Message ID | 20231212184613.3237-1-ankita@nvidia.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | [v14,1/1] vfio/nvgrace-gpu: Add vfio pci variant module for grace hopper | expand |
On Wed, 13 Dec 2023 00:16:13 +0530 <ankita@nvidia.com> wrote: > From: Ankit Agrawal <ankita@nvidia.com> > > NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device > for the on-chip GPU that is the logical OS representation of the > internal proprietary chip-to-chip cache coherent interconnect. > > The device is peculiar compared to a real PCI device in that whilst > there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the > device, it is not used to access device memory once the faster > chip-to-chip interconnect is initialized (occurs at the time of host > system boot). The device memory is accessed instead using the chip-to-chip > interconnect that is exposed as a contiguous physically addressable > region on the host. This device memory aperture can be obtained from host > ACPI table using device_property_read_u64(), according to the FW > specification. Since the device memory is cache coherent with the CPU, > it can be mmap into the user VMA with a cacheable mapping using > remap_pfn_range() and used like a regular RAM. The device memory > is not added to the host kernel, but mapped directly as this reduces > memory wastage due to struct pages. > > There is also a requirement of a reserved 1G uncached region (termed as > resmem) to support the Multi-Instance GPU (MIG) feature [1]. Based on [2], > the requisite properties (uncached, unaligned access) can be achieved > through a VM mapping (S1) of NORMAL_NC and host (S2) mapping with > MemAttr[2:0]=0b101. To provide a different non-cached property to the > reserved 1G region, it needs to be carved out from the device memory and > mapped as a separate region in Qemu VMA with pgprot_writecombine(). > pgprot_writecombine() sets the Qemu VMA page properties (pgprot) as > NORMAL_NC. > > Provide a VFIO PCI variant driver that adapts the unique device memory > representation into a more standard PCI representation facing userspace. > > The variant driver exposes these two regions - the non-cached reserved > (resmem) and the cached rest of the device memory (termed as usemem) as > separate VFIO 64b BAR regions. Since the device implements 64-bit BAR0, > the VFIO PCI variant driver maps the cached device memory aperture to > the next available PCI BAR (i.e. comprising of region 2 and 3). The > uncached carved out region is assigned BAR region 4 and 5. Qemu will > then naturally generate a PCI device in the VM with the cacheable aperture > reported as BAR2 region, the uncached as BAR4. The variant driver also > provides emulation for these fake BARs' PCI config space offset registers. > > The memory layout on the host looks like the following: > devmem (memlength) > |--------------------------------------------------| > |-------------cached------------------------|--NC--| > | | > usemem.phys/memphys resmem.phys > > PCI BARs need to be aligned to the power-of-2, but the actual memory on the > device may not. A read or write access to the physical address from the > last device PFN up to the next power-of-2 aligned physical address > results in reading ~0 and dropped writes. Note that the GPU device > driver [6] is capable of knowing the exact device memory size through > separate means. The device memory size is primarily kept in the system > ACPI tables for use by the VFIO PCI variant module. > > Note that the usemem memory is added by the VM Nvidia device driver [5] > to the VM kernel as memblocks. Hence make the usable memory size memblock > aligned. > > Currently there is no provision in KVM for a S2 mapping with > MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3]. > As previously mentioned, resmem is mapped pgprot_writecombine(), that > sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the > proposed changes in [4] and [3], KVM marks the region with > MemAttr[2:0]=0b101 in S2. > > This goes along with a qemu series [6] to provides the necessary > implementation of the Grace Hopper Superchip firmware specification so > that the guest operating system can see the correct ACPI modeling for > the coherent GPU device. Verified with the CUDA workload in the VM. > > [1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/ > [2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/ > [3] https://lore.kernel.org/all/20231205033015.10044-1-ankita@nvidia.com/ > [4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/ > [5] https://github.com/NVIDIA/open-gpu-kernel-modules > [6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/ > > Applied over next-20231211. > --- > Link for variant driver v13: > https://lore.kernel.org/all/20231114081611.30550-1-ankita@nvidia.com/ > Link for new carve-out region v1: > https://lore.kernel.org/all/20231115080751.4558-1-ankita@nvidia.com/ > > v13 -> v14 > - Merged the changes for second BAR implementation for MIG support > on the device driver. > https://lore.kernel.org/all/20231115080751.4558-1-ankita@nvidia.com/ > - Added the missing implementation of sub-word access to fake BARs' > PCI config access. Implemented access algorithm suggested by > Alex Williamson in the comments (Thanks!) > - Added support to BAR accesses on the reserved memory with > Qemu device param x-no-mmap=on. > - Handled endian-ness in the PCI config space access. > - Git commit message change > > v12 -> v13 > - Added emulation for the PCI config space BAR offset register for > the fake BAR. > - commit message updated with more details on the BAR offset emulation. > > v11 -> v12 > - More details in commit message on device memory size > > v10 -> v11 > - Removed sysfs attribute to expose the CPU coherent memory feature > - Addressed review comments > > v9 -> v10 > - Add new sysfs attribute to expose the CPU coherent memory feature. > > v8 -> v9 > - Minor code adjustment suggested in v8. > > v7 -> v8 > - Various field names updated. > - Added a new function to handle VFIO_DEVICE_GET_REGION_INFO ioctl. > - Locking protection for memremap to bar region and other changes > recommended in v7. > - Added code to fail if the devmem size advertized is 0 in system DSDT. > > v6 -> v7 > - Handled out-of-bound and overflow conditions at various places to validate > input offset and length. > - Added code to return EINVAL for offset beyond region size. > > v5 -> v6 > - Added the code to handle BAR2 read/write using memremap to the device > memory. > > v4 -> v5 > - Changed the module name from nvgpu-vfio-pci to nvgrace-gpu-vfio-pci. > - Fixed memory leak and added suggested boundary checks on device memory > mapping. > - Added code to read all Fs and ignored write on region outside of the > physical memory. > - Other miscellaneous cleanup suggestions. > > v3 -> v4 > - Mapping the available device memory using sparse mmap. The region outside > the device memory is handled by read/write ops. > - Removed the fault handler added in v3. > > v2 -> v3 > - Added fault handler to map the region outside the physical GPU memory > up to the next power-of-2 to a dummy PFN. > - Changed to select instead of "depends on" VFIO_PCI_CORE for all the > vfio-pci variant driver. > - Code cleanup based on feedback comments. > - Code implemented and tested against v6.4-rc4. > > v1 -> v2 > - Updated the wording of reference to BAR offset and replaced with > index. > - The GPU memory is exposed at the fixed BAR2_REGION_INDEX. > - Code cleanup based on feedback comments. > > Signed-off-by: Ankit Agrawal <ankita@nvidia.com> > Signed-off-by: Aniket Agashe <aniketa@nvidia.com> > Tested-by: Ankit Agrawal <ankita@nvidia.com> > --- > MAINTAINERS | 6 + > drivers/vfio/pci/Kconfig | 2 + > drivers/vfio/pci/Makefile | 2 + > drivers/vfio/pci/nvgrace-gpu/Kconfig | 10 + > drivers/vfio/pci/nvgrace-gpu/Makefile | 3 + > drivers/vfio/pci/nvgrace-gpu/main.c | 947 ++++++++++++++++++++++++++ > 6 files changed, 970 insertions(+) > create mode 100644 drivers/vfio/pci/nvgrace-gpu/Kconfig > create mode 100644 drivers/vfio/pci/nvgrace-gpu/Makefile > create mode 100644 drivers/vfio/pci/nvgrace-gpu/main.c > > diff --git a/MAINTAINERS b/MAINTAINERS > index 98f7dd0499f1..6f8f3a6daa43 100644 > --- a/MAINTAINERS > +++ b/MAINTAINERS > @@ -22877,6 +22877,12 @@ L: kvm@vger.kernel.org > S: Maintained > F: drivers/vfio/platform/ > > +VFIO NVIDIA GRACE GPU DRIVER > +M: Ankit Agrawal <ankita@nvidia.com> > +L: kvm@vger.kernel.org > +S: Maintained > +F: drivers/vfio/pci/nvgrace-gpu/ > + > VGA_SWITCHEROO > R: Lukas Wunner <lukas@wunner.de> > S: Maintained > diff --git a/drivers/vfio/pci/Kconfig b/drivers/vfio/pci/Kconfig > index 8125e5f37832..2456210e85f1 100644 > --- a/drivers/vfio/pci/Kconfig > +++ b/drivers/vfio/pci/Kconfig > @@ -65,4 +65,6 @@ source "drivers/vfio/pci/hisilicon/Kconfig" > > source "drivers/vfio/pci/pds/Kconfig" > > +source "drivers/vfio/pci/nvgrace-gpu/Kconfig" > + > endmenu > diff --git a/drivers/vfio/pci/Makefile b/drivers/vfio/pci/Makefile > index 45167be462d8..1352c65e568a 100644 > --- a/drivers/vfio/pci/Makefile > +++ b/drivers/vfio/pci/Makefile > @@ -13,3 +13,5 @@ obj-$(CONFIG_MLX5_VFIO_PCI) += mlx5/ > obj-$(CONFIG_HISI_ACC_VFIO_PCI) += hisilicon/ > > obj-$(CONFIG_PDS_VFIO_PCI) += pds/ > + > +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu/ > diff --git a/drivers/vfio/pci/nvgrace-gpu/Kconfig b/drivers/vfio/pci/nvgrace-gpu/Kconfig > new file mode 100644 > index 000000000000..936e88d8d41d > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/Kconfig > @@ -0,0 +1,10 @@ > +# SPDX-License-Identifier: GPL-2.0-only > +config NVGRACE_GPU_VFIO_PCI > + tristate "VFIO support for the GPU in the NVIDIA Grace Hopper Superchip" > + depends on ARM64 || (COMPILE_TEST && 64BIT) > + select VFIO_PCI_CORE > + help > + VFIO support for the GPU in the NVIDIA Grace Hopper Superchip is > + required to assign the GPU device using KVM/qemu/etc. > + > + If you don't know what to do here, say N. > diff --git a/drivers/vfio/pci/nvgrace-gpu/Makefile b/drivers/vfio/pci/nvgrace-gpu/Makefile > new file mode 100644 > index 000000000000..3ca8c187897a > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/Makefile > @@ -0,0 +1,3 @@ > +# SPDX-License-Identifier: GPL-2.0-only > +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu-vfio-pci.o > +nvgrace-gpu-vfio-pci-y := main.o > diff --git a/drivers/vfio/pci/nvgrace-gpu/main.c b/drivers/vfio/pci/nvgrace-gpu/main.c > new file mode 100644 > index 000000000000..b86897da0ab0 > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/main.c > @@ -0,0 +1,947 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved > + */ > + > +#include <linux/pci.h> > +#include <linux/vfio_pci_core.h> > +#include <linux/vfio.h> > + > +/* Memory size expected as non cached and reserved by the VM driver */ > +#define RESMEM_SIZE 0x40000000 > +#define MEMBLK_SIZE 0x20000000 > + > +/* > + * The device memory usable to the workloads running in the VM is cached > + * and showcased as a 64b device BAR to the VM (represented as usemem). > + * Moreover, the VM GPU device driver needs a non-cacheable region to > + * support the MIG feature. This region is also exposed as a 64b BAR and > + * represented as resmem. > + * > + * Each of these regions' state is saves as struct mem_region. > + */ > +struct mem_region { > + phys_addr_t memphys; /* Base physical address of the region */ > + size_t memlength; /* Region size */ > + union { > + u32 u32_reg[2]; > + u64 u64_reg; > + } bar_reg; /* Emulated BAR offset registers */ > + union { > + void *memaddr; > + void __iomem *ioaddr; > + } bar_remap; /* Base virtual address of the region */ > +}; > + > +struct nvgrace_gpu_vfio_pci_core_device { > + struct vfio_pci_core_device core_device; > + /* Cached and usable memory for the VM. */ > + struct mem_region usemem; > + /* Non cached memory carved out from the end of device memory */ > + struct mem_region resmem; > + struct mutex remap_lock; > +}; > + > +static bool nvgrace_gpu_vfio_pci_is_fake_bar(int index) > +{ > + if (index == VFIO_PCI_BAR2_REGION_INDEX || > + index == VFIO_PCI_BAR4_REGION_INDEX) > + return true; > + > + return false; > +} return (index == VFIO_PCI_BAR2_REGION_INDEX) || (index == VFIO_PCI_BAR4_REGION_INDEX); > + > +static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + nvdev->resmem.bar_reg.u64_reg = 0; > + nvdev->usemem.bar_reg.u64_reg = 0; > +} > + > +/* Choose the structure corresponding to the BAR with index. */ > +static int > +nvgrace_gpu_vfio_pci_get_mem_region(int index, > + struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + struct mem_region *region) > +{ > + if (index == VFIO_PCI_BAR4_REGION_INDEX) > + *region = nvdev->usemem; > + else if (index == VFIO_PCI_BAR2_REGION_INDEX) > + *region = nvdev->resmem; > + else > + return -EINVAL; > + > + return 0; This seems redundant to the is_fake_bar function. For example: struct mem_region * nvgrace_gpu_vfio_pci_get_mem_region(int index, struct nvgrace_gpu_vfio_pci_core_device *nvdev) { if (index == VFIO_PCI_BAR4_REGION_INDEX) return nvdev->usemem; if (index == VFIO_PCI_BAR2_REGION_INDEX) return nvdev->resmem; return NULL; } Could be used to replace both functions. It's strange that the original is copying the struct rather than providing a pointer to the correct struct anyway, seems like that's going to lead to subtle issues. > +} > + > +static int nvgrace_gpu_vfio_pci_open_device(struct vfio_device *core_vdev) > +{ > + struct vfio_pci_core_device *vdev = > + container_of(core_vdev, struct vfio_pci_core_device, vdev); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + int ret; > + > + ret = vfio_pci_core_enable(vdev); > + if (ret) > + return ret; > + > + vfio_pci_core_finish_enable(vdev); > + > + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); > + > + mutex_init(&nvdev->remap_lock); > + > + return 0; > +} > + > +static void nvgrace_gpu_vfio_pci_close_device(struct vfio_device *core_vdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + /* Unmap the mapping to the device memory cached region */ > + if (nvdev->usemem.bar_remap.memaddr) { > + memunmap(nvdev->usemem.bar_remap.memaddr); > + nvdev->usemem.bar_remap.memaddr = NULL; > + } > + > + /* Unmap the mapping to the device memory non-cached region */ > + if (nvdev->resmem.bar_remap.ioaddr) { > + iounmap(nvdev->resmem.bar_remap.ioaddr); > + nvdev->resmem.bar_remap.ioaddr = NULL; > + } > + > + mutex_destroy(&nvdev->remap_lock); > + > + vfio_pci_core_close_device(core_vdev); > +} > + > +static int nvgrace_gpu_vfio_pci_mmap(struct vfio_device *core_vdev, > + struct vm_area_struct *vma) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); > + > + unsigned long start_pfn; > + unsigned int index; > + u64 req_len, pgoff, end; > + int ret = 0; > + struct mem_region memregion; > + > + index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); > + > + if (!nvgrace_gpu_vfio_pci_is_fake_bar(index)) > + return vfio_pci_core_mmap(core_vdev, vma); > + > + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); > + if (ret) > + return ret; > + > + /* > + * Request to mmap the BAR. Map to the CPU accessible memory on the > + * GPU using the memory information gathered from the system ACPI > + * tables. > + */ > + pgoff = vma->vm_pgoff & > + ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); > + > + if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) || > + check_add_overflow(PHYS_PFN(memregion.memphys), pgoff, &start_pfn) || > + check_add_overflow(PFN_PHYS(pgoff), req_len, &end)) > + return -EOVERFLOW; > + > + /* > + * Check that the mapping request does not go beyond available device > + * memory size > + */ > + if (end > memregion.memlength) > + return -EINVAL; > + > + /* > + * The carved out region of the device memory needs the NORMAL_NC > + * property. Communicate as such to the hypervisor. > + */ > + if (index == VFIO_PCI_BAR2_REGION_INDEX) > + vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); Consider: #define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX #define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX And use them throughout. I think this is already confused with the commit log above: The variant driver exposes these two regions - the non-cached reserved (resmem) and the cached rest of the device memory (termed as usemem) as separate VFIO 64b BAR regions. Since the device implements 64-bit BAR0, the VFIO PCI variant driver maps the cached device memory aperture to the next available PCI BAR (i.e. comprising of region 2 and 3). The uncached carved out region is assigned BAR region 4 and 5. Qemu will then naturally generate a PCI device in the VM with the cacheable aperture reported as BAR2 region, the uncached as BAR4. That says BAR2 = usemem and BAR4 = resmem. get_mem_region says BAR4 = usemem and BAR2 = resmem. Pick one. > + > + /* > + * Perform a PFN map to the memory and back the device BAR by the > + * GPU memory. > + * > + * The available GPU memory size may not be power-of-2 aligned. Map up > + * to the size of the device memory. If the memory access is beyond the > + * actual GPU memory size, it will be handled by the vfio_device_ops > + * read/write. > + * > + * During device reset, the GPU is safely disconnected to the CPU > + * and access to the BAR will be immediately returned preventing > + * machine check. > + */ > + ret = remap_pfn_range(vma, vma->vm_start, start_pfn, > + req_len, vma->vm_page_prot); > + if (ret) > + return ret; > + > + vma->vm_pgoff = start_pfn; > + > + return 0; > +} > + > +static long > +nvgrace_gpu_vfio_pci_ioctl_get_region_info(struct vfio_device *core_vdev, > + unsigned long arg) > +{ > + unsigned long minsz = offsetofend(struct vfio_region_info, offset); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); > + struct vfio_region_info_cap_sparse_mmap *sparse; > + struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; > + struct vfio_region_info info; > + struct mem_region memregion; > + uint32_t size; > + int ret; > + > + if (copy_from_user(&info, (void __user *)arg, minsz)) > + return -EFAULT; > + > + if (info.argsz < minsz) > + return -EINVAL; > + > + if (nvgrace_gpu_vfio_pci_is_fake_bar(info.index)) { Probably makes sense to flip the test polarity, nest the core ioctl call within this branch and do all the work in the main flow. Otherwise the below probably needs a separate function. > + ret = nvgrace_gpu_vfio_pci_get_mem_region(info.index, nvdev, &memregion); > + if (ret) > + return ret; > + /* > + * Request to determine the BAR region information. Send the > + * GPU memory information. > + */ > + size = struct_size(sparse, areas, 1); > + > + /* > + * Setup for sparse mapping for the device memory. Only the > + * available device memory on the hardware is shown as a > + * mappable region. > + */ > + sparse = kzalloc(size, GFP_KERNEL); > + if (!sparse) > + return -ENOMEM; > + > + sparse->nr_areas = 1; > + sparse->areas[0].offset = 0; > + sparse->areas[0].size = memregion.memlength; > + sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; > + sparse->header.version = 1; > + > + ret = vfio_info_add_capability(&caps, &sparse->header, size); > + kfree(sparse); > + if (ret) > + return ret; > + > + info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); > + /* > + * The region memory size may not be power-of-2 aligned. > + * Given that the memory as a BAR and may not be > + * aligned, roundup to the next power-of-2. > + */ > + info.size = roundup_pow_of_two(memregion.memlength); > + info.flags = VFIO_REGION_INFO_FLAG_READ | > + VFIO_REGION_INFO_FLAG_WRITE | > + VFIO_REGION_INFO_FLAG_MMAP; > + > + if (caps.size) { > + info.flags |= VFIO_REGION_INFO_FLAG_CAPS; > + if (info.argsz < sizeof(info) + caps.size) { > + info.argsz = sizeof(info) + caps.size; > + info.cap_offset = 0; > + } else { > + vfio_info_cap_shift(&caps, sizeof(info)); > + if (copy_to_user((void __user *)arg + > + sizeof(info), caps.buf, > + caps.size)) { > + kfree(caps.buf); > + return -EFAULT; > + } > + info.cap_offset = sizeof(info); > + } > + kfree(caps.buf); > + } > + return copy_to_user((void __user *)arg, &info, minsz) ? > + -EFAULT : 0; > + } > + return vfio_pci_core_ioctl(core_vdev, VFIO_DEVICE_GET_REGION_INFO, arg); > +} > + > +static long nvgrace_gpu_vfio_pci_ioctl(struct vfio_device *core_vdev, > + unsigned int cmd, unsigned long arg) > +{ > + if (cmd == VFIO_DEVICE_GET_REGION_INFO) > + return nvgrace_gpu_vfio_pci_ioctl_get_region_info(core_vdev, arg); > + > + if (cmd == VFIO_DEVICE_RESET) > + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); > + > + return vfio_pci_core_ioctl(core_vdev, cmd, arg); A switch might be useful to make this fallthrough explicit. switch (cmd) { case VFIO_DEVICE_GET_REGION_INFO: return nvgrace_gpu_vfio_pci_ioctl_get_region_info(core_vdev, arg); case VFIO_DEVICE_RESET: nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); fallthrough; default: return vfio_pci_core_ioctl(core_vdev, cmd, arg); } I think you also need to consider VFIO_DEVICE_IOEVENTFD. It doesn't need to be supported for BAR2&4 but it doesn't make any sense to let it pass through to the core code since it would enable writes to the physical BARs. > +} > + > +/* > + * Check whether the given range of offset is within the expected > + * boundary. > + */ > +static bool > +range_within_boundary(loff_t boundary_start, loff_t boundary_end, > + loff_t range_start, loff_t range_end) > +{ > + if (boundary_start <= range_start && > + boundary_end >= range_end) { > + return true; > + } > + return false; > +} > + > +/* > + * Both the usable (usemem) and the reserved (resmem) device memory region > + * are exposed as a 64b fake BARs in the VM. These fake BARs must respond > + * to the accesses on their respective PCI config space offsets. > + * > + * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3. > + * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5. > + */ > + > +/* > + * Return the pointer to the desired location within the appropriate > + * emulated register. > + * > + * First find the emulated register based on the accessed PCI config > + * offset. Then traverse to the appropriate location within the > + * register (applicable for sub-word size access). > + */ > +static u8 * > +register_ref(struct nvgrace_gpu_vfio_pci_core_device *nvdev, u64 start, u64 end) > +{ > + u8 *reg_ref = NULL; > + > + if (range_within_boundary(PCI_BASE_ADDRESS_5, > + PCI_CARDBUS_CIS, start, end)) { > + reg_ref = (u8 *) &(nvdev->usemem.bar_reg.u32_reg[1]); > + reg_ref += start - PCI_BASE_ADDRESS_5; > + } else if (range_within_boundary(PCI_BASE_ADDRESS_4, > + PCI_BASE_ADDRESS_5, start, end)) { > + reg_ref = (u8 *) &(nvdev->usemem.bar_reg.u32_reg[0]); > + reg_ref += start - PCI_BASE_ADDRESS_4; > + } else if (range_within_boundary(PCI_BASE_ADDRESS_3, > + PCI_BASE_ADDRESS_4, start, end)) { > + reg_ref = (u8 *) &(nvdev->resmem.bar_reg.u32_reg[1]); > + reg_ref += start - PCI_BASE_ADDRESS_3; > + } else if (range_within_boundary(PCI_BASE_ADDRESS_2, > + PCI_BASE_ADDRESS_3, start, end)) { > + reg_ref = (u8 *) &(nvdev->resmem.bar_reg.u32_reg[0]); > + reg_ref += start - PCI_BASE_ADDRESS_2; > + } > + > + return reg_ref; > +} > + > +static ssize_t > +nvgrace_gpu_read_config_emu(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + char __user *buf, size_t count, loff_t *ppos) > +{ > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + __le32 val32; > + u8 *reg_ref; > + u32 tmp_val; > + size_t bar_size; > + > + if (!IS_ALIGNED(pos, count)) > + return -EINVAL; > + > + if (range_within_boundary(PCI_BASE_ADDRESS_2, > + PCI_BASE_ADDRESS_4, pos, pos + count)) { > + bar_size = roundup_pow_of_two(nvdev->resmem.memlength); > + nvdev->resmem.bar_reg.u64_reg &= ~(bar_size - 1); > + nvdev->resmem.bar_reg.u64_reg |= PCI_BASE_ADDRESS_MEM_TYPE_64 | > + PCI_BASE_ADDRESS_MEM_PREFETCH; > + } else { > + bar_size = roundup_pow_of_two(nvdev->usemem.memlength); > + nvdev->usemem.bar_reg.u64_reg &= ~(bar_size - 1); > + nvdev->usemem.bar_reg.u64_reg |= PCI_BASE_ADDRESS_MEM_TYPE_64 | > + PCI_BASE_ADDRESS_MEM_PREFETCH; > + } > + > + reg_ref = register_ref(nvdev, pos, pos + count); > + if (!reg_ref) > + return -EINVAL; > + > + switch (count) { > + case 1: > + tmp_val = *reg_ref; > + break; > + case 2: > + tmp_val = *((u16 *) reg_ref); > + break; > + case 4: > + tmp_val = *((u32 *) reg_ref); > + break; > + } > + > + val32 = cpu_to_le32(tmp_val); > + > + if (copy_to_user(buf, &val32, count)) > + return -EFAULT; > + > + *ppos += count; > + > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_write_config_emu(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + const char __user *buf, size_t count, loff_t *ppos) > +{ > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + u8 *reg_ref; > + __le32 val; > + u32 tmp_val; > + > + if (!IS_ALIGNED(pos, count)) > + return -EINVAL; > + > + if (copy_from_user(&val, buf, count)) > + return -EFAULT; > + > + reg_ref = register_ref(nvdev, pos, pos + count); > + if (!reg_ref) > + return -EINVAL; > + > + tmp_val = le32_to_cpu(val); > + > + switch (count) { > + case 1: > + *reg_ref = tmp_val; > + break; > + case 2: > + *((u16 *) reg_ref) = tmp_val; > + break; > + case 4: > + *((u32 *) reg_ref) = tmp_val; > + break; > + } > + > + *ppos += count; > + return count; > +} Please just use the code Yishai proposed for the virtio-vfio-pci driver: https://lore.kernel.org/all/20231207102820.74820-10-yishaih@nvidia.com It's more generic, I believe it works correctly, and we don't need multiple implementations. > + > +/* > + * Ad hoc map the device memory in the module kernel VA space. Primarily needed > + * to support Qemu's device x-no-mmap=on option. > + * > + * The usemem region is cacheable memory and hence is memremaped. > + * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC). > + */ > +static int > +nvgrace_gpu_map_device_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + int index) > +{ > + mutex_lock(&nvdev->remap_lock); > + if (index == VFIO_PCI_BAR4_REGION_INDEX && > + !nvdev->usemem.bar_remap.memaddr) { > + nvdev->usemem.bar_remap.memaddr > + = memremap(nvdev->usemem.memphys, nvdev->usemem.memlength, MEMREMAP_WB); > + if (!nvdev->usemem.bar_remap.memaddr) { > + mutex_unlock(&nvdev->remap_lock); > + return -ENOMEM; > + } Or just declare int ret = 0; and set ret = -ENOMEM; here and use the common exit path. > + } else if (index == VFIO_PCI_BAR2_REGION_INDEX && > + !nvdev->resmem.bar_remap.ioaddr) { > + nvdev->resmem.bar_remap.ioaddr > + = ioremap_wc(nvdev->resmem.memphys, nvdev->resmem.memlength); > + if (!nvdev->resmem.bar_remap.ioaddr) { > + mutex_unlock(&nvdev->remap_lock); > + return -ENOMEM; > + } > + } > + mutex_unlock(&nvdev->remap_lock); > + > + return 0; > +} > + > +static ssize_t > +nvgrace_gpu_read_mmio(struct mem_region *region, > + char __user *buf, size_t count, > + loff_t offset) > +{ > + unsigned int read = 0; > + > + while (count) { > + size_t filled; > + > + if (count >= 4 && !(offset % 4)) { > + u32 val; > + > + val = ioread32(region->bar_remap.ioaddr + offset); > + if (copy_to_user(buf, &val, 4)) > + goto read_mmio_exit; > + > + filled = 4; > + } else if (count >= 2 && !(offset % 2)) { > + u16 val; > + > + val = ioread16(region->bar_remap.ioaddr + offset); > + if (copy_to_user(buf, &val, 2)) > + goto read_mmio_exit; > + > + filled = 2; > + } else { > + u8 val; > + > + val = ioread8(region->bar_remap.ioaddr + offset); > + if (copy_to_user(buf, &val, 1)) > + goto read_mmio_exit; > + > + filled = 1; > + } > + > + count -= filled; > + read += filled; > + offset += filled; > + buf += filled; > + } > + return read; > + > +read_mmio_exit: > + return -EFAULT; > +} > + > +/* > + * Read the data from the device memory (mapped either through ioremap > + * or memremap) into the user buffer. > + */ > +static int > +nvgrace_gpu_map_and_read(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + void __user *buf, size_t mem_count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + int ret = 0; > + > + /* > + * Handle read on the BAR regions. Map to the target device memory > + * physical address and copy to the request read buffer. > + */ > + ret = nvgrace_gpu_map_device_mem(nvdev, index); > + if (ret) > + goto read_exit; > + > + if (index == VFIO_PCI_BAR4_REGION_INDEX) { > + if (copy_to_user(buf, (u8 *)nvdev->usemem.bar_remap.memaddr + offset, mem_count)) > + ret = -EFAULT; > + } else > + return nvgrace_gpu_read_mmio(&(nvdev->resmem), buf, mem_count, offset); If one branch gets braces, they all get braces Documentation/process/coding-style.rst 3) Placing Braces and Spaces > + > +read_exit: > + return ret; > +} > + > +/* > + * Read count bytes from the device memory at an offset. The actual device > + * memory size (available) may not be a power-of-2. So the driver fakes > + * the size to a power-of-2 (reported) when exposing to a user space driver. > + * > + * Read request beyond the actual device size is filled with ~0, while > + * those beyond the actual reported size is skipped. > + * > + * A read from a negative or an offset greater than reported size, a negative > + * count are considered error conditions and returned with an -EINVAL. > + */ > +static ssize_t > +nvgrace_gpu_read_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + void __user *buf, size_t count, loff_t *ppos) > +{ > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct mem_region memregion; > + size_t mem_count, i, bar_size; > + u8 val = 0xFF; > + int ret; > + > + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); > + if (ret) > + return ret; > + > + bar_size = roundup_pow_of_two(memregion.memlength); > + > + if (offset >= bar_size) > + return -EINVAL; > + > + /* Clip short the read request beyond reported BAR size */ > + count = min(count, bar_size - (size_t)offset); > + > + /* > + * Determine how many bytes to be actually read from the device memory. > + * Read request beyond the actual device memory size is filled with ~0, > + * while those beyond the actual reported size is skipped. > + */ > + if (offset >= memregion.memlength) > + mem_count = 0; > + else > + mem_count = min(count, memregion.memlength - (size_t)offset); > + > + ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos); > + if (ret) > + return ret; > + > + /* > + * Only the device memory present on the hardware is mapped, which may > + * not be power-of-2 aligned. A read to an offset beyond the device memory > + * size is filled with ~0. > + */ > + for (i = mem_count; i < count; i++) > + put_user(val, (unsigned char __user *)(buf + i)); > + > + *ppos += count; > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_vfio_pci_read(struct vfio_device *core_vdev, > + char __user *buf, size_t count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + if (nvgrace_gpu_vfio_pci_is_fake_bar(index)) > + return nvgrace_gpu_read_mem(nvdev, buf, count, ppos); > + > + if ((index == VFIO_PCI_CONFIG_REGION_INDEX) && > + (range_within_boundary(PCI_BASE_ADDRESS_2, > + PCI_CARDBUS_CIS, pos, pos + count))) { > + return nvgrace_gpu_read_config_emu(nvdev, buf, count, ppos); > + } Again, follow how Yishai did this, send all config reads to a function that does a vfio_pci_core_read() then fill in the emulated fields based on range_intersect_range(). Maybe Yishai & Co could review this as well, it seems overly complicated. I expect the separate read and write functions could be combined and we probably need to take into account COMMAND_MEM and therefore memory_lock as well. It might make sense to export do_io_rw from the core. Thanks, Alex > + > + return vfio_pci_core_read(core_vdev, buf, count, ppos); > +} > + > +static ssize_t > +nvgrace_gpu_write_mmio(struct mem_region *region, > + const char __user *buf, size_t count, > + loff_t offset) > +{ > + unsigned int write = 0; > + > + while (count) { > + size_t filled; > + > + if (count >= 4 && !(offset % 4)) { > + u32 val; > + > + if (copy_from_user(&val, buf, 4)) > + goto write_mmio_exit; > + iowrite32(val, region->bar_remap.ioaddr + offset); > + > + filled = 4; > + } else if (count >= 2 && !(offset % 2)) { > + u16 val; > + > + if (copy_from_user(&val, buf, 2)) > + goto write_mmio_exit; > + iowrite16(val, region->bar_remap.ioaddr + offset); > + > + filled = 2; > + } else { > + u8 val; > + > + if (copy_from_user(&val, buf, 1)) > + goto write_mmio_exit; > + iowrite8(val, region->bar_remap.ioaddr + offset); > + > + filled = 1; > + } > + > + count -= filled; > + write += filled; > + offset += filled; > + buf += filled; > + } > + > + return write; > + > +write_mmio_exit: > + return -EFAULT; > +} > + > +/* > + * Write the data to the device memory (mapped either through ioremap > + * or memremap) from the user buffer. > + */ > +static int > +nvgrace_gpu_map_and_write(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + const void __user *buf, size_t mem_count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + int ret = 0; > + > + ret = nvgrace_gpu_map_device_mem(nvdev, index); > + if (ret) > + goto write_exit; > + > + if (index == VFIO_PCI_BAR4_REGION_INDEX) { > + if (copy_from_user((u8 *)nvdev->usemem.bar_remap.memaddr + offset, buf, mem_count)) > + return -EFAULT; > + } else > + return nvgrace_gpu_write_mmio(&(nvdev->resmem), buf, mem_count, offset); > + > +write_exit: > + return ret; > +} > + > +/* > + * Write count bytes to the device memory at a given offset. The actual device > + * memory size (available) may not be a power-of-2. So the driver fakes the > + * size to a power-of-2 (reported) when exposing to a user space driver. > + * > + * Write request beyond the actual device size are dropped, while those > + * beyond the actual reported size are skipped entirely. > + * > + * A write to a negative or an offset greater than the reported size, a > + * negative count are considered error conditions and returned with an -EINVAL. > + */ > +static ssize_t > +nvgrace_gpu_write_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + size_t count, loff_t *ppos, const void __user *buf) > +{ > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct mem_region memregion; > + size_t mem_count, bar_size; > + int ret = 0; > + > + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); > + if (ret) > + return ret; > + > + bar_size = roundup_pow_of_two(memregion.memlength); > + > + if (offset >= bar_size) > + return -EINVAL; > + > + /* Clip short the write request beyond reported BAR size */ > + count = min(count, bar_size - (size_t)offset); > + > + /* > + * Determine how many bytes to be actually written to the device memory. > + * Do not write to the offset beyond available size. > + */ > + if (offset >= memregion.memlength) > + goto exitfn; > + > + /* > + * Only the device memory present on the hardware is mapped, which may > + * not be power-of-2 aligned. Drop access outside the available device > + * memory on the hardware. > + */ > + mem_count = min(count, memregion.memlength - (size_t)offset); > + > + ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos); > + if (ret) > + return ret; > + > +exitfn: > + *ppos += count; > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_vfio_pci_write(struct vfio_device *core_vdev, > + const char __user *buf, size_t count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( > + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); > + > + if (nvgrace_gpu_vfio_pci_is_fake_bar(index)) > + return nvgrace_gpu_write_mem(nvdev, count, ppos, buf); > + > + if ((index == VFIO_PCI_CONFIG_REGION_INDEX) && > + (range_within_boundary(PCI_BASE_ADDRESS_2, > + PCI_CARDBUS_CIS, pos, pos + count))) { > + return nvgrace_gpu_write_config_emu(nvdev, buf, count, ppos); > + } > + > + return vfio_pci_core_write(core_vdev, buf, count, ppos); > +} > + > +static const struct vfio_device_ops nvgrace_gpu_vfio_pci_ops = { > + .name = "nvgrace-gpu-vfio-pci", > + .init = vfio_pci_core_init_dev, > + .release = vfio_pci_core_release_dev, > + .open_device = nvgrace_gpu_vfio_pci_open_device, > + .close_device = nvgrace_gpu_vfio_pci_close_device, > + .ioctl = nvgrace_gpu_vfio_pci_ioctl, > + .read = nvgrace_gpu_vfio_pci_read, > + .write = nvgrace_gpu_vfio_pci_write, > + .mmap = nvgrace_gpu_vfio_pci_mmap, > + .request = vfio_pci_core_request, > + .match = vfio_pci_core_match, > + .bind_iommufd = vfio_iommufd_physical_bind, > + .unbind_iommufd = vfio_iommufd_physical_unbind, > + .attach_ioas = vfio_iommufd_physical_attach_ioas, > + .detach_ioas = vfio_iommufd_physical_detach_ioas, > +}; > + > +static struct > +nvgrace_gpu_vfio_pci_core_device *nvgrace_gpu_drvdata(struct pci_dev *pdev) > +{ > + struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev); > + > + return container_of(core_device, struct nvgrace_gpu_vfio_pci_core_device, > + core_device); > +} > + > +static int > +nvgrace_gpu_vfio_pci_fetch_memory_property(struct pci_dev *pdev, > + struct nvgrace_gpu_vfio_pci_core_device *nvdev) > +{ > + int ret; > + u64 memphys, memlength; > + > + /* > + * The memory information is present in the system ACPI tables as DSD > + * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size. > + */ > + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa", > + &(memphys)); > + if (ret) > + return ret; > + > + if (memphys > type_max(phys_addr_t)) > + return -EOVERFLOW; > + > + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size", > + &(memlength)); > + if (ret) > + return ret; > + > + if (memlength > type_max(size_t)) > + return -EOVERFLOW; > + > + /* > + * If the C2C link is not up due to an error, the coherent device > + * memory size is returned as 0. Fail in such case. > + */ > + if (memlength == 0) > + return -ENOMEM; > + > + /* > + * The VM GPU device driver needs a non-cacheable region to support > + * the MIG feature. Since the device memory is mapped as NORMAL cached, > + * carve out a region from the end with a different NORMAL_NC > + * property (called as reserved memory and represented as resmem). This > + * region then is exposed as a 64b BAR (region 2 and 3) to the VM, while > + * exposing the rest (termed as usable memory and represented using usemem) > + * as cacheable 64b BAR (region 4 and 5). > + * > + * devmem (memlength) > + * |-------------------------------------------------| > + * | | > + * usemem.phys/memphys resmem.phys > + */ > + nvdev->usemem.memphys = memphys; > + > + /* > + * The device memory exposed to the VM is added to the kernel by the > + * VM driver module in chunks of memory block size. Only the usable > + * memory (usemem) is added to the kernel for usage by the VM > + * workloads. Make the usable memory size memblock aligned. > + */ > + if (check_sub_overflow(memlength, RESMEM_SIZE, > + &nvdev->usemem.memlength)) { > + ret = -EOVERFLOW; > + goto done; > + } > + nvdev->usemem.memlength = round_down(nvdev->usemem.memlength, > + MEMBLK_SIZE); > + if ((check_add_overflow(nvdev->usemem.memphys, > + nvdev->usemem.memlength, &nvdev->resmem.memphys)) || > + (check_sub_overflow(memlength, nvdev->usemem.memlength, > + &nvdev->resmem.memlength))) { > + ret = -EOVERFLOW; > + goto done; > + } > + > +done: > + return ret; > +} > + > +static int nvgrace_gpu_vfio_pci_probe(struct pci_dev *pdev, > + const struct pci_device_id *id) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev; > + int ret; > + > + nvdev = vfio_alloc_device(nvgrace_gpu_vfio_pci_core_device, core_device.vdev, > + &pdev->dev, &nvgrace_gpu_vfio_pci_ops); > + if (IS_ERR(nvdev)) > + return PTR_ERR(nvdev); > + > + dev_set_drvdata(&pdev->dev, nvdev); > + > + ret = nvgrace_gpu_vfio_pci_fetch_memory_property(pdev, nvdev); > + if (ret) > + goto out_put_vdev; > + > + ret = vfio_pci_core_register_device(&nvdev->core_device); > + if (ret) > + goto out_put_vdev; > + > + return ret; > + > +out_put_vdev: > + vfio_put_device(&nvdev->core_device.vdev); > + return ret; > +} > + > +static void nvgrace_gpu_vfio_pci_remove(struct pci_dev *pdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = nvgrace_gpu_drvdata(pdev); > + struct vfio_pci_core_device *vdev = &nvdev->core_device; > + > + vfio_pci_core_unregister_device(vdev); > + vfio_put_device(&vdev->vdev); > +} > + > +static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = { > + /* GH200 120GB */ > + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) }, > + /* GH200 480GB */ > + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) }, > + {} > +}; > + > +MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table); > + > +static struct pci_driver nvgrace_gpu_vfio_pci_driver = { > + .name = KBUILD_MODNAME, > + .id_table = nvgrace_gpu_vfio_pci_table, > + .probe = nvgrace_gpu_vfio_pci_probe, > + .remove = nvgrace_gpu_vfio_pci_remove, > + .err_handler = &vfio_pci_core_err_handlers, > + .driver_managed_dma = true, > +}; > + > +module_pci_driver(nvgrace_gpu_vfio_pci_driver); > + > +MODULE_LICENSE("GPL v2"); > +MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>"); > +MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>"); > +MODULE_DESCRIPTION( > + "VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");
diff --git a/MAINTAINERS b/MAINTAINERS index 98f7dd0499f1..6f8f3a6daa43 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -22877,6 +22877,12 @@ L: kvm@vger.kernel.org S: Maintained F: drivers/vfio/platform/ +VFIO NVIDIA GRACE GPU DRIVER +M: Ankit Agrawal <ankita@nvidia.com> +L: kvm@vger.kernel.org +S: Maintained +F: drivers/vfio/pci/nvgrace-gpu/ + VGA_SWITCHEROO R: Lukas Wunner <lukas@wunner.de> S: Maintained diff --git a/drivers/vfio/pci/Kconfig b/drivers/vfio/pci/Kconfig index 8125e5f37832..2456210e85f1 100644 --- a/drivers/vfio/pci/Kconfig +++ b/drivers/vfio/pci/Kconfig @@ -65,4 +65,6 @@ source "drivers/vfio/pci/hisilicon/Kconfig" source "drivers/vfio/pci/pds/Kconfig" +source "drivers/vfio/pci/nvgrace-gpu/Kconfig" + endmenu diff --git a/drivers/vfio/pci/Makefile b/drivers/vfio/pci/Makefile index 45167be462d8..1352c65e568a 100644 --- a/drivers/vfio/pci/Makefile +++ b/drivers/vfio/pci/Makefile @@ -13,3 +13,5 @@ obj-$(CONFIG_MLX5_VFIO_PCI) += mlx5/ obj-$(CONFIG_HISI_ACC_VFIO_PCI) += hisilicon/ obj-$(CONFIG_PDS_VFIO_PCI) += pds/ + +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu/ diff --git a/drivers/vfio/pci/nvgrace-gpu/Kconfig b/drivers/vfio/pci/nvgrace-gpu/Kconfig new file mode 100644 index 000000000000..936e88d8d41d --- /dev/null +++ b/drivers/vfio/pci/nvgrace-gpu/Kconfig @@ -0,0 +1,10 @@ +# SPDX-License-Identifier: GPL-2.0-only +config NVGRACE_GPU_VFIO_PCI + tristate "VFIO support for the GPU in the NVIDIA Grace Hopper Superchip" + depends on ARM64 || (COMPILE_TEST && 64BIT) + select VFIO_PCI_CORE + help + VFIO support for the GPU in the NVIDIA Grace Hopper Superchip is + required to assign the GPU device using KVM/qemu/etc. + + If you don't know what to do here, say N. diff --git a/drivers/vfio/pci/nvgrace-gpu/Makefile b/drivers/vfio/pci/nvgrace-gpu/Makefile new file mode 100644 index 000000000000..3ca8c187897a --- /dev/null +++ b/drivers/vfio/pci/nvgrace-gpu/Makefile @@ -0,0 +1,3 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu-vfio-pci.o +nvgrace-gpu-vfio-pci-y := main.o diff --git a/drivers/vfio/pci/nvgrace-gpu/main.c b/drivers/vfio/pci/nvgrace-gpu/main.c new file mode 100644 index 000000000000..b86897da0ab0 --- /dev/null +++ b/drivers/vfio/pci/nvgrace-gpu/main.c @@ -0,0 +1,947 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved + */ + +#include <linux/pci.h> +#include <linux/vfio_pci_core.h> +#include <linux/vfio.h> + +/* Memory size expected as non cached and reserved by the VM driver */ +#define RESMEM_SIZE 0x40000000 +#define MEMBLK_SIZE 0x20000000 + +/* + * The device memory usable to the workloads running in the VM is cached + * and showcased as a 64b device BAR to the VM (represented as usemem). + * Moreover, the VM GPU device driver needs a non-cacheable region to + * support the MIG feature. This region is also exposed as a 64b BAR and + * represented as resmem. + * + * Each of these regions' state is saves as struct mem_region. + */ +struct mem_region { + phys_addr_t memphys; /* Base physical address of the region */ + size_t memlength; /* Region size */ + union { + u32 u32_reg[2]; + u64 u64_reg; + } bar_reg; /* Emulated BAR offset registers */ + union { + void *memaddr; + void __iomem *ioaddr; + } bar_remap; /* Base virtual address of the region */ +}; + +struct nvgrace_gpu_vfio_pci_core_device { + struct vfio_pci_core_device core_device; + /* Cached and usable memory for the VM. */ + struct mem_region usemem; + /* Non cached memory carved out from the end of device memory */ + struct mem_region resmem; + struct mutex remap_lock; +}; + +static bool nvgrace_gpu_vfio_pci_is_fake_bar(int index) +{ + if (index == VFIO_PCI_BAR2_REGION_INDEX || + index == VFIO_PCI_BAR4_REGION_INDEX) + return true; + + return false; +} + +static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev) +{ + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, + core_device.vdev); + + nvdev->resmem.bar_reg.u64_reg = 0; + nvdev->usemem.bar_reg.u64_reg = 0; +} + +/* Choose the structure corresponding to the BAR with index. */ +static int +nvgrace_gpu_vfio_pci_get_mem_region(int index, + struct nvgrace_gpu_vfio_pci_core_device *nvdev, + struct mem_region *region) +{ + if (index == VFIO_PCI_BAR4_REGION_INDEX) + *region = nvdev->usemem; + else if (index == VFIO_PCI_BAR2_REGION_INDEX) + *region = nvdev->resmem; + else + return -EINVAL; + + return 0; +} + +static int nvgrace_gpu_vfio_pci_open_device(struct vfio_device *core_vdev) +{ + struct vfio_pci_core_device *vdev = + container_of(core_vdev, struct vfio_pci_core_device, vdev); + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, + core_device.vdev); + int ret; + + ret = vfio_pci_core_enable(vdev); + if (ret) + return ret; + + vfio_pci_core_finish_enable(vdev); + + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); + + mutex_init(&nvdev->remap_lock); + + return 0; +} + +static void nvgrace_gpu_vfio_pci_close_device(struct vfio_device *core_vdev) +{ + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, + core_device.vdev); + + /* Unmap the mapping to the device memory cached region */ + if (nvdev->usemem.bar_remap.memaddr) { + memunmap(nvdev->usemem.bar_remap.memaddr); + nvdev->usemem.bar_remap.memaddr = NULL; + } + + /* Unmap the mapping to the device memory non-cached region */ + if (nvdev->resmem.bar_remap.ioaddr) { + iounmap(nvdev->resmem.bar_remap.ioaddr); + nvdev->resmem.bar_remap.ioaddr = NULL; + } + + mutex_destroy(&nvdev->remap_lock); + + vfio_pci_core_close_device(core_vdev); +} + +static int nvgrace_gpu_vfio_pci_mmap(struct vfio_device *core_vdev, + struct vm_area_struct *vma) +{ + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); + + unsigned long start_pfn; + unsigned int index; + u64 req_len, pgoff, end; + int ret = 0; + struct mem_region memregion; + + index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); + + if (!nvgrace_gpu_vfio_pci_is_fake_bar(index)) + return vfio_pci_core_mmap(core_vdev, vma); + + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); + if (ret) + return ret; + + /* + * Request to mmap the BAR. Map to the CPU accessible memory on the + * GPU using the memory information gathered from the system ACPI + * tables. + */ + pgoff = vma->vm_pgoff & + ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); + + if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) || + check_add_overflow(PHYS_PFN(memregion.memphys), pgoff, &start_pfn) || + check_add_overflow(PFN_PHYS(pgoff), req_len, &end)) + return -EOVERFLOW; + + /* + * Check that the mapping request does not go beyond available device + * memory size + */ + if (end > memregion.memlength) + return -EINVAL; + + /* + * The carved out region of the device memory needs the NORMAL_NC + * property. Communicate as such to the hypervisor. + */ + if (index == VFIO_PCI_BAR2_REGION_INDEX) + vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); + + /* + * Perform a PFN map to the memory and back the device BAR by the + * GPU memory. + * + * The available GPU memory size may not be power-of-2 aligned. Map up + * to the size of the device memory. If the memory access is beyond the + * actual GPU memory size, it will be handled by the vfio_device_ops + * read/write. + * + * During device reset, the GPU is safely disconnected to the CPU + * and access to the BAR will be immediately returned preventing + * machine check. + */ + ret = remap_pfn_range(vma, vma->vm_start, start_pfn, + req_len, vma->vm_page_prot); + if (ret) + return ret; + + vma->vm_pgoff = start_pfn; + + return 0; +} + +static long +nvgrace_gpu_vfio_pci_ioctl_get_region_info(struct vfio_device *core_vdev, + unsigned long arg) +{ + unsigned long minsz = offsetofend(struct vfio_region_info, offset); + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); + struct vfio_region_info_cap_sparse_mmap *sparse; + struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; + struct vfio_region_info info; + struct mem_region memregion; + uint32_t size; + int ret; + + if (copy_from_user(&info, (void __user *)arg, minsz)) + return -EFAULT; + + if (info.argsz < minsz) + return -EINVAL; + + if (nvgrace_gpu_vfio_pci_is_fake_bar(info.index)) { + ret = nvgrace_gpu_vfio_pci_get_mem_region(info.index, nvdev, &memregion); + if (ret) + return ret; + /* + * Request to determine the BAR region information. Send the + * GPU memory information. + */ + size = struct_size(sparse, areas, 1); + + /* + * Setup for sparse mapping for the device memory. Only the + * available device memory on the hardware is shown as a + * mappable region. + */ + sparse = kzalloc(size, GFP_KERNEL); + if (!sparse) + return -ENOMEM; + + sparse->nr_areas = 1; + sparse->areas[0].offset = 0; + sparse->areas[0].size = memregion.memlength; + sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; + sparse->header.version = 1; + + ret = vfio_info_add_capability(&caps, &sparse->header, size); + kfree(sparse); + if (ret) + return ret; + + info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); + /* + * The region memory size may not be power-of-2 aligned. + * Given that the memory as a BAR and may not be + * aligned, roundup to the next power-of-2. + */ + info.size = roundup_pow_of_two(memregion.memlength); + info.flags = VFIO_REGION_INFO_FLAG_READ | + VFIO_REGION_INFO_FLAG_WRITE | + VFIO_REGION_INFO_FLAG_MMAP; + + if (caps.size) { + info.flags |= VFIO_REGION_INFO_FLAG_CAPS; + if (info.argsz < sizeof(info) + caps.size) { + info.argsz = sizeof(info) + caps.size; + info.cap_offset = 0; + } else { + vfio_info_cap_shift(&caps, sizeof(info)); + if (copy_to_user((void __user *)arg + + sizeof(info), caps.buf, + caps.size)) { + kfree(caps.buf); + return -EFAULT; + } + info.cap_offset = sizeof(info); + } + kfree(caps.buf); + } + return copy_to_user((void __user *)arg, &info, minsz) ? + -EFAULT : 0; + } + return vfio_pci_core_ioctl(core_vdev, VFIO_DEVICE_GET_REGION_INFO, arg); +} + +static long nvgrace_gpu_vfio_pci_ioctl(struct vfio_device *core_vdev, + unsigned int cmd, unsigned long arg) +{ + if (cmd == VFIO_DEVICE_GET_REGION_INFO) + return nvgrace_gpu_vfio_pci_ioctl_get_region_info(core_vdev, arg); + + if (cmd == VFIO_DEVICE_RESET) + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); + + return vfio_pci_core_ioctl(core_vdev, cmd, arg); +} + +/* + * Check whether the given range of offset is within the expected + * boundary. + */ +static bool +range_within_boundary(loff_t boundary_start, loff_t boundary_end, + loff_t range_start, loff_t range_end) +{ + if (boundary_start <= range_start && + boundary_end >= range_end) { + return true; + } + return false; +} + +/* + * Both the usable (usemem) and the reserved (resmem) device memory region + * are exposed as a 64b fake BARs in the VM. These fake BARs must respond + * to the accesses on their respective PCI config space offsets. + * + * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3. + * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5. + */ + +/* + * Return the pointer to the desired location within the appropriate + * emulated register. + * + * First find the emulated register based on the accessed PCI config + * offset. Then traverse to the appropriate location within the + * register (applicable for sub-word size access). + */ +static u8 * +register_ref(struct nvgrace_gpu_vfio_pci_core_device *nvdev, u64 start, u64 end) +{ + u8 *reg_ref = NULL; + + if (range_within_boundary(PCI_BASE_ADDRESS_5, + PCI_CARDBUS_CIS, start, end)) { + reg_ref = (u8 *) &(nvdev->usemem.bar_reg.u32_reg[1]); + reg_ref += start - PCI_BASE_ADDRESS_5; + } else if (range_within_boundary(PCI_BASE_ADDRESS_4, + PCI_BASE_ADDRESS_5, start, end)) { + reg_ref = (u8 *) &(nvdev->usemem.bar_reg.u32_reg[0]); + reg_ref += start - PCI_BASE_ADDRESS_4; + } else if (range_within_boundary(PCI_BASE_ADDRESS_3, + PCI_BASE_ADDRESS_4, start, end)) { + reg_ref = (u8 *) &(nvdev->resmem.bar_reg.u32_reg[1]); + reg_ref += start - PCI_BASE_ADDRESS_3; + } else if (range_within_boundary(PCI_BASE_ADDRESS_2, + PCI_BASE_ADDRESS_3, start, end)) { + reg_ref = (u8 *) &(nvdev->resmem.bar_reg.u32_reg[0]); + reg_ref += start - PCI_BASE_ADDRESS_2; + } + + return reg_ref; +} + +static ssize_t +nvgrace_gpu_read_config_emu(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + char __user *buf, size_t count, loff_t *ppos) +{ + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; + __le32 val32; + u8 *reg_ref; + u32 tmp_val; + size_t bar_size; + + if (!IS_ALIGNED(pos, count)) + return -EINVAL; + + if (range_within_boundary(PCI_BASE_ADDRESS_2, + PCI_BASE_ADDRESS_4, pos, pos + count)) { + bar_size = roundup_pow_of_two(nvdev->resmem.memlength); + nvdev->resmem.bar_reg.u64_reg &= ~(bar_size - 1); + nvdev->resmem.bar_reg.u64_reg |= PCI_BASE_ADDRESS_MEM_TYPE_64 | + PCI_BASE_ADDRESS_MEM_PREFETCH; + } else { + bar_size = roundup_pow_of_two(nvdev->usemem.memlength); + nvdev->usemem.bar_reg.u64_reg &= ~(bar_size - 1); + nvdev->usemem.bar_reg.u64_reg |= PCI_BASE_ADDRESS_MEM_TYPE_64 | + PCI_BASE_ADDRESS_MEM_PREFETCH; + } + + reg_ref = register_ref(nvdev, pos, pos + count); + if (!reg_ref) + return -EINVAL; + + switch (count) { + case 1: + tmp_val = *reg_ref; + break; + case 2: + tmp_val = *((u16 *) reg_ref); + break; + case 4: + tmp_val = *((u32 *) reg_ref); + break; + } + + val32 = cpu_to_le32(tmp_val); + + if (copy_to_user(buf, &val32, count)) + return -EFAULT; + + *ppos += count; + + return count; +} + +static ssize_t +nvgrace_gpu_write_config_emu(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + const char __user *buf, size_t count, loff_t *ppos) +{ + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; + u8 *reg_ref; + __le32 val; + u32 tmp_val; + + if (!IS_ALIGNED(pos, count)) + return -EINVAL; + + if (copy_from_user(&val, buf, count)) + return -EFAULT; + + reg_ref = register_ref(nvdev, pos, pos + count); + if (!reg_ref) + return -EINVAL; + + tmp_val = le32_to_cpu(val); + + switch (count) { + case 1: + *reg_ref = tmp_val; + break; + case 2: + *((u16 *) reg_ref) = tmp_val; + break; + case 4: + *((u32 *) reg_ref) = tmp_val; + break; + } + + *ppos += count; + return count; +} + +/* + * Ad hoc map the device memory in the module kernel VA space. Primarily needed + * to support Qemu's device x-no-mmap=on option. + * + * The usemem region is cacheable memory and hence is memremaped. + * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC). + */ +static int +nvgrace_gpu_map_device_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + int index) +{ + mutex_lock(&nvdev->remap_lock); + if (index == VFIO_PCI_BAR4_REGION_INDEX && + !nvdev->usemem.bar_remap.memaddr) { + nvdev->usemem.bar_remap.memaddr + = memremap(nvdev->usemem.memphys, nvdev->usemem.memlength, MEMREMAP_WB); + if (!nvdev->usemem.bar_remap.memaddr) { + mutex_unlock(&nvdev->remap_lock); + return -ENOMEM; + } + } else if (index == VFIO_PCI_BAR2_REGION_INDEX && + !nvdev->resmem.bar_remap.ioaddr) { + nvdev->resmem.bar_remap.ioaddr + = ioremap_wc(nvdev->resmem.memphys, nvdev->resmem.memlength); + if (!nvdev->resmem.bar_remap.ioaddr) { + mutex_unlock(&nvdev->remap_lock); + return -ENOMEM; + } + } + mutex_unlock(&nvdev->remap_lock); + + return 0; +} + +static ssize_t +nvgrace_gpu_read_mmio(struct mem_region *region, + char __user *buf, size_t count, + loff_t offset) +{ + unsigned int read = 0; + + while (count) { + size_t filled; + + if (count >= 4 && !(offset % 4)) { + u32 val; + + val = ioread32(region->bar_remap.ioaddr + offset); + if (copy_to_user(buf, &val, 4)) + goto read_mmio_exit; + + filled = 4; + } else if (count >= 2 && !(offset % 2)) { + u16 val; + + val = ioread16(region->bar_remap.ioaddr + offset); + if (copy_to_user(buf, &val, 2)) + goto read_mmio_exit; + + filled = 2; + } else { + u8 val; + + val = ioread8(region->bar_remap.ioaddr + offset); + if (copy_to_user(buf, &val, 1)) + goto read_mmio_exit; + + filled = 1; + } + + count -= filled; + read += filled; + offset += filled; + buf += filled; + } + return read; + +read_mmio_exit: + return -EFAULT; +} + +/* + * Read the data from the device memory (mapped either through ioremap + * or memremap) into the user buffer. + */ +static int +nvgrace_gpu_map_and_read(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + void __user *buf, size_t mem_count, loff_t *ppos) +{ + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; + int ret = 0; + + /* + * Handle read on the BAR regions. Map to the target device memory + * physical address and copy to the request read buffer. + */ + ret = nvgrace_gpu_map_device_mem(nvdev, index); + if (ret) + goto read_exit; + + if (index == VFIO_PCI_BAR4_REGION_INDEX) { + if (copy_to_user(buf, (u8 *)nvdev->usemem.bar_remap.memaddr + offset, mem_count)) + ret = -EFAULT; + } else + return nvgrace_gpu_read_mmio(&(nvdev->resmem), buf, mem_count, offset); + +read_exit: + return ret; +} + +/* + * Read count bytes from the device memory at an offset. The actual device + * memory size (available) may not be a power-of-2. So the driver fakes + * the size to a power-of-2 (reported) when exposing to a user space driver. + * + * Read request beyond the actual device size is filled with ~0, while + * those beyond the actual reported size is skipped. + * + * A read from a negative or an offset greater than reported size, a negative + * count are considered error conditions and returned with an -EINVAL. + */ +static ssize_t +nvgrace_gpu_read_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + void __user *buf, size_t count, loff_t *ppos) +{ + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + struct mem_region memregion; + size_t mem_count, i, bar_size; + u8 val = 0xFF; + int ret; + + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); + if (ret) + return ret; + + bar_size = roundup_pow_of_two(memregion.memlength); + + if (offset >= bar_size) + return -EINVAL; + + /* Clip short the read request beyond reported BAR size */ + count = min(count, bar_size - (size_t)offset); + + /* + * Determine how many bytes to be actually read from the device memory. + * Read request beyond the actual device memory size is filled with ~0, + * while those beyond the actual reported size is skipped. + */ + if (offset >= memregion.memlength) + mem_count = 0; + else + mem_count = min(count, memregion.memlength - (size_t)offset); + + ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos); + if (ret) + return ret; + + /* + * Only the device memory present on the hardware is mapped, which may + * not be power-of-2 aligned. A read to an offset beyond the device memory + * size is filled with ~0. + */ + for (i = mem_count; i < count; i++) + put_user(val, (unsigned char __user *)(buf + i)); + + *ppos += count; + return count; +} + +static ssize_t +nvgrace_gpu_vfio_pci_read(struct vfio_device *core_vdev, + char __user *buf, size_t count, loff_t *ppos) +{ + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, + core_device.vdev); + + if (nvgrace_gpu_vfio_pci_is_fake_bar(index)) + return nvgrace_gpu_read_mem(nvdev, buf, count, ppos); + + if ((index == VFIO_PCI_CONFIG_REGION_INDEX) && + (range_within_boundary(PCI_BASE_ADDRESS_2, + PCI_CARDBUS_CIS, pos, pos + count))) { + return nvgrace_gpu_read_config_emu(nvdev, buf, count, ppos); + } + + return vfio_pci_core_read(core_vdev, buf, count, ppos); +} + +static ssize_t +nvgrace_gpu_write_mmio(struct mem_region *region, + const char __user *buf, size_t count, + loff_t offset) +{ + unsigned int write = 0; + + while (count) { + size_t filled; + + if (count >= 4 && !(offset % 4)) { + u32 val; + + if (copy_from_user(&val, buf, 4)) + goto write_mmio_exit; + iowrite32(val, region->bar_remap.ioaddr + offset); + + filled = 4; + } else if (count >= 2 && !(offset % 2)) { + u16 val; + + if (copy_from_user(&val, buf, 2)) + goto write_mmio_exit; + iowrite16(val, region->bar_remap.ioaddr + offset); + + filled = 2; + } else { + u8 val; + + if (copy_from_user(&val, buf, 1)) + goto write_mmio_exit; + iowrite8(val, region->bar_remap.ioaddr + offset); + + filled = 1; + } + + count -= filled; + write += filled; + offset += filled; + buf += filled; + } + + return write; + +write_mmio_exit: + return -EFAULT; +} + +/* + * Write the data to the device memory (mapped either through ioremap + * or memremap) from the user buffer. + */ +static int +nvgrace_gpu_map_and_write(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + const void __user *buf, size_t mem_count, loff_t *ppos) +{ + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; + int ret = 0; + + ret = nvgrace_gpu_map_device_mem(nvdev, index); + if (ret) + goto write_exit; + + if (index == VFIO_PCI_BAR4_REGION_INDEX) { + if (copy_from_user((u8 *)nvdev->usemem.bar_remap.memaddr + offset, buf, mem_count)) + return -EFAULT; + } else + return nvgrace_gpu_write_mmio(&(nvdev->resmem), buf, mem_count, offset); + +write_exit: + return ret; +} + +/* + * Write count bytes to the device memory at a given offset. The actual device + * memory size (available) may not be a power-of-2. So the driver fakes the + * size to a power-of-2 (reported) when exposing to a user space driver. + * + * Write request beyond the actual device size are dropped, while those + * beyond the actual reported size are skipped entirely. + * + * A write to a negative or an offset greater than the reported size, a + * negative count are considered error conditions and returned with an -EINVAL. + */ +static ssize_t +nvgrace_gpu_write_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, + size_t count, loff_t *ppos, const void __user *buf) +{ + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + struct mem_region memregion; + size_t mem_count, bar_size; + int ret = 0; + + ret = nvgrace_gpu_vfio_pci_get_mem_region(index, nvdev, &memregion); + if (ret) + return ret; + + bar_size = roundup_pow_of_two(memregion.memlength); + + if (offset >= bar_size) + return -EINVAL; + + /* Clip short the write request beyond reported BAR size */ + count = min(count, bar_size - (size_t)offset); + + /* + * Determine how many bytes to be actually written to the device memory. + * Do not write to the offset beyond available size. + */ + if (offset >= memregion.memlength) + goto exitfn; + + /* + * Only the device memory present on the hardware is mapped, which may + * not be power-of-2 aligned. Drop access outside the available device + * memory on the hardware. + */ + mem_count = min(count, memregion.memlength - (size_t)offset); + + ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos); + if (ret) + return ret; + +exitfn: + *ppos += count; + return count; +} + +static ssize_t +nvgrace_gpu_vfio_pci_write(struct vfio_device *core_vdev, + const char __user *buf, size_t count, loff_t *ppos) +{ + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; + struct nvgrace_gpu_vfio_pci_core_device *nvdev = container_of( + core_vdev, struct nvgrace_gpu_vfio_pci_core_device, core_device.vdev); + + if (nvgrace_gpu_vfio_pci_is_fake_bar(index)) + return nvgrace_gpu_write_mem(nvdev, count, ppos, buf); + + if ((index == VFIO_PCI_CONFIG_REGION_INDEX) && + (range_within_boundary(PCI_BASE_ADDRESS_2, + PCI_CARDBUS_CIS, pos, pos + count))) { + return nvgrace_gpu_write_config_emu(nvdev, buf, count, ppos); + } + + return vfio_pci_core_write(core_vdev, buf, count, ppos); +} + +static const struct vfio_device_ops nvgrace_gpu_vfio_pci_ops = { + .name = "nvgrace-gpu-vfio-pci", + .init = vfio_pci_core_init_dev, + .release = vfio_pci_core_release_dev, + .open_device = nvgrace_gpu_vfio_pci_open_device, + .close_device = nvgrace_gpu_vfio_pci_close_device, + .ioctl = nvgrace_gpu_vfio_pci_ioctl, + .read = nvgrace_gpu_vfio_pci_read, + .write = nvgrace_gpu_vfio_pci_write, + .mmap = nvgrace_gpu_vfio_pci_mmap, + .request = vfio_pci_core_request, + .match = vfio_pci_core_match, + .bind_iommufd = vfio_iommufd_physical_bind, + .unbind_iommufd = vfio_iommufd_physical_unbind, + .attach_ioas = vfio_iommufd_physical_attach_ioas, + .detach_ioas = vfio_iommufd_physical_detach_ioas, +}; + +static struct +nvgrace_gpu_vfio_pci_core_device *nvgrace_gpu_drvdata(struct pci_dev *pdev) +{ + struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev); + + return container_of(core_device, struct nvgrace_gpu_vfio_pci_core_device, + core_device); +} + +static int +nvgrace_gpu_vfio_pci_fetch_memory_property(struct pci_dev *pdev, + struct nvgrace_gpu_vfio_pci_core_device *nvdev) +{ + int ret; + u64 memphys, memlength; + + /* + * The memory information is present in the system ACPI tables as DSD + * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size. + */ + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa", + &(memphys)); + if (ret) + return ret; + + if (memphys > type_max(phys_addr_t)) + return -EOVERFLOW; + + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size", + &(memlength)); + if (ret) + return ret; + + if (memlength > type_max(size_t)) + return -EOVERFLOW; + + /* + * If the C2C link is not up due to an error, the coherent device + * memory size is returned as 0. Fail in such case. + */ + if (memlength == 0) + return -ENOMEM; + + /* + * The VM GPU device driver needs a non-cacheable region to support + * the MIG feature. Since the device memory is mapped as NORMAL cached, + * carve out a region from the end with a different NORMAL_NC + * property (called as reserved memory and represented as resmem). This + * region then is exposed as a 64b BAR (region 2 and 3) to the VM, while + * exposing the rest (termed as usable memory and represented using usemem) + * as cacheable 64b BAR (region 4 and 5). + * + * devmem (memlength) + * |-------------------------------------------------| + * | | + * usemem.phys/memphys resmem.phys + */ + nvdev->usemem.memphys = memphys; + + /* + * The device memory exposed to the VM is added to the kernel by the + * VM driver module in chunks of memory block size. Only the usable + * memory (usemem) is added to the kernel for usage by the VM + * workloads. Make the usable memory size memblock aligned. + */ + if (check_sub_overflow(memlength, RESMEM_SIZE, + &nvdev->usemem.memlength)) { + ret = -EOVERFLOW; + goto done; + } + nvdev->usemem.memlength = round_down(nvdev->usemem.memlength, + MEMBLK_SIZE); + if ((check_add_overflow(nvdev->usemem.memphys, + nvdev->usemem.memlength, &nvdev->resmem.memphys)) || + (check_sub_overflow(memlength, nvdev->usemem.memlength, + &nvdev->resmem.memlength))) { + ret = -EOVERFLOW; + goto done; + } + +done: + return ret; +} + +static int nvgrace_gpu_vfio_pci_probe(struct pci_dev *pdev, + const struct pci_device_id *id) +{ + struct nvgrace_gpu_vfio_pci_core_device *nvdev; + int ret; + + nvdev = vfio_alloc_device(nvgrace_gpu_vfio_pci_core_device, core_device.vdev, + &pdev->dev, &nvgrace_gpu_vfio_pci_ops); + if (IS_ERR(nvdev)) + return PTR_ERR(nvdev); + + dev_set_drvdata(&pdev->dev, nvdev); + + ret = nvgrace_gpu_vfio_pci_fetch_memory_property(pdev, nvdev); + if (ret) + goto out_put_vdev; + + ret = vfio_pci_core_register_device(&nvdev->core_device); + if (ret) + goto out_put_vdev; + + return ret; + +out_put_vdev: + vfio_put_device(&nvdev->core_device.vdev); + return ret; +} + +static void nvgrace_gpu_vfio_pci_remove(struct pci_dev *pdev) +{ + struct nvgrace_gpu_vfio_pci_core_device *nvdev = nvgrace_gpu_drvdata(pdev); + struct vfio_pci_core_device *vdev = &nvdev->core_device; + + vfio_pci_core_unregister_device(vdev); + vfio_put_device(&vdev->vdev); +} + +static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = { + /* GH200 120GB */ + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) }, + /* GH200 480GB */ + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) }, + {} +}; + +MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table); + +static struct pci_driver nvgrace_gpu_vfio_pci_driver = { + .name = KBUILD_MODNAME, + .id_table = nvgrace_gpu_vfio_pci_table, + .probe = nvgrace_gpu_vfio_pci_probe, + .remove = nvgrace_gpu_vfio_pci_remove, + .err_handler = &vfio_pci_core_err_handlers, + .driver_managed_dma = true, +}; + +module_pci_driver(nvgrace_gpu_vfio_pci_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>"); +MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>"); +MODULE_DESCRIPTION( + "VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");