer to pte_t corresponding to @addr. > >> + * NULL if a page table doesn't exist for @addr and !@cache. > >> + * NULL if a page table allocation failed. > >> + */ > >> +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, > >> + unsigned long addr) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + pmd_t *pmd; > >> + > >> + pgd += pgd_index(addr); > >> + if (pgd_none(*pgd)) { > >> + /* Not used yet */ > >> + BUG(); > >> + return NULL; > >> + } > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + if (pud_none(*pud)) { > >> + pmd_t *new_pmd; > >> + > >> + if (!cache) > >> + return NULL; > >> + new_pmd = kvm_mmu_memory_cache_alloc(cache); > >> + pmd_init((void *)new_pmd); > >> + pud_populate(NULL, pud, new_pmd); > >> + } > >> + pmd = pmd_offset(pud, addr); > >> + if (pmd_none(*pmd)) { > >> + pte_t *new_pte; > >> + > >> + if (!cache) > >> + return NULL; > >> + new_pte = kvm_mmu_memory_cache_alloc(cache); > >> + clear_page(new_pte); > >> + pmd_populate_kernel(NULL, pmd, new_pte); > >> + } > >> + return pte_offset_kernel(pmd, addr); > >> +} > >> + > >> +/* Caller must hold kvm->mm_lock */ > >> +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, > >> + struct kvm_mmu_memory_cache *cache, > >> + unsigned long addr) > >> +{ > >> + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); > >> +} > >> + > >> +/* > >> + * level2_flush_{pte,pmd,pud,pgd,pt}. > >> + * Flush a range of guest physical address space from the VM's GPA page tables. > >> + */ > >> +static int level2_flush_pte(pmd_t *pmd, unsigned long addr, unsigned long end) > >> +{ > >> + pte_t *pte; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + pte = pte_offset_kernel(pmd, addr); > >> + do { > >> + next = addr + PAGE_SIZE; > >> + if (!pte_present(*pte)) > >> + continue; > >> + > >> + set_pte(pte, __pte(0)); > >> + ret = 1; > >> + } while (pte++, addr = next, addr != end); > >> + > >> + if (start + PMD_SIZE == end) { > >> + pte = pte_offset_kernel(pmd, 0); > >> + pmd_clear(pmd); > >> + pte_free_kernel(NULL, pte); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pmd(pud_t *pud, unsigned long addr, unsigned long end) > >> +{ > >> + pmd_t *pmd; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + pmd = pmd_offset(pud, addr); > >> + do { > >> + next = pmd_addr_end(addr, end); > >> + if (!pmd_present(*pmd)) > >> + continue; > >> + > >> + ret |= level2_flush_pte(pmd, addr, next); > >> + } while (pmd++, addr = next, addr != end); > >> + > >> + if (start + PUD_SIZE == end) { > >> + pmd = pmd_offset(pud, 0); > >> + pud_clear(pud); > >> + pmd_free(NULL, pmd); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pud(pgd_t *pgd, unsigned long addr, unsigned long end) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + do { > >> + next = pud_addr_end(addr, end); > >> + if (!pud_present(*pud)) > >> + continue; > >> + > >> + ret |= level2_flush_pmd(pud, addr, next); > >> + } while (pud++, addr = next, addr != end); > >> + > >> + if (start + PGDIR_SIZE == end) { > >> + pud = pud_offset(p4d, 0); > >> + pgd_clear(pgd); > >> + pud_free(NULL, pud); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pgd(pgd_t *pgd, unsigned long addr, unsigned long end) > >> +{ > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + if (addr > end - 1) > >> + return ret; > >> + pgd = pgd + pgd_index(addr); > >> + do { > >> + next = pgd_addr_end(addr, end); > >> + if (!pgd_present(*pgd)) > >> + continue; > >> + > >> + ret |= level2_flush_pud(pgd, addr, next); > >> + } while (pgd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +/** > >> + * level2_flush_range() - Flush a range of guest physical addresses. > >> + * @kvm: KVM pointer. > >> + * @start_gfn: Guest frame number of first page in GPA range to flush. > >> + * @end_gfn: Guest frame number of last page in GPA range to flush. > >> + * > >> + * Flushes a range of GPA mappings from the GPA page tables. > >> + * > >> + * The caller must hold the @kvm->mmu_lock spinlock. > >> + * > >> + * Returns: Whether its safe to remove the top level page directory because > >> + * all lower levels have been removed. > >> + */ > >> +static bool level2_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > >> +{ > >> + return level2_flush_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > >> + end_gfn << PAGE_SHIFT); > >> +} > >> + > >> +typedef int (*level2_pte_ops)(void *pte); > >> +/* > >> + * level2_mkclean_pte > >> + * Mark a range of guest physical address space clean (writes fault) in the VM's > >> + * GPA page table to allow dirty page tracking. > >> + */ > >> +static int level2_mkclean_pte(void *pte) > >> +{ > >> + pte_t val; > >> + > >> + val = *(pte_t *)pte; > >> + if (pte_dirty(val)) { > >> + *(pte_t *)pte = pte_mkclean(val); > >> + return 1; > >> + } > >> + return 0; > >> +} > >> + > >> +static int level2_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + pte_t *pte; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + pte = pte_offset_kernel(pmd, addr); > >> + do { > >> + next = addr + PAGE_SIZE; > >> + if (!pte_present(*pte)) > >> + continue; > >> + > >> + ret |= func(pte); > >> + } while (pte++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + pmd_t *pmd; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + pmd = pmd_offset(pud, addr); > >> + do { > >> + next = pmd_addr_end(addr, end); > >> + if (!pmd_present(*pmd)) > >> + continue; > >> + > >> + ret |= level2_ptw_pte(pmd, addr, next, func); > >> + } while (pmd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + do { > >> + next = pud_addr_end(addr, end); > >> + if (!pud_present(*pud)) > >> + continue; > >> + > >> + ret |= level2_ptw_pmd(pud, addr, next, func); > >> + } while (pud++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + if (addr > end - 1) > >> + return ret; > >> + pgd = pgd + pgd_index(addr); > >> + do { > >> + next = pgd_addr_end(addr, end); > >> + if (!pgd_present(*pgd)) > >> + continue; > >> + > >> + ret |= level2_ptw_pud(pgd, addr, next, func); > >> + } while (pgd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +/* > >> + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. > >> + * @kvm: KVM pointer. > >> + * @start_gfn: Guest frame number of first page in GPA range to flush. > >> + * @end_gfn: Guest frame number of last page in GPA range to flush. > >> + * > >> + * Make a range of GPA mappings clean so that guest writes will fault and > >> + * trigger dirty page logging. > >> + * > >> + * The caller must hold the @kvm->mmu_lock spinlock. > >> + * > >> + * Returns: Whether any GPA mappings were modified, which would require > >> + * derived mappings (GVA page tables & TLB enties) to be > >> + * invalidated. > >> + */ > >> +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > >> +{ > >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > >> + end_gfn << PAGE_SHIFT, level2_mkclean_pte); > >> +} > >> + > >> +/* > >> + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages > >> + * @kvm: The KVM pointer > >> + * @slot: The memory slot associated with mask > >> + * @gfn_offset: The gfn offset in memory slot > >> + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory > >> + * slot to be write protected > >> + * > >> + * Walks bits set in mask write protects the associated pte's. Caller must > >> + * acquire @kvm->mmu_lock. > >> + */ > >> +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, > >> + struct kvm_memory_slot *slot, > >> + gfn_t gfn_offset, unsigned long mask) > >> +{ > >> + gfn_t base_gfn = slot->base_gfn + gfn_offset; > >> + gfn_t start = base_gfn + __ffs(mask); > >> + gfn_t end = base_gfn + __fls(mask) + 1; > >> + > >> + kvm_mkclean_gpa_pt(kvm, start, end); > >> +} > >> + > >> +void kvm_arch_commit_memory_region(struct kvm *kvm, > >> + struct kvm_memory_slot *old, > >> + const struct kvm_memory_slot *new, > >> + enum kvm_mr_change change) > >> +{ > >> + int needs_flush; > >> + > >> + /* > >> + * If dirty page logging is enabled, write protect all pages in the slot > >> + * ready for dirty logging. > >> + * > >> + * There is no need to do this in any of the following cases: > >> + * CREATE: No dirty mappings will already exist. > >> + * MOVE/DELETE: The old mappings will already have been cleaned up by > >> + * kvm_arch_flush_shadow_memslot() > >> + */ > >> + if (change == KVM_MR_FLAGS_ONLY && > >> + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && > >> + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { > >> + spin_lock(&kvm->mmu_lock); > >> + /* Write protect GPA page table entries */ > >> + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, > >> + new->base_gfn + new->npages); > >> + if (needs_flush) > >> + kvm_flush_remote_tlbs(kvm); > >> + spin_unlock(&kvm->mmu_lock); > >> + } > >> +} > >> + > >> +void kvm_arch_flush_shadow_all(struct kvm *kvm) > >> +{ > >> + /* Flush whole GPA */ > >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > >> + /* Flush vpid for each vCPU individually */ > >> + kvm_flush_remote_tlbs(kvm); > >> +} > >> + > >> +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, > >> + struct kvm_memory_slot *slot) > >> +{ > >> + int ret; > >> + > >> + /* > >> + * The slot has been made invalid (ready for moving or deletion), so we > >> + * need to ensure that it can no longer be accessed by any guest vCPUs. > >> + */ > >> + spin_lock(&kvm->mmu_lock); > >> + /* Flush slot from GPA */ > >> + ret = level2_flush_range(kvm, slot->base_gfn, > >> + slot->base_gfn + slot->npages); > >> + /* Let implementation do the rest */ > >> + if (ret) > >> + kvm_flush_remote_tlbs(kvm); > >> + spin_unlock(&kvm->mmu_lock); > >> +} > >> + > >> +void _kvm_destroy_mm(struct kvm *kvm) > >> +{ > >> + /* It should always be safe to remove after flushing the whole range */ > >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > >> + pgd_free(NULL, kvm->arch.gpa_mm.pgd); > >> + kvm->arch.gpa_mm.pgd = NULL; > >> +} > >> + > >> +/* > >> + * Mark a range of guest physical address space old (all accesses fault) in the > >> + * VM's GPA page table to allow detection of commonly used pages. > >> + */ > >> +static int level2_mkold_pte(void *pte) > >> +{ > >> + pte_t val; > >> + > >> + val = *(pte_t *)pte; > >> + if (pte_young(val)) { > >> + *(pte_t *)pte = pte_mkold(val); > >> + return 1; > >> + } > >> + return 0; > >> +} > >> + > >> +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + return level2_flush_range(kvm, range->start, range->end); > >> +} > >> + > >> +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + gpa_t gpa = range->start << PAGE_SHIFT; > >> + pte_t hva_pte = range->pte; > >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + pte_t old_pte; > >> + > >> + if (!ptep) > >> + return false; > >> + > >> + /* Mapping may need adjusting depending on memslot flags */ > >> + old_pte = *ptep; > >> + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) > >> + hva_pte = pte_mkclean(hva_pte); > >> + else if (range->slot->flags & KVM_MEM_READONLY) > >> + hva_pte = pte_wrprotect(hva_pte); > >> + > >> + set_pte(ptep, hva_pte); > >> + > >> + /* Replacing an absent or old page doesn't need flushes */ > >> + if (!pte_present(old_pte) || !pte_young(old_pte)) > >> + return false; > >> + > >> + /* Pages swapped, aged, moved, or cleaned require flushes */ > >> + return !pte_present(hva_pte) || > >> + !pte_young(hva_pte) || > >> + pte_pfn(old_pte) != pte_pfn(hva_pte) || > >> + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); > >> +} > >> + > >> +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, > >> + range->end << PAGE_SHIFT, level2_mkold_pte); > >> +} > >> + > >> +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + gpa_t gpa = range->start << PAGE_SHIFT; > >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + > >> + if (ptep && pte_present(*ptep) && pte_young(*ptep)) > >> + return true; > >> + > >> + return false; > >> +} > >> + > >> +/** > >> + * kvm_map_page_fast() - Fast path GPA fault handler. > >> + * @vcpu: vCPU pointer. > >> + * @gpa: Guest physical address of fault. > >> + * @write: Whether the fault was due to a write. > >> + * > >> + * Perform fast path GPA fault handling, doing all that can be done without > >> + * calling into KVM. This handles marking old pages young (for idle page > >> + * tracking), and dirtying of clean pages (for dirty page logging). > >> + * > >> + * Returns: 0 on success, in which case we can update derived mappings and > >> + * resume guest execution. > >> + * -EFAULT on failure due to absent GPA mapping or write to > >> + * read-only page, in which case KVM must be consulted. > >> + */ > >> +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, > >> + bool write) > >> +{ > >> + struct kvm *kvm = vcpu->kvm; > >> + gfn_t gfn = gpa >> PAGE_SHIFT; > >> + pte_t *ptep; > >> + kvm_pfn_t pfn = 0; > >> + bool pfn_valid = false; > >> + int ret = 0; > >> + > >> + spin_lock(&kvm->mmu_lock); > >> + > >> + /* Fast path - just check GPA page table for an existing entry */ > >> + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + if (!ptep || !pte_present(*ptep)) { > >> + ret = -EFAULT; > >> + goto out; > >> + } > >> + > >> + /* Track access to pages marked old */ > >> + if (!pte_young(*ptep)) { > >> + set_pte(ptep, pte_mkyoung(*ptep)); > >> + pfn = pte_pfn(*ptep); > >> + pfn_valid = true; > >> + /* call kvm_set_pfn_accessed() after unlock */ > >> + } > >> + if (write && !pte_dirty(*ptep)) { > >> + if (!pte_write(*ptep)) { > >> + ret = -EFAULT; > >> + goto out; > >> + } > >> + > >> + /* Track dirtying of writeable pages */ > >> + set_pte(ptep, pte_mkdirty(*ptep)); > >> + pfn = pte_pfn(*ptep); > >> + mark_page_dirty(kvm, gfn); > >> + kvm_set_pfn_dirty(pfn); > >> + } > >> + > >> +out: > >> + spin_unlock(&kvm->mmu_lock); > >> + if (pfn_valid) > >> + kvm_set_pfn_accessed(pfn); > >> + return ret; > >> +} > >> + > >> +/** > >> + * kvm_map_page() - Map a guest physical page. > >> + * @vcpu: vCPU pointer. > >> + * @gpa: Guest physical address of fault. > >> + * @write: Whether the fault was due to a write. > >> + * > >> + * Handle GPA faults by creating a new GPA mapping (or updating an existing > >> + * one). > >> + * > >> + * This takes care of marking pages young or dirty (idle/dirty page tracking), > >> + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page > >> + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the > >> + * caller. > >> + * > >> + * Returns: 0 on success > >> + * -EFAULT if there is no memory region at @gpa or a write was > >> + * attempted to a read-only memory region. This is usually handled > >> + * as an MMIO access. > >> + */ > >> +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > >> +{ > >> + bool writeable; > >> + int srcu_idx, err = 0, retry_no = 0; > >> + unsigned long hva; > >> + unsigned long mmu_seq; > >> + unsigned long prot_bits; > >> + pte_t *ptep, new_pte; > >> + kvm_pfn_t pfn; > >> + gfn_t gfn = gpa >> PAGE_SHIFT; > >> + struct vm_area_struct *vma; > >> + struct kvm *kvm = vcpu->kvm; > >> + struct kvm_memory_slot *memslot; > >> + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; > >> + > >> + /* Try the fast path to handle old / clean pages */ > >> + srcu_idx = srcu_read_lock(&kvm->srcu); > >> + err = kvm_map_page_fast(vcpu, gpa, write); > >> + if (!err) > >> + goto out; > >> + > >> + memslot = gfn_to_memslot(kvm, gfn); > >> + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); > >> + if (kvm_is_error_hva(hva) || (write && !writeable)) > >> + goto out; > >> + > >> + mmap_read_lock(current->mm); > >> + vma = find_vma_intersection(current->mm, hva, hva + 1); > >> + if (unlikely(!vma)) { > >> + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); > >> + mmap_read_unlock(current->mm); > >> + err = -EFAULT; > >> + goto out; > >> + } > >> + mmap_read_unlock(current->mm); > >> + > >> + /* We need a minimum of cached pages ready for page table creation */ > >> + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); > >> + if (err) > >> + goto out; > >> + > >> +retry: > >> + /* > >> + * Used to check for invalidations in progress, of the pfn that is > >> + * returned by pfn_to_pfn_prot below. > >> + */ > >> + mmu_seq = kvm->mmu_invalidate_seq; > >> + /* > >> + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in > >> + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't > >> + * risk the page we get a reference to getting unmapped before we have a > >> + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. > >> + * > >> + * This smp_rmb() pairs with the effective smp_wmb() of the combination > >> + * of the pte_unmap_unlock() after the PTE is zapped, and the > >> + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before > >> + * mmu_invalidate_seq is incremented. > >> + */ > >> + smp_rmb(); > >> + > >> + /* Slow path - ask KVM core whether we can access this GPA */ > >> + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); > >> + if (is_error_noslot_pfn(pfn)) { > >> + err = -EFAULT; > >> + goto out; > >> + } > >> + > >> + spin_lock(&kvm->mmu_lock); > >> + /* Check if an invalidation has taken place since we got pfn */ > >> + if (mmu_invalidate_retry(kvm, mmu_seq)) { > >> + /* > >> + * This can happen when mappings are changed asynchronously, but > >> + * also synchronously if a COW is triggered by > >> + * gfn_to_pfn_prot(). > >> + */ > >> + spin_unlock(&kvm->mmu_lock); > >> + kvm_set_pfn_accessed(pfn); > >> + kvm_release_pfn_clean(pfn); > >> + if (retry_no > 100) { > >> + retry_no = 0; > >> + schedule(); > >> + } > >> + retry_no++; > >> + goto retry; > >> + } > >> + > >> + /* > >> + * For emulated devices such virtio device, actual cache attribute is > >> + * determined by physical machine. > >> + * For pass through physical device, it should be uncachable > >> + */ > >> + prot_bits = _PAGE_PRESENT | __READABLE; > >> + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) > >> + prot_bits |= _CACHE_SUC; > >> + else > >> + prot_bits |= _CACHE_CC; > >> + > >> + if (writeable) { > >> + prot_bits |= _PAGE_WRITE; > >> + if (write) { > >> + prot_bits |= __WRITEABLE; > >> + mark_page_dirty(kvm, gfn); > >> + kvm_set_pfn_dirty(pfn); > >> + } > >> + } > >> + > >> + /* Ensure page tables are allocated */ > >> + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); > >> + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); > >> + set_pte(ptep, new_pte); > >> + > >> + err = 0; > >> + spin_unlock(&kvm->mmu_lock); > >> + kvm_release_pfn_clean(pfn); > >> + kvm_set_pfn_accessed(pfn); > >> +out: > >> + srcu_read_unlock(&kvm->srcu, srcu_idx); > >> + return err; > >> +} > >> + > >> +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > >> +{ > >> + int ret; > >> + > >> + ret = kvm_map_page(vcpu, gpa, write); > >> + if (ret) > >> + return ret; > >> + > >> + /* Invalidate this entry in the TLB */ > >> + return kvm_flush_tlb_gpa(vcpu, gpa); > >> +} > >> + > >> +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) > >> +{ > >> + > >> +} > >> + > >> +int kvm_arch_prepare_memory_region(struct kvm *kvm, > >> + const struct kvm_memory_slot *old, > >> + struct kvm_memory_slot *new, > >> + enum kvm_mr_change change) > >> +{ > >> + return 0; > >> +} > >> + > >> +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, > >> + const struct kvm_memory_slot *memslot) > >> +{ > >> + kvm_flush_remote_tlbs(kvm); > >> +} > >> -- > >> 2.39.1 > >> > >> >
diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c new file mode 100644 index 000000000000..d75446139546 --- /dev/null +++ b/arch/loongarch/kvm/mmu.c @@ -0,0 +1,725 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited + */ + +#include <linux/highmem.h> +#include <linux/page-flags.h> +#include <linux/kvm_host.h> +#include <linux/uaccess.h> +#include <asm/mmu_context.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> + +/* + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels + * for which pages need to be cached. + */ +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) + +/** + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. + * + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical + * to host physical page mappings. + * + * Returns: Pointer to new KVM GPA page directory. + * NULL on allocation failure. + */ +pgd_t *kvm_pgd_alloc(void) +{ + pgd_t *pgd; + + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); + if (pgd) + pgd_init((void *)pgd); + + return pgd; +} + +/** + * kvm_walk_pgd() - Walk page table with optional allocation. + * @pgd: Page directory pointer. + * @addr: Address to index page table using. + * @cache: MMU page cache to allocate new page tables from, or NULL. + * + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the + * address @addr. If page tables don't exist for @addr, they will be created + * from the MMU cache if @cache is not NULL. + * + * Returns: Pointer to pte_t corresponding to @addr. + * NULL if a page table doesn't exist for @addr and !@cache. + * NULL if a page table allocation failed. + */ +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, + unsigned long addr) +{ + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + pgd += pgd_index(addr); + if (pgd_none(*pgd)) { + /* Not used yet */ + BUG(); + return NULL; + } + p4d = p4d_offset(pgd, addr); + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) { + pmd_t *new_pmd; + + if (!cache) + return NULL; + new_pmd = kvm_mmu_memory_cache_alloc(cache); + pmd_init((void *)new_pmd); + pud_populate(NULL, pud, new_pmd); + } + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) { + pte_t *new_pte; + + if (!cache) + return NULL; + new_pte = kvm_mmu_memory_cache_alloc(cache); + clear_page(new_pte); + pmd_populate_kernel(NULL, pmd, new_pte); + } + return pte_offset_kernel(pmd, addr); +} + +/* Caller must hold kvm->mm_lock */ +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, + unsigned long addr) +{ + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); +} + +/* + * level2_flush_{pte,pmd,pud,pgd,pt}. + * Flush a range of guest physical address space from the VM's GPA page tables. + */ +static int level2_flush_pte(pmd_t *pmd, unsigned long addr, unsigned long end) +{ + pte_t *pte; + unsigned long next, start; + int ret; + + ret = 0; + start = addr; + pte = pte_offset_kernel(pmd, addr); + do { + next = addr + PAGE_SIZE; + if (!pte_present(*pte)) + continue; + + set_pte(pte, __pte(0)); + ret = 1; + } while (pte++, addr = next, addr != end); + + if (start + PMD_SIZE == end) { + pte = pte_offset_kernel(pmd, 0); + pmd_clear(pmd); + pte_free_kernel(NULL, pte); + } + return ret; +} + +static int level2_flush_pmd(pud_t *pud, unsigned long addr, unsigned long end) +{ + pmd_t *pmd; + unsigned long next, start; + int ret; + + ret = 0; + start = addr; + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + if (!pmd_present(*pmd)) + continue; + + ret |= level2_flush_pte(pmd, addr, next); + } while (pmd++, addr = next, addr != end); + + if (start + PUD_SIZE == end) { + pmd = pmd_offset(pud, 0); + pud_clear(pud); + pmd_free(NULL, pmd); + } + return ret; +} + +static int level2_flush_pud(pgd_t *pgd, unsigned long addr, unsigned long end) +{ + p4d_t *p4d; + pud_t *pud; + unsigned long next, start; + int ret; + + ret = 0; + start = addr; + p4d = p4d_offset(pgd, addr); + pud = pud_offset(p4d, addr); + do { + next = pud_addr_end(addr, end); + if (!pud_present(*pud)) + continue; + + ret |= level2_flush_pmd(pud, addr, next); + } while (pud++, addr = next, addr != end); + + if (start + PGDIR_SIZE == end) { + pud = pud_offset(p4d, 0); + pgd_clear(pgd); + pud_free(NULL, pud); + } + return ret; +} + +static int level2_flush_pgd(pgd_t *pgd, unsigned long addr, unsigned long end) +{ + unsigned long next; + int ret; + + ret = 0; + if (addr > end - 1) + return ret; + pgd = pgd + pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + if (!pgd_present(*pgd)) + continue; + + ret |= level2_flush_pud(pgd, addr, next); + } while (pgd++, addr = next, addr != end); + + return ret; +} + +/** + * level2_flush_range() - Flush a range of guest physical addresses. + * @kvm: KVM pointer. + * @start_gfn: Guest frame number of first page in GPA range to flush. + * @end_gfn: Guest frame number of last page in GPA range to flush. + * + * Flushes a range of GPA mappings from the GPA page tables. + * + * The caller must hold the @kvm->mmu_lock spinlock. + * + * Returns: Whether its safe to remove the top level page directory because + * all lower levels have been removed. + */ +static bool level2_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) +{ + return level2_flush_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, + end_gfn << PAGE_SHIFT); +} + +typedef int (*level2_pte_ops)(void *pte); +/* + * level2_mkclean_pte + * Mark a range of guest physical address space clean (writes fault) in the VM's + * GPA page table to allow dirty page tracking. + */ +static int level2_mkclean_pte(void *pte) +{ + pte_t val; + + val = *(pte_t *)pte; + if (pte_dirty(val)) { + *(pte_t *)pte = pte_mkclean(val); + return 1; + } + return 0; +} + +static int level2_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, + level2_pte_ops func) +{ + pte_t *pte; + unsigned long next; + int ret; + + ret = 0; + pte = pte_offset_kernel(pmd, addr); + do { + next = addr + PAGE_SIZE; + if (!pte_present(*pte)) + continue; + + ret |= func(pte); + } while (pte++, addr = next, addr != end); + + return ret; +} + +static int level2_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, + level2_pte_ops func) +{ + pmd_t *pmd; + unsigned long next; + int ret; + + ret = 0; + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + if (!pmd_present(*pmd)) + continue; + + ret |= level2_ptw_pte(pmd, addr, next, func); + } while (pmd++, addr = next, addr != end); + + return ret; +} + +static int level2_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, + level2_pte_ops func) +{ + p4d_t *p4d; + pud_t *pud; + unsigned long next; + int ret; + + ret = 0; + p4d = p4d_offset(pgd, addr); + pud = pud_offset(p4d, addr); + do { + next = pud_addr_end(addr, end); + if (!pud_present(*pud)) + continue; + + ret |= level2_ptw_pmd(pud, addr, next, func); + } while (pud++, addr = next, addr != end); + + return ret; +} + +static int level2_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, + level2_pte_ops func) +{ + unsigned long next; + int ret; + + ret = 0; + if (addr > end - 1) + return ret; + pgd = pgd + pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + if (!pgd_present(*pgd)) + continue; + + ret |= level2_ptw_pud(pgd, addr, next, func); + } while (pgd++, addr = next, addr != end); + + return ret; +} + +/* + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. + * @kvm: KVM pointer. + * @start_gfn: Guest frame number of first page in GPA range to flush. + * @end_gfn: Guest frame number of last page in GPA range to flush. + * + * Make a range of GPA mappings clean so that guest writes will fault and + * trigger dirty page logging. + * + * The caller must hold the @kvm->mmu_lock spinlock. + * + * Returns: Whether any GPA mappings were modified, which would require + * derived mappings (GVA page tables & TLB enties) to be + * invalidated. + */ +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) +{ + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, + end_gfn << PAGE_SHIFT, level2_mkclean_pte); +} + +/* + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages + * @kvm: The KVM pointer + * @slot: The memory slot associated with mask + * @gfn_offset: The gfn offset in memory slot + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory + * slot to be write protected + * + * Walks bits set in mask write protects the associated pte's. Caller must + * acquire @kvm->mmu_lock. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + gfn_t base_gfn = slot->base_gfn + gfn_offset; + gfn_t start = base_gfn + __ffs(mask); + gfn_t end = base_gfn + __fls(mask) + 1; + + kvm_mkclean_gpa_pt(kvm, start, end); +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + int needs_flush; + + /* + * If dirty page logging is enabled, write protect all pages in the slot + * ready for dirty logging. + * + * There is no need to do this in any of the following cases: + * CREATE: No dirty mappings will already exist. + * MOVE/DELETE: The old mappings will already have been cleaned up by + * kvm_arch_flush_shadow_memslot() + */ + if (change == KVM_MR_FLAGS_ONLY && + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { + spin_lock(&kvm->mmu_lock); + /* Write protect GPA page table entries */ + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, + new->base_gfn + new->npages); + if (needs_flush) + kvm_flush_remote_tlbs(kvm); + spin_unlock(&kvm->mmu_lock); + } +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + /* Flush whole GPA */ + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); + /* Flush vpid for each vCPU individually */ + kvm_flush_remote_tlbs(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + int ret; + + /* + * The slot has been made invalid (ready for moving or deletion), so we + * need to ensure that it can no longer be accessed by any guest vCPUs. + */ + spin_lock(&kvm->mmu_lock); + /* Flush slot from GPA */ + ret = level2_flush_range(kvm, slot->base_gfn, + slot->base_gfn + slot->npages); + /* Let implementation do the rest */ + if (ret) + kvm_flush_remote_tlbs(kvm); + spin_unlock(&kvm->mmu_lock); +} + +void _kvm_destroy_mm(struct kvm *kvm) +{ + /* It should always be safe to remove after flushing the whole range */ + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); + pgd_free(NULL, kvm->arch.gpa_mm.pgd); + kvm->arch.gpa_mm.pgd = NULL; +} + +/* + * Mark a range of guest physical address space old (all accesses fault) in the + * VM's GPA page table to allow detection of commonly used pages. + */ +static int level2_mkold_pte(void *pte) +{ + pte_t val; + + val = *(pte_t *)pte; + if (pte_young(val)) { + *(pte_t *)pte = pte_mkold(val); + return 1; + } + return 0; +} + +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return level2_flush_range(kvm, range->start, range->end); +} + +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + gpa_t gpa = range->start << PAGE_SHIFT; + pte_t hva_pte = range->pte; + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); + pte_t old_pte; + + if (!ptep) + return false; + + /* Mapping may need adjusting depending on memslot flags */ + old_pte = *ptep; + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) + hva_pte = pte_mkclean(hva_pte); + else if (range->slot->flags & KVM_MEM_READONLY) + hva_pte = pte_wrprotect(hva_pte); + + set_pte(ptep, hva_pte); + + /* Replacing an absent or old page doesn't need flushes */ + if (!pte_present(old_pte) || !pte_young(old_pte)) + return false; + + /* Pages swapped, aged, moved, or cleaned require flushes */ + return !pte_present(hva_pte) || + !pte_young(hva_pte) || + pte_pfn(old_pte) != pte_pfn(hva_pte) || + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); +} + +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, + range->end << PAGE_SHIFT, level2_mkold_pte); +} + +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + gpa_t gpa = range->start << PAGE_SHIFT; + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); + + if (ptep && pte_present(*ptep) && pte_young(*ptep)) + return true; + + return false; +} + +/** + * kvm_map_page_fast() - Fast path GPA fault handler. + * @vcpu: vCPU pointer. + * @gpa: Guest physical address of fault. + * @write: Whether the fault was due to a write. + * + * Perform fast path GPA fault handling, doing all that can be done without + * calling into KVM. This handles marking old pages young (for idle page + * tracking), and dirtying of clean pages (for dirty page logging). + * + * Returns: 0 on success, in which case we can update derived mappings and + * resume guest execution. + * -EFAULT on failure due to absent GPA mapping or write to + * read-only page, in which case KVM must be consulted. + */ +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, + bool write) +{ + struct kvm *kvm = vcpu->kvm; + gfn_t gfn = gpa >> PAGE_SHIFT; + pte_t *ptep; + kvm_pfn_t pfn = 0; + bool pfn_valid = false; + int ret = 0; + + spin_lock(&kvm->mmu_lock); + + /* Fast path - just check GPA page table for an existing entry */ + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); + if (!ptep || !pte_present(*ptep)) { + ret = -EFAULT; + goto out; + } + + /* Track access to pages marked old */ + if (!pte_young(*ptep)) { + set_pte(ptep, pte_mkyoung(*ptep)); + pfn = pte_pfn(*ptep); + pfn_valid = true; + /* call kvm_set_pfn_accessed() after unlock */ + } + if (write && !pte_dirty(*ptep)) { + if (!pte_write(*ptep)) { + ret = -EFAULT; + goto out; + } + + /* Track dirtying of writeable pages */ + set_pte(ptep, pte_mkdirty(*ptep)); + pfn = pte_pfn(*ptep); + mark_page_dirty(kvm, gfn); + kvm_set_pfn_dirty(pfn); + } + +out: + spin_unlock(&kvm->mmu_lock); + if (pfn_valid) + kvm_set_pfn_accessed(pfn); + return ret; +} + +/** + * kvm_map_page() - Map a guest physical page. + * @vcpu: vCPU pointer. + * @gpa: Guest physical address of fault. + * @write: Whether the fault was due to a write. + * + * Handle GPA faults by creating a new GPA mapping (or updating an existing + * one). + * + * This takes care of marking pages young or dirty (idle/dirty page tracking), + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the + * caller. + * + * Returns: 0 on success + * -EFAULT if there is no memory region at @gpa or a write was + * attempted to a read-only memory region. This is usually handled + * as an MMIO access. + */ +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) +{ + bool writeable; + int srcu_idx, err = 0, retry_no = 0; + unsigned long hva; + unsigned long mmu_seq; + unsigned long prot_bits; + pte_t *ptep, new_pte; + kvm_pfn_t pfn; + gfn_t gfn = gpa >> PAGE_SHIFT; + struct vm_area_struct *vma; + struct kvm *kvm = vcpu->kvm; + struct kvm_memory_slot *memslot; + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; + + /* Try the fast path to handle old / clean pages */ + srcu_idx = srcu_read_lock(&kvm->srcu); + err = kvm_map_page_fast(vcpu, gpa, write); + if (!err) + goto out; + + memslot = gfn_to_memslot(kvm, gfn); + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); + if (kvm_is_error_hva(hva) || (write && !writeable)) + goto out; + + mmap_read_lock(current->mm); + vma = find_vma_intersection(current->mm, hva, hva + 1); + if (unlikely(!vma)) { + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); + mmap_read_unlock(current->mm); + err = -EFAULT; + goto out; + } + mmap_read_unlock(current->mm); + + /* We need a minimum of cached pages ready for page table creation */ + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); + if (err) + goto out; + +retry: + /* + * Used to check for invalidations in progress, of the pfn that is + * returned by pfn_to_pfn_prot below. + */ + mmu_seq = kvm->mmu_invalidate_seq; + /* + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't + * risk the page we get a reference to getting unmapped before we have a + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. + * + * This smp_rmb() pairs with the effective smp_wmb() of the combination + * of the pte_unmap_unlock() after the PTE is zapped, and the + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before + * mmu_invalidate_seq is incremented. + */ + smp_rmb(); + + /* Slow path - ask KVM core whether we can access this GPA */ + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); + if (is_error_noslot_pfn(pfn)) { + err = -EFAULT; + goto out; + } + + spin_lock(&kvm->mmu_lock); + /* Check if an invalidation has taken place since we got pfn */ + if (mmu_invalidate_retry(kvm, mmu_seq)) { + /* + * This can happen when mappings are changed asynchronously, but + * also synchronously if a COW is triggered by + * gfn_to_pfn_prot(). + */ + spin_unlock(&kvm->mmu_lock); + kvm_set_pfn_accessed(pfn); + kvm_release_pfn_clean(pfn); + if (retry_no > 100) { + retry_no = 0; + schedule(); + } + retry_no++; + goto retry; + } + + /* + * For emulated devices such virtio device, actual cache attribute is + * determined by physical machine. + * For pass through physical device, it should be uncachable + */ + prot_bits = _PAGE_PRESENT | __READABLE; + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) + prot_bits |= _CACHE_SUC; + else + prot_bits |= _CACHE_CC; + + if (writeable) { + prot_bits |= _PAGE_WRITE; + if (write) { + prot_bits |= __WRITEABLE; + mark_page_dirty(kvm, gfn); + kvm_set_pfn_dirty(pfn); + } + } + + /* Ensure page tables are allocated */ + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); + set_pte(ptep, new_pte); + + err = 0; + spin_unlock(&kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + kvm_set_pfn_accessed(pfn); +out: + srcu_read_unlock(&kvm->srcu, srcu_idx); + return err; +} + +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) +{ + int ret; + + ret = kvm_map_page(vcpu, gpa, write); + if (ret) + return ret; + + /* Invalidate this entry in the TLB */ + return kvm_flush_tlb_gpa(vcpu, gpa); +} + +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) +{ + +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + const struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + return 0; +} + +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, + const struct kvm_memory_slot *memslot) +{ + kvm_flush_remote_tlbs(kvm); +}