diff mbox series

[net-next,v7,1/4] page_pool: transition to reference count management after page draining

Message ID 20231206105419.27952-2-liangchen.linux@gmail.com (mailing list archive)
State Superseded
Delegated to: Netdev Maintainers
Headers show
Series skbuff: Optimize SKB coalescing for page pool | expand

Checks

Context Check Description
netdev/series_format success Posting correctly formatted
netdev/tree_selection success Clearly marked for net-next
netdev/ynl success Generated files up to date; no warnings/errors; no diff in generated;
netdev/fixes_present success Fixes tag not required for -next series
netdev/header_inline success No static functions without inline keyword in header files
netdev/build_32bit success Errors and warnings before: 15906 this patch: 15906
netdev/cc_maintainers warning 5 maintainers not CCed: leon@kernel.org akpm@linux-foundation.org saeedm@nvidia.com linux-rdma@vger.kernel.org willy@infradead.org
netdev/build_clang success Errors and warnings before: 3558 this patch: 3558
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/deprecated_api success None detected
netdev/check_selftest success No net selftest shell script
netdev/verify_fixes success No Fixes tag
netdev/build_allmodconfig_warn success Errors and warnings before: 17098 this patch: 17098
netdev/checkpatch success total: 0 errors, 0 warnings, 0 checks, 183 lines checked
netdev/build_clang_rust success No Rust files in patch. Skipping build
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0

Commit Message

Liang Chen Dec. 6, 2023, 10:54 a.m. UTC
To support multiple users referencing the same fragment,
'pp_frag_count' is renamed to 'pp_ref_count', transitioning pp pages
from fragment management to reference count management after draining
based on the suggestion from [1].

The idea is that the concept of fragmenting exists before the page is
drained, and all related functions retain their current names.
However, once the page is drained, its management shifts to being
governed by 'pp_ref_count'. Therefore, all functions associated with
that lifecycle stage of a pp page are renamed.

[1]
http://lore.kernel.org/netdev/f71d9448-70c8-8793-dc9a-0eb48a570300@huawei.com

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Reviewed-by: Yunsheng Lin <linyunsheng@huawei.com>
---
 .../net/ethernet/mellanox/mlx5/core/en_rx.c   |  4 +-
 include/linux/mm_types.h                      |  2 +-
 include/net/page_pool/helpers.h               | 45 ++++++++++---------
 include/net/page_pool/types.h                 |  6 +--
 net/core/page_pool.c                          | 12 ++---
 5 files changed, 37 insertions(+), 32 deletions(-)

Comments

Jakub Kicinski Dec. 9, 2023, 1:38 a.m. UTC | #1
On Wed,  6 Dec 2023 18:54:16 +0800 Liang Chen wrote:
> -/* pp_frag_count represents the number of writers who can update the page
> +/* pp_ref_count represents the number of writers who can update the page
>   * either by updating skb->data or via DMA mappings for the device.
>   * We can't rely on the page refcnt for that as we don't know who might be
>   * holding page references and we can't reliably destroy or sync DMA mappings
>   * of the fragments.
>   *
> - * When pp_frag_count reaches 0 we can either recycle the page if the page
> + * pp_ref_count initially corresponds to the number of fragments. However,
> + * when multiple users start to reference a single fragment, for example in
> + * skb_try_coalesce, the pp_ref_count will become greater than the number of
> + * fragments.
> + *
> + * When pp_ref_count reaches 0 we can either recycle the page if the page
>   * refcnt is 1 or return it back to the memory allocator and destroy any
>   * mappings we have.
>   */

Sorry to nit pick but I think this whole doc has to be rewritten
completely. It does state the most important thing which is that
the caller must have just allocated the page.

How about:

/**
 * page_pool_fragment_page() - split a fresh page into fragments
 * @.. fill these in
 *
 * pp_ref_count represents the number of outstanding references
 * to the page, which will be freed using page_pool APIs (rather
 * than page allocator APIs like put_page()). Such references are
 * usually held by page_pool-aware objects like skbs marked for
 * page pool recycling.
 *
 * This helper allows the caller to take (set) multiple references
 * to a freshly allocated page. The page must be freshly allocated
 * (have a pp_ref_count of 1). This is commonly done by drivers
 * and "fragment allocators" to save atomic operations - either
 * when they know upfront how many references they will need; or
 * to take MAX references and return the unused ones with a single
 * atomic dec(), instead of performing multiple atomic inc()
 * operations.
 */

I think that's more informative at this stage of evolution of
the  page pool API, when most users aren't experts on internals.
But feel free to disagree..

>  static inline void page_pool_fragment_page(struct page *page, long nr)
>  {
> -	atomic_long_set(&page->pp_frag_count, nr);
> +	atomic_long_set(&page->pp_ref_count, nr);
>  }

The code itself and rest of the patches LGTM, although it would be
great to get ACKs from pp maintainers..
Liang Chen Dec. 11, 2023, 3:31 a.m. UTC | #2
On Sat, Dec 9, 2023 at 9:38 AM Jakub Kicinski <kuba@kernel.org> wrote:
>
> On Wed,  6 Dec 2023 18:54:16 +0800 Liang Chen wrote:
> > -/* pp_frag_count represents the number of writers who can update the page
> > +/* pp_ref_count represents the number of writers who can update the page
> >   * either by updating skb->data or via DMA mappings for the device.
> >   * We can't rely on the page refcnt for that as we don't know who might be
> >   * holding page references and we can't reliably destroy or sync DMA mappings
> >   * of the fragments.
> >   *
> > - * When pp_frag_count reaches 0 we can either recycle the page if the page
> > + * pp_ref_count initially corresponds to the number of fragments. However,
> > + * when multiple users start to reference a single fragment, for example in
> > + * skb_try_coalesce, the pp_ref_count will become greater than the number of
> > + * fragments.
> > + *
> > + * When pp_ref_count reaches 0 we can either recycle the page if the page
> >   * refcnt is 1 or return it back to the memory allocator and destroy any
> >   * mappings we have.
> >   */
>
> Sorry to nit pick but I think this whole doc has to be rewritten
> completely. It does state the most important thing which is that
> the caller must have just allocated the page.
>
> How about:
>
> /**
>  * page_pool_fragment_page() - split a fresh page into fragments
>  * @.. fill these in
>  *
>  * pp_ref_count represents the number of outstanding references
>  * to the page, which will be freed using page_pool APIs (rather
>  * than page allocator APIs like put_page()). Such references are
>  * usually held by page_pool-aware objects like skbs marked for
>  * page pool recycling.
>  *
>  * This helper allows the caller to take (set) multiple references
>  * to a freshly allocated page. The page must be freshly allocated
>  * (have a pp_ref_count of 1). This is commonly done by drivers
>  * and "fragment allocators" to save atomic operations - either
>  * when they know upfront how many references they will need; or
>  * to take MAX references and return the unused ones with a single
>  * atomic dec(), instead of performing multiple atomic inc()
>  * operations.
>  */
>
> I think that's more informative at this stage of evolution of
> the  page pool API, when most users aren't experts on internals.
> But feel free to disagree..
>

Thanks for the help! This is certainly better.

> >  static inline void page_pool_fragment_page(struct page *page, long nr)
> >  {
> > -     atomic_long_set(&page->pp_frag_count, nr);
> > +     atomic_long_set(&page->pp_ref_count, nr);
> >  }
>
> The code itself and rest of the patches LGTM, although it would be
> great to get ACKs from pp maintainers..
diff mbox series

Patch

diff --git a/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c b/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
index 8d9743a5e42c..98d33ac7ec64 100644
--- a/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
+++ b/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
@@ -298,8 +298,8 @@  static void mlx5e_page_release_fragmented(struct mlx5e_rq *rq,
 	u16 drain_count = MLX5E_PAGECNT_BIAS_MAX - frag_page->frags;
 	struct page *page = frag_page->page;
 
-	if (page_pool_defrag_page(page, drain_count) == 0)
-		page_pool_put_defragged_page(rq->page_pool, page, -1, true);
+	if (page_pool_unref_page(page, drain_count) == 0)
+		page_pool_put_unrefed_page(rq->page_pool, page, -1, true);
 }
 
 static inline int mlx5e_get_rx_frag(struct mlx5e_rq *rq,
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 957ce38768b2..64e4572ef06d 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -125,7 +125,7 @@  struct page {
 			struct page_pool *pp;
 			unsigned long _pp_mapping_pad;
 			unsigned long dma_addr;
-			atomic_long_t pp_frag_count;
+			atomic_long_t pp_ref_count;
 		};
 		struct {	/* Tail pages of compound page */
 			unsigned long compound_head;	/* Bit zero is set */
diff --git a/include/net/page_pool/helpers.h b/include/net/page_pool/helpers.h
index 4ebd544ae977..9dc8eaf8a959 100644
--- a/include/net/page_pool/helpers.h
+++ b/include/net/page_pool/helpers.h
@@ -29,7 +29,7 @@ 
  * page allocated from page pool. Page splitting enables memory saving and thus
  * avoids TLB/cache miss for data access, but there also is some cost to
  * implement page splitting, mainly some cache line dirtying/bouncing for
- * 'struct page' and atomic operation for page->pp_frag_count.
+ * 'struct page' and atomic operation for page->pp_ref_count.
  *
  * The API keeps track of in-flight pages, in order to let API users know when
  * it is safe to free a page_pool object, the API users must call
@@ -214,69 +214,74 @@  inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
 	return pool->p.dma_dir;
 }
 
-/* pp_frag_count represents the number of writers who can update the page
+/* pp_ref_count represents the number of writers who can update the page
  * either by updating skb->data or via DMA mappings for the device.
  * We can't rely on the page refcnt for that as we don't know who might be
  * holding page references and we can't reliably destroy or sync DMA mappings
  * of the fragments.
  *
- * When pp_frag_count reaches 0 we can either recycle the page if the page
+ * pp_ref_count initially corresponds to the number of fragments. However,
+ * when multiple users start to reference a single fragment, for example in
+ * skb_try_coalesce, the pp_ref_count will become greater than the number of
+ * fragments.
+ *
+ * When pp_ref_count reaches 0 we can either recycle the page if the page
  * refcnt is 1 or return it back to the memory allocator and destroy any
  * mappings we have.
  */
 static inline void page_pool_fragment_page(struct page *page, long nr)
 {
-	atomic_long_set(&page->pp_frag_count, nr);
+	atomic_long_set(&page->pp_ref_count, nr);
 }
 
-static inline long page_pool_defrag_page(struct page *page, long nr)
+static inline long page_pool_unref_page(struct page *page, long nr)
 {
 	long ret;
 
-	/* If nr == pp_frag_count then we have cleared all remaining
+	/* If nr == pp_ref_count then we have cleared all remaining
 	 * references to the page:
 	 * 1. 'n == 1': no need to actually overwrite it.
 	 * 2. 'n != 1': overwrite it with one, which is the rare case
-	 *              for pp_frag_count draining.
+	 *              for pp_ref_count draining.
 	 *
 	 * The main advantage to doing this is that not only we avoid a atomic
 	 * update, as an atomic_read is generally a much cheaper operation than
 	 * an atomic update, especially when dealing with a page that may be
-	 * partitioned into only 2 or 3 pieces; but also unify the pp_frag_count
+	 * referenced by only 2 or 3 users; but also unify the pp_ref_count
 	 * handling by ensuring all pages have partitioned into only 1 piece
 	 * initially, and only overwrite it when the page is partitioned into
 	 * more than one piece.
 	 */
-	if (atomic_long_read(&page->pp_frag_count) == nr) {
+	if (atomic_long_read(&page->pp_ref_count) == nr) {
 		/* As we have ensured nr is always one for constant case using
 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
-		 * here for pp_frag_count draining, which is a rare case.
+		 * here for pp_ref_count draining, which is a rare case.
 		 */
 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
 		if (!__builtin_constant_p(nr))
-			atomic_long_set(&page->pp_frag_count, 1);
+			atomic_long_set(&page->pp_ref_count, 1);
 
 		return 0;
 	}
 
-	ret = atomic_long_sub_return(nr, &page->pp_frag_count);
+	ret = atomic_long_sub_return(nr, &page->pp_ref_count);
 	WARN_ON(ret < 0);
 
-	/* We are the last user here too, reset pp_frag_count back to 1 to
+	/* We are the last user here too, reset pp_ref_count back to 1 to
 	 * ensure all pages have been partitioned into 1 piece initially,
 	 * this should be the rare case when the last two fragment users call
-	 * page_pool_defrag_page() currently.
+	 * page_pool_unref_page() currently.
 	 */
 	if (unlikely(!ret))
-		atomic_long_set(&page->pp_frag_count, 1);
+		atomic_long_set(&page->pp_ref_count, 1);
 
 	return ret;
 }
 
-static inline bool page_pool_is_last_frag(struct page *page)
+static inline bool page_pool_is_last_ref(struct page *page)
 {
-	/* If page_pool_defrag_page() returns 0, we were the last user */
-	return page_pool_defrag_page(page, 1) == 0;
+	/* If page_pool_unref_page() returns 0, we were the last user */
+	return page_pool_unref_page(page, 1) == 0;
 }
 
 /**
@@ -301,10 +306,10 @@  static inline void page_pool_put_page(struct page_pool *pool,
 	 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
 	 */
 #ifdef CONFIG_PAGE_POOL
-	if (!page_pool_is_last_frag(page))
+	if (!page_pool_is_last_ref(page))
 		return;
 
-	page_pool_put_defragged_page(pool, page, dma_sync_size, allow_direct);
+	page_pool_put_unrefed_page(pool, page, dma_sync_size, allow_direct);
 #endif
 }
 
diff --git a/include/net/page_pool/types.h b/include/net/page_pool/types.h
index e1bb92c192de..6a5323619f6e 100644
--- a/include/net/page_pool/types.h
+++ b/include/net/page_pool/types.h
@@ -224,9 +224,9 @@  static inline void page_pool_put_page_bulk(struct page_pool *pool, void **data,
 }
 #endif
 
-void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
-				  unsigned int dma_sync_size,
-				  bool allow_direct);
+void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
+				unsigned int dma_sync_size,
+				bool allow_direct);
 
 static inline bool is_page_pool_compiled_in(void)
 {
diff --git a/net/core/page_pool.c b/net/core/page_pool.c
index df2a06d7da52..106220b1f89c 100644
--- a/net/core/page_pool.c
+++ b/net/core/page_pool.c
@@ -650,8 +650,8 @@  __page_pool_put_page(struct page_pool *pool, struct page *page,
 	return NULL;
 }
 
-void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
-				  unsigned int dma_sync_size, bool allow_direct)
+void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
+				unsigned int dma_sync_size, bool allow_direct)
 {
 	page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
 	if (page && !page_pool_recycle_in_ring(pool, page)) {
@@ -660,7 +660,7 @@  void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
 		page_pool_return_page(pool, page);
 	}
 }
-EXPORT_SYMBOL(page_pool_put_defragged_page);
+EXPORT_SYMBOL(page_pool_put_unrefed_page);
 
 /**
  * page_pool_put_page_bulk() - release references on multiple pages
@@ -687,7 +687,7 @@  void page_pool_put_page_bulk(struct page_pool *pool, void **data,
 		struct page *page = virt_to_head_page(data[i]);
 
 		/* It is not the last user for the page frag case */
-		if (!page_pool_is_last_frag(page))
+		if (!page_pool_is_last_ref(page))
 			continue;
 
 		page = __page_pool_put_page(pool, page, -1, false);
@@ -729,7 +729,7 @@  static struct page *page_pool_drain_frag(struct page_pool *pool,
 	long drain_count = BIAS_MAX - pool->frag_users;
 
 	/* Some user is still using the page frag */
-	if (likely(page_pool_defrag_page(page, drain_count)))
+	if (likely(page_pool_unref_page(page, drain_count)))
 		return NULL;
 
 	if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
@@ -750,7 +750,7 @@  static void page_pool_free_frag(struct page_pool *pool)
 
 	pool->frag_page = NULL;
 
-	if (!page || page_pool_defrag_page(page, drain_count))
+	if (!page || page_pool_unref_page(page, drain_count))
 		return;
 
 	page_pool_return_page(pool, page);