Message ID | e77a00d1020baa178cb6a0201053b66cb27c39a9.1718749981.git.marcelo.schmitt@analog.com (mailing list archive) |
---|---|
State | Superseded |
Headers | show |
Series | Add support for AD4000 series of ADCs | expand |
On 6/18/24 6:12 PM, Marcelo Schmitt wrote: > Add support for AD4000 series of low noise, low power, high speed, > successive aproximation register (SAR) ADCs. spelling: approximation Probably also worth mentioning ADAQ here too. > > Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> > --- ... > diff --git a/drivers/iio/adc/ad4000.c b/drivers/iio/adc/ad4000.c > new file mode 100644 > index 000000000000..310f81a2a1d9 > --- /dev/null > +++ b/drivers/iio/adc/ad4000.c > @@ -0,0 +1,715 @@ > +// SPDX-License-Identifier: GPL-2.0+ > +/* > + * AD4000 SPI ADC driver > + * > + * Copyright 2024 Analog Devices Inc. Would be handy to have links to the datasheets here too. > + */ > +#include <asm/unaligned.h> Doesn't look like this header is needed. > +#include <linux/bits.h> > +#include <linux/bitfield.h> > +#include <linux/device.h> > +#include <linux/err.h> > +#include <linux/kernel.h> Or this one. > +#include <linux/math.h> > +#include <linux/module.h> > +#include <linux/mod_devicetable.h> > +#include <linux/gpio/consumer.h> > +#include <linux/regulator/consumer.h> > +#include <linux/spi/spi.h> > +#include <linux/sysfs.h> Or this one. > +#include <linux/units.h> > +#include <linux/util_macros.h> I would put a blank line here or keep iio/* in alphabetical order with the rest. > +#include <linux/iio/iio.h> > +#include <linux/iio/sysfs.h> Not used? > +#include <linux/iio/buffer.h> > +#include <linux/iio/triggered_buffer.h> > +#include <linux/iio/trigger_consumer.h> > + > +#define AD4000_READ_COMMAND 0x54 > +#define AD4000_WRITE_COMMAND 0x14 > + > +#define AD4000_CONFIG_REG_DEFAULT 0xE1 > + > +/* AD4000 Configuration Register programmable bits */ > +#define AD4000_CFG_STATUS BIT(4) /* Status bits output */ > +#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ > +#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ > +#define AD4000_CFG_TURBO BIT(1) /* Turbo mode */> + > +#define AD4000_TQUIET1_NS 190 > +#define AD4000_TQUIET2_NS 60 > +#define AD4000_TCONV_NS 320 > + > +#define AD4000_18BIT_MSK GENMASK(31, 14) > +#define AD4000_20BIT_MSK GENMASK(31, 12) > + > +#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ _3wire isn't very clear what the intention is. _can_write_reg is what we really mean, right? It is still technically possible to have a 3-wire mode where we can't write registers because the SPI controller doesn't support MOSI idle high or MOSI isn't wired up at all. So even if the driver doesn't currently support this, saying that _3wire implies that we can write registers still seems misleading. > +{ \ > + .type = IIO_VOLTAGE, \ > + .indexed = 1, \ > + .differential = 1, \ > + .channel = 0, \ > + .channel2 = 1, \ > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ > + BIT(IIO_CHAN_INFO_SCALE), \> + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ > + .scan_type = { \ > + .sign = _sign, \ > + .realbits = _real_bits, \ > + .storagebits = _real_bits > 16 ? 32 : 16, \ > + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ > + .endianness = IIO_BE, \ > + }, \ > +} > + > +#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ > +{ \ > + .type = IIO_VOLTAGE, \ > + .indexed = 1, \ > + .channel = 0, \ > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ > + BIT(IIO_CHAN_INFO_SCALE) | \ > + BIT(IIO_CHAN_INFO_OFFSET), \> + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ > + .scan_type = { \ > + .sign = _sign, \ > + .realbits = _real_bits, \ > + .storagebits = _real_bits > 16 ? 32 : 16, \ > + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ > + .endianness = IIO_BE, \ > + }, \ > +} > + > +enum ad4000_spi_mode { > + /* datasheet calls this "4-wire mode" (controller CS goes to ADC SDI!) */ > + AD4000_SPI_MODE_DEFAULT, > + /* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */ > + AD4000_SPI_MODE_SINGLE,> +}; > + > +/* maps adi,spi-mode property value to enum */ > +static const char * const ad4000_spi_modes[] = { > + [AD4000_SPI_MODE_DEFAULT] = "", > + [AD4000_SPI_MODE_SINGLE] = "single", > +}; > + > +struct ad4000_chip_info { > + const char *dev_name; > + struct iio_chan_spec chan_spec; > + struct iio_chan_spec three_w_chan_spec; > +}; I understand the reason for doing this, but it still seems a bit weird to me to have two different sets of specs for the same chip. I guess we'll see what Jonathan has to say about this. > + > +static const struct ad4000_chip_info ad4000_chip_info = { > + .dev_name = "ad4000", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), > +}; > + > +static const struct ad4000_chip_info ad4001_chip_info = { > + .dev_name = "ad4001", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), > +}; > + > +static const struct ad4000_chip_info ad4002_chip_info = { > + .dev_name = "ad4002", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4003_chip_info = { > + .dev_name = "ad4003", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4004_chip_info = { > + .dev_name = "ad4004", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), > +}; > + > +static const struct ad4000_chip_info ad4005_chip_info = { > + .dev_name = "ad4005", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), > +}; > + > +static const struct ad4000_chip_info ad4006_chip_info = { > + .dev_name = "ad4006", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4007_chip_info = { > + .dev_name = "ad4007", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4008_chip_info = { > + .dev_name = "ad4008", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), > +}; > + > +static const struct ad4000_chip_info ad4010_chip_info = { > + .dev_name = "ad4010", > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4011_chip_info = { > + .dev_name = "ad4011", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), > +}; > + > +static const struct ad4000_chip_info ad4020_chip_info = { > + .dev_name = "ad4020", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), > +}; > + > +static const struct ad4000_chip_info ad4021_chip_info = { > + .dev_name = "ad4021", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), > +}; > + > +static const struct ad4000_chip_info ad4022_chip_info = { > + .dev_name = "ad4022", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), > +}; > + > +static const struct ad4000_chip_info adaq4001_chip_info = { > + .dev_name = "adaq4001", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), > +}; > + > +static const struct ad4000_chip_info adaq4003_chip_info = { > + .dev_name = "adaq4003", > + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), > + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), > +}; > + > +struct ad4000_state { > + struct spi_device *spi; > + struct gpio_desc *cnv_gpio; > + struct spi_transfer xfers[2]; > + struct spi_message msg; > + int vref_mv; > + enum ad4000_spi_mode spi_mode; > + bool span_comp; > + bool turbo_mode; > + u16 gain_milli; > + int scale_tbl[2][2]; > + > + /* > + * DMA (thus cache coherency maintenance) requires the > + * transfer buffers to live in their own cache lines. > + */ > + struct { > + union { > + __be16 sample_buf16; > + __be32 sample_buf32; > + } data; > + s64 timestamp __aligned(8); > + } scan __aligned(IIO_DMA_MINALIGN); > + __be16 tx_buf; > + __be16 rx_buf; > +}; > + > +static void ad4000_fill_scale_tbl(struct ad4000_state *st, > + struct iio_chan_spec const *chan) > +{ > + int val, tmp0, tmp1; > + int scale_bits; > + u64 tmp2; > + > + /* > + * ADCs that output two's complement code have one less bit to express > + * voltage magnitude. > + */ > + if (chan->scan_type.sign == 's') > + scale_bits = chan->scan_type.realbits - 1; > + else > + scale_bits = chan->scan_type.realbits; > + > + /* > + * The gain is stored as a fraction of 1000 and, as we need to > + * divide vref_mv by the gain, we invert the gain/1000 fraction. > + * Also multiply by an extra MILLI to preserve precision. > + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator. > + */ > + val = mult_frac(st->vref_mv, MICRO, st->gain_milli); > + /* Would multiply by NANO here but we multiplied by extra MILLI */ > + tmp2 = shift_right((u64)val * MICRO, scale_bits); > + tmp0 = div_s64_rem(tmp2, NANO, &tmp1); > + /* Store scale for when span compression is disabled */ > + st->scale_tbl[0][0] = tmp0; /* Integer part */ > + st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */ > + /* Store scale for when span compression is enabled */ > + st->scale_tbl[1][0] = tmp0; > + /* The integer part is always zero so don't bother to divide it. */ > + if (chan->differential) > + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5); > + else > + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10); > +} > + > +static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) > +{ > + st->tx_buf = cpu_to_be16(AD4000_WRITE_COMMAND << BITS_PER_BYTE | val); Seems like a complicated way of writing: st->tx_buf[0] = AD4000_WRITE_COMMAND; st->tx_buf[1] = val; (tx_buf would of course have to be changed to `u8 tx_buf[2]`) > + return spi_write(st->spi, &st->tx_buf, sizeof(st->tx_buf)); > +} > + > +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) > +{ > + struct spi_transfer t[] = { > + { > + .tx_buf = &st->tx_buf, > + .rx_buf = &st->rx_buf, > + .len = 2, > + }, > + }; Don't need array for one item. > + int ret; > + > + st->tx_buf = cpu_to_be16(AD4000_READ_COMMAND << BITS_PER_BYTE); > + ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); > + if (ret < 0) > + return ret; > + > + *val = be16_to_cpu(st->rx_buf); This doesn't mask out the "don't care" bits. This could just be: *val = st->rx_buf[1]; (rx_buf would of course have to be changed to `u8 rx_buf[2]`) ... or could just replace all of this this will spi_w8r8() and have a one-line function. > + > + return ret; > +} > + > +static void ad4000_unoptimize_msg(void *msg) > +{ > + spi_unoptimize_message(msg); > +} > + > +/* > + * This executes a data sample transfer for when the device connections are > + * in "3-wire" mode, selected by setting the adi,spi-mode device tree property > + * to "single". In this connection mode, the ADC SDI pin is connected to MOSI or > + * to VIO and ADC CNV pin is connected either to a SPI controller CS or to a GPIO. > + * AD4000 series of devices initiate conversions on the rising edge of CNV pin. > + * > + * If the CNV pin is connected to an SPI controller CS line (which is by default > + * active low), the ADC readings would have a latency (delay) of one read. > + * Moreover, since we also do ADC sampling for filling the buffer on triggered > + * buffer mode, the timestamps of buffer readings would be disarranged. > + * To prevent the read latency and reduce the time discrepancy between the > + * sample read request and the time of actual sampling by the ADC, do a > + * preparatory transfer to pulse the CS/CNV line. > + */ > +static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st, > + const struct iio_chan_spec *chan) > +{ > + unsigned int cnv_pulse_time = st->turbo_mode ? AD4000_TQUIET1_NS > + : AD4000_TCONV_NS; > + struct spi_transfer *xfers = st->xfers; > + int ret; > + > + xfers[0].cs_change = 1;> + xfers[0].cs_change_delay.value = cnv_pulse_time; > + xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; > + > + xfers[1].rx_buf = &st->scan.data; > + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); Do we really need to read 32-bits for 18-bit data? It seems like we could get away with reading 3 bytes. > + xfers[1].delay.value = AD4000_TQUIET2_NS; > + xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS; > + > + spi_message_init_with_transfers(&st->msg, st->xfers, 2); > + > + ret = spi_optimize_message(st->spi, &st->msg); > + if (ret) > + return ret; > + > + return devm_add_action_or_reset(&st->spi->dev, ad4000_unoptimize_msg, > + &st->msg); > +} > + > +/* > + * This executes a data sample transfer for when the device connections are > + * in "4-wire" mode, selected when the adi,spi-mode device tree > + * property is absent or empty. In this connection mode, the controller CS pin > + * is connected to ADC SDI pin and a GPIO is connected to ADC CNV pin. > + * The GPIO connected to ADC CNV pin is set outside of the SPI transfer. > + */ > +static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st, > + const struct iio_chan_spec *chan) > +{ > + unsigned int cnv_to_sdi_time = st->turbo_mode ? AD4000_TQUIET1_NS > + : AD4000_TCONV_NS; > + struct spi_transfer *xfers = st->xfers; > + int ret; > + > + /* > + * Dummy transfer to cause enough delay between CNV going high and SDI > + * going low. > + */ > + xfers[0].cs_off = 1; > + xfers[0].delay.value = cnv_to_sdi_time; > + xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS; > + > + xfers[1].rx_buf = &st->scan.data; > + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); > + > + spi_message_init_with_transfers(&st->msg, st->xfers, 2); > + > + ret = spi_optimize_message(st->spi, &st->msg); > + if (ret) > + return ret; > + > + return devm_add_action_or_reset(&st->spi->dev, ad4000_unoptimize_msg, > + &st->msg); > +} > + > +static int ad4000_convert_and_acquire(struct ad4000_state *st) > +{ > + int ret; > + > + /* > + * In 4-wire mode, the CNV line is held high for the entire conversion > + * and acquisition process. In other modes, the CNV GPIO is optional > + * and, if provided, replaces controller CS. If CNV GPIO is not defined > + * gpiod_set_value_cansleep() has no effect. > + */ > + gpiod_set_value_cansleep(st->cnv_gpio, 1); > + ret = spi_sync(st->spi, &st->msg); > + gpiod_set_value_cansleep(st->cnv_gpio, 0); > + > + return ret; > +} > + > +static int ad4000_single_conversion(struct iio_dev *indio_dev, > + const struct iio_chan_spec *chan, int *val) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + u32 sample; > + int ret; > + > + ret = ad4000_convert_and_acquire(st); > + if (ret < 0) > + return ret; > + > + if (chan->scan_type.storagebits > 16) > + sample = be32_to_cpu(st->scan.data.sample_buf32); > + else > + sample = be16_to_cpu(st->scan.data.sample_buf16); > + > + switch (chan->scan_type.realbits) { > + case 16: > + break; > + case 18: > + sample = FIELD_GET(AD4000_18BIT_MSK, sample); > + break; > + case 20: > + sample = FIELD_GET(AD4000_20BIT_MSK, sample); > + break; > + default: > + return -EINVAL; > + } Could we use scan_type.shift here instead of the switch statement? > + > + if (chan->scan_type.sign == 's') > + *val = sign_extend32(sample, chan->scan_type.realbits - 1); > + > + return IIO_VAL_INT; > +} > + > +static int ad4000_read_raw(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, int *val, > + int *val2, long info) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + > + switch (info) { > + case IIO_CHAN_INFO_RAW: > + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) > + return ad4000_single_conversion(indio_dev, chan, val); > + unreachable(); > + case IIO_CHAN_INFO_SCALE: > + *val = st->scale_tbl[st->span_comp][0]; > + *val2 = st->scale_tbl[st->span_comp][1]; > + return IIO_VAL_INT_PLUS_NANO; > + case IIO_CHAN_INFO_OFFSET: > + *val = 0; > + if (st->span_comp) > + *val = mult_frac(st->vref_mv, 1, 10); > + > + return IIO_VAL_INT; > + default: > + return -EINVAL; > + } > +} > + > +static int ad4000_read_avail(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, > + const int **vals, int *type, int *length, > + long info) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + > + switch (info) { > + case IIO_CHAN_INFO_SCALE: > + *vals = (int *)st->scale_tbl; > + *length = 2 * 2; > + *type = IIO_VAL_INT_PLUS_NANO; > + return IIO_AVAIL_LIST; > + default: > + return -EINVAL; > + } > +} > + > +static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, long mask) > +{ > + switch (mask) { > + case IIO_CHAN_INFO_SCALE: > + return IIO_VAL_INT_PLUS_NANO; > + default: > + return IIO_VAL_INT_PLUS_MICRO; > + } > +} > + > +static int ad4000_write_raw(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, int val, int val2, > + long mask) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + unsigned int reg_val; > + bool span_comp_en; > + int ret; > + > + switch (mask) { > + case IIO_CHAN_INFO_SCALE:> + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { > + ret = ad4000_read_reg(st, ®_val); > + if (ret < 0) > + return ret; > + > + span_comp_en = val2 == st->scale_tbl[1][1]; > + reg_val &= ~AD4000_CFG_SPAN_COMP; > + reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); > + > + ret = ad4000_write_reg(st, reg_val); > + if (ret < 0) > + return ret; > + > + st->span_comp = span_comp_en; > + return 0; > + } > + unreachable(); > + default: > + return -EINVAL; > + } > +} > + > +static irqreturn_t ad4000_trigger_handler(int irq, void *p) > +{ > + struct iio_poll_func *pf = p; > + struct iio_dev *indio_dev = pf->indio_dev; > + struct ad4000_state *st = iio_priv(indio_dev); > + int ret; > + > + ret = ad4000_convert_and_acquire(st); > + if (ret < 0) > + goto err_out; > + > + iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, > + iio_get_time_ns(indio_dev)); We specified iio_pollfunc_store_time, so we should use pf->timestamp here. > + > +err_out: > + iio_trigger_notify_done(indio_dev->trig); > + return IRQ_HANDLED; > +} > + > +static const struct iio_info ad4000_3wire_info = { > + .read_raw = &ad4000_read_raw, > + .read_avail = &ad4000_read_avail, > + .write_raw = &ad4000_write_raw, > + .write_raw_get_fmt = &ad4000_write_raw_get_fmt, > + > +}; > + > +static const struct iio_info ad4000_info = { > + .read_raw = &ad4000_read_raw, > +}; > + > +static int ad4000_config(struct ad4000_state *st) > +{> + unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT; > + > + if (device_property_present(&st->spi->dev, "adi,high-z-input")) > + reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1);> + > + return ad4000_write_reg(st, reg_val); > +} > + > +static int ad4000_probe(struct spi_device *spi) > +{ > + const struct ad4000_chip_info *chip; > + struct iio_dev *indio_dev; > + struct ad4000_state *st; > + int ret; > + > + indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); > + if (!indio_dev) > + return -ENOMEM; > + > + chip = spi_get_device_match_data(spi); > + if (!chip) > + return -EINVAL; > + > + st = iio_priv(indio_dev); > + st->spi = spi; > + > + ret = devm_regulator_get_enable(&spi->dev, "vdd"); > + if (ret) > + return dev_err_probe(&spi->dev, ret, "Failed to enable VDD supply\n"); > + > + ret = devm_regulator_get_enable(&spi->dev, "vio"); > + if (ret) > + return dev_err_probe(&spi->dev, ret, "Failed to enable VIO supply\n"); > + > + st->vref_mv = devm_regulator_get_enable_read_voltage(&spi->dev, "ref"); ret = devm_regulator_get_enable_read_voltage(&spi->dev, "ref"); > + if (ret < 0) > + return dev_err_probe(&spi->dev, st->vref_mv, return dev_err_probe(&spi->dev, ret, > + "Failed to get ref regulator reference\n"); > + st->vref_mv = st->vref_mv / 1000; st->vref_mv = ret / 1000; > + > + st->cnv_gpio = devm_gpiod_get_optional(&spi->dev, "cnv", GPIOD_OUT_HIGH); > + if (IS_ERR(st->cnv_gpio)) > + return dev_err_probe(&spi->dev, PTR_ERR(st->cnv_gpio), > + "Failed to get CNV GPIO"); > + > + ret = device_property_match_property_string(&spi->dev, "adi,spi-mode", > + ad4000_spi_modes, > + ARRAY_SIZE(ad4000_spi_modes)); > + /* Default to 4-wire mode if adi,spi-mode property is not present */ > + if (ret == -EINVAL) > + st->spi_mode = AD4000_SPI_MODE_DEFAULT; > + else if (ret < 0) > + return dev_err_probe(&spi->dev, ret, > + "getting adi,spi-mode property failed\n"); > + else > + st->spi_mode = ret; Could save a few lines and avoid checkpatch warning like this: if (ret < 0 && ret != -EINVAL) return dev_err_probe(&spi->dev, ret, "getting adi,spi-mode property failed\n"); st->spi_mode = ret == -EINVAL ? AD4000_SPI_MODE_DEFAULT : ret; > + > + switch (st->spi_mode) { > + case AD4000_SPI_MODE_DEFAULT: > + indio_dev->info = &ad4000_info; > + indio_dev->channels = &chip->chan_spec; > + ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels); > + if (ret) > + return ret; > + > + break; > + case AD4000_SPI_MODE_SINGLE: > + indio_dev->info = &ad4000_3wire_info; > + indio_dev->channels = &chip->three_w_chan_spec; > + > + /* > + * In "3-wire mode", the ADC SDI line must be kept high when > + * data is not being clocked out of the controller. > + * Request the SPI controller to make MOSI idle high. > + */ > + spi->mode = SPI_MODE_0 | SPI_MOSI_IDLE_HIGH; Maybe better to make this spi->mode |= SPI_MOSI_IDLE_HIGH; and let the DT determine the other flags? > + ret = spi_setup(spi); > + if (ret < 0) > + return ret; > + > + ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); > + if (ret) > + return ret; > + > + ret = ad4000_config(st); > + if (ret < 0) > + dev_warn(&st->spi->dev, "Failed to config device\n"); > + > + break; Need a default:? Especially since chain mode is not supported. > + } > + > + indio_dev->name = chip->dev_name; > + indio_dev->num_channels = 1; > + > + /* Hardware gain only applies to ADAQ devices */ > + st->gain_milli = 1000; > + if (device_property_present(&spi->dev, "adi,gain-milli")) { > + ret = device_property_read_u16(&spi->dev, "adi,gain-milli", > + &st->gain_milli); > + if (ret) > + return dev_err_probe(&spi->dev, ret, > + "Failed to read gain property\n"); > + } > + > + ad4000_fill_scale_tbl(st, indio_dev->channels); > + > + ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, > + &iio_pollfunc_store_time, > + &ad4000_trigger_handler, NULL); > + if (ret) > + return ret; > + > + return devm_iio_device_register(&spi->dev, indio_dev); > +} > +
On Tue, 18 Jun 2024 20:12:37 -0300 Marcelo Schmitt <marcelo.schmitt@analog.com> wrote: > Add support for AD4000 series of low noise, low power, high speed, > successive aproximation register (SAR) ADCs. > > Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> Hi Marcelo, A few comments inline. Thanks, Jonathan > --- > MAINTAINERS | 1 + > drivers/iio/adc/Kconfig | 12 + > drivers/iio/adc/Makefile | 1 + > drivers/iio/adc/ad4000.c | 715 +++++++++++++++++++++++++++++++++++++++ > 4 files changed, 729 insertions(+) > create mode 100644 drivers/iio/adc/ad4000.c > diff --git a/drivers/iio/adc/ad4000.c b/drivers/iio/adc/ad4000.c > new file mode 100644 > index 000000000000..310f81a2a1d9 > --- /dev/null > +++ b/drivers/iio/adc/ad4000.c > + > +/* AD4000 Configuration Register programmable bits */ > +#define AD4000_CFG_STATUS BIT(4) /* Status bits output */ > +#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ > +#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ > +#define AD4000_CFG_TURBO BIT(1) /* Turbo mode */ > + > +#define AD4000_TQUIET1_NS 190 > +#define AD4000_TQUIET2_NS 60 > +#define AD4000_TCONV_NS 320 > + > +#define AD4000_18BIT_MSK GENMASK(31, 14) > +#define AD4000_20BIT_MSK GENMASK(31, 12) See below. These masks made me wonder what you were doing with them given everything they represent is provided by other paths. > + > +#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ > +{ \ > + .type = IIO_VOLTAGE, \ > + .indexed = 1, \ > + .differential = 1, \ > + .channel = 0, \ > + .channel2 = 1, \ > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ > + BIT(IIO_CHAN_INFO_SCALE), \ > + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ > + .scan_type = { \ > + .sign = _sign, \ > + .realbits = _real_bits, \ > + .storagebits = _real_bits > 16 ? 32 : 16, \ > + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ > + .endianness = IIO_BE, \ > + }, \ > +} > + > +#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ > +{ \ > + .type = IIO_VOLTAGE, \ > + .indexed = 1, \ > + .channel = 0, \ > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ > + BIT(IIO_CHAN_INFO_SCALE) | \ > + BIT(IIO_CHAN_INFO_OFFSET), \ > + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ > + .scan_type = { \ > + .sign = _sign, \ > + .realbits = _real_bits, \ > + .storagebits = _real_bits > 16 ? 32 : 16, \ > + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ I wonder if it's worth another level of macro so that you can compute storage bits in one place. The dance for shift then just becomes _storage_bits - _read_bits. e.g. #define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _3wire) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ .scan_type = { \ .sign = _sign, \ .realbits = _real_bits, \ .storagebits = _storage_bits, \ .shift = _storage_bits - read_bits, \ .endianness = IIO_BE, \ }, \ } #define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ __AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_read_bits), (_real_bits) > 16 ? 32 : 16, (_3wire)) > + .endianness = IIO_BE, \ > + }, \ > +} > +struct ad4000_chip_info { > + const char *dev_name; > + struct iio_chan_spec chan_spec; > + struct iio_chan_spec three_w_chan_spec; As mentioned below add > +}; > + > +struct ad4000_state { > + struct spi_device *spi; > + struct gpio_desc *cnv_gpio; > + struct spi_transfer xfers[2]; > + struct spi_message msg; > + int vref_mv; > + enum ad4000_spi_mode spi_mode; > + bool span_comp; > + bool turbo_mode; > + u16 gain_milli; > + int scale_tbl[2][2]; > + > + /* > + * DMA (thus cache coherency maintenance) requires the > + * transfer buffers to live in their own cache lines. > + */ Wrapped a bit sort. Go up to 80 chars. > + struct { > + union { > + __be16 sample_buf16; > + __be32 sample_buf32; > + } data; > + s64 timestamp __aligned(8); > + } scan __aligned(IIO_DMA_MINALIGN); > + __be16 tx_buf; > + __be16 rx_buf; As below, I think these are u8 ... > +}; > + > +static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) > +{ > + st->tx_buf = cpu_to_be16(AD4000_WRITE_COMMAND << BITS_PER_BYTE | val); Use u8 tx_buf[2] and fill the two bytes separately given one is the command and the other the data. > + return spi_write(st->spi, &st->tx_buf, sizeof(st->tx_buf)); > +} > + > +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) > +{ > + struct spi_transfer t[] = { > + { > + .tx_buf = &st->tx_buf, > + .rx_buf = &st->rx_buf, > + .len = 2, > + }, > + }; > + int ret; > + > + st->tx_buf = cpu_to_be16(AD4000_READ_COMMAND << BITS_PER_BYTE); Interesting dance. Really necessary? This looks like a classic write address byte then read register contents sequency. u8 tx = AD4000_READ_COMMAND; u8 rx; ret = spi_write_then_read(spi, tx, 1, rx, 1); if (ret < 0) return ret; *val = rx; return ret; > + ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); > + if (ret < 0) > + return ret; > + > + *val = be16_to_cpu(st->rx_buf); > + > + return ret; > +} > + > +static void ad4000_unoptimize_msg(void *msg) > +{ > + spi_unoptimize_message(msg); > +} Makes me wonder if a devm_spi_optimize_msg() would make sense... +static int ad4000_single_conversion(struct iio_dev *indio_dev, + const struct iio_chan_spec *chan, int *val) +{ + struct ad4000_state *st = iio_priv(indio_dev); + u32 sample; + int ret; + + ret = ad4000_convert_and_acquire(st); + if (ret < 0) + return ret; + + if (chan->scan_type.storagebits > 16) + sample = be32_to_cpu(st->scan.data.sample_buf32); + else + sample = be16_to_cpu(st->scan.data.sample_buf16); + I'd probably just do sample >>= chan->scan_type.shift; + switch (chan->scan_type.realbits) { + case 16: + break; + case 18: + sample = FIELD_GET(AD4000_18BIT_MSK, sample); + break; + case 20: + sample = FIELD_GET(AD4000_20BIT_MSK, sample); + break; + default: + return -EINVAL; + } + + if (chan->scan_type.sign == 's') + *val = sign_extend32(sample, chan->scan_type.realbits - 1); + + return IIO_VAL_INT; +} + > +static int ad4000_read_avail(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, > + const int **vals, int *type, int *length, > + long info) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + > + switch (info) { > + case IIO_CHAN_INFO_SCALE: > + *vals = (int *)st->scale_tbl; > + *length = 2 * 2; I'd use a define for the length of the array (of pairs) and reuse that here. > + *type = IIO_VAL_INT_PLUS_NANO; > + return IIO_AVAIL_LIST; > + default: > + return -EINVAL; > + } > +} > +static int ad4000_write_raw(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, int val, int val2, > + long mask) > +{ > + struct ad4000_state *st = iio_priv(indio_dev); > + unsigned int reg_val; > + bool span_comp_en; > + int ret; > + > + switch (mask) { > + case IIO_CHAN_INFO_SCALE: > + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { If you are going to do a read modify write cycle, you should hold a local lock to avoid races. Relying on the implementation of iio_device_claim_direct_coped() for that isn't a good idea as that may change in the future. > + ret = ad4000_read_reg(st, ®_val); > + if (ret < 0) > + return ret; > + > + span_comp_en = val2 == st->scale_tbl[1][1]; > + reg_val &= ~AD4000_CFG_SPAN_COMP; > + reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); > + > + ret = ad4000_write_reg(st, reg_val); > + if (ret < 0) > + return ret; > + > + st->span_comp = span_comp_en; > + return 0; > + } > + unreachable(); > + default: > + return -EINVAL; > + } > +} > + > +static int ad4000_probe(struct spi_device *spi) > +{ > + const struct ad4000_chip_info *chip; > + struct iio_dev *indio_dev; > + struct ad4000_state *st; > + int ret; > + > + indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); > + if (!indio_dev) > + return -ENOMEM; > + > + chip = spi_get_device_match_data(spi); > + if (!chip) > + return -EINVAL; > + > + st = iio_priv(indio_dev); > + st->spi = spi; > + > + ret = devm_regulator_get_enable(&spi->dev, "vdd"); A lot of spi->dev, I'd add a struct device *dev = spi->dev; and use that throughout. > + if (ret) > + return dev_err_probe(&spi->dev, ret, "Failed to enable VDD supply\n"); > + > ... > + indio_dev->name = chip->dev_name; > + indio_dev->num_channels = 1; > + > + /* Hardware gain only applies to ADAQ devices */ Probably best not to rely on the DT binding sanity. So I'd add a flag for support of this to your chip info structures and only try reading the property if you have an adaq. With that in place you can probably drop the comment as well as it will be easy to tell by seeing who as set st->has_hardware_gain (name up to you) > + st->gain_milli = 1000; > + if (device_property_present(&spi->dev, "adi,gain-milli")) { > + ret = device_property_read_u16(&spi->dev, "adi,gain-milli", > + &st->gain_milli); > + if (ret) > + return dev_err_probe(&spi->dev, ret, > + "Failed to read gain property\n"); > + } We are often lazy on parameters with a clear default and just do device_property_read_*() without checking the return value. That will only overwrite the output parameter it it succeeds. Otherwise we get the default you set before the call. If you prefer the more protective form I don't mind that much. > + > + ad4000_fill_scale_tbl(st, indio_dev->channels); > + > + ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, > + &iio_pollfunc_store_time, > + &ad4000_trigger_handler, NULL); > + if (ret) > + return ret; > + > + return devm_iio_device_register(&spi->dev, indio_dev); > +}
> > +struct ad4000_chip_info { > > + const char *dev_name; > > + struct iio_chan_spec chan_spec; > > + struct iio_chan_spec three_w_chan_spec; > > +}; > > I understand the reason for doing this, but it still seems a bit weird > to me to have two different sets of specs for the same chip. I guess > we'll see what Jonathan has to say about this. It's very common, though for a different reason. Normally it's for cases where we have events (threshold crossing as similar) and the interrupt is optional. In those case we have channel specs with and without the event. In this case the change is small so maybe the code to set it up on a copy of the chan spec would be fine. This is simple though so I'd keep it this way. > > > + > > +static const struct ad4000_chip_info ad4000_chip_info = { > > + .dev_name = "ad4000", > > + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), > > + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), > > +}; > > or could just replace all of this this will spi_w8r8() and have > a one-line function. Good point. I'd forgotten that existed. Better still than spi_write_then_read. Glad we spotted some of the same things. Sometimes it's weird and two reviews are entirely unrelated issues throughout! Jonathan
diff --git a/MAINTAINERS b/MAINTAINERS index 1f052b9cd912..c732cf13f511 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -1206,6 +1206,7 @@ L: linux-iio@vger.kernel.org S: Supported W: https://ez.analog.com/linux-software-drivers F: Documentation/devicetree/bindings/iio/adc/adi,ad4000.yaml +F: drivers/iio/adc/ad4000.c ANALOG DEVICES INC AD4130 DRIVER M: Cosmin Tanislav <cosmin.tanislav@analog.com> diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig index 5030319249c5..dcc49d9711a4 100644 --- a/drivers/iio/adc/Kconfig +++ b/drivers/iio/adc/Kconfig @@ -21,6 +21,18 @@ config AD_SIGMA_DELTA select IIO_BUFFER select IIO_TRIGGERED_BUFFER +config AD4000 + tristate "Analog Devices AD4000 ADC Driver" + depends on SPI + select IIO_BUFFER + select IIO_TRIGGERED_BUFFER + help + Say yes here to build support for Analog Devices AD4000 high speed + SPI analog to digital converters (ADC). + + To compile this driver as a module, choose M here: the module will be + called ad4000. + config AD4130 tristate "Analog Device AD4130 ADC Driver" depends on SPI diff --git a/drivers/iio/adc/Makefile b/drivers/iio/adc/Makefile index 37ac689a0209..c32bd0ef6128 100644 --- a/drivers/iio/adc/Makefile +++ b/drivers/iio/adc/Makefile @@ -6,6 +6,7 @@ # When adding new entries keep the list in alphabetical order obj-$(CONFIG_AB8500_GPADC) += ab8500-gpadc.o obj-$(CONFIG_AD_SIGMA_DELTA) += ad_sigma_delta.o +obj-$(CONFIG_AD4000) += ad4000.o obj-$(CONFIG_AD4130) += ad4130.o obj-$(CONFIG_AD7091R) += ad7091r-base.o obj-$(CONFIG_AD7091R5) += ad7091r5.o diff --git a/drivers/iio/adc/ad4000.c b/drivers/iio/adc/ad4000.c new file mode 100644 index 000000000000..310f81a2a1d9 --- /dev/null +++ b/drivers/iio/adc/ad4000.c @@ -0,0 +1,715 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * AD4000 SPI ADC driver + * + * Copyright 2024 Analog Devices Inc. + */ +#include <asm/unaligned.h> +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/device.h> +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/math.h> +#include <linux/module.h> +#include <linux/mod_devicetable.h> +#include <linux/gpio/consumer.h> +#include <linux/regulator/consumer.h> +#include <linux/spi/spi.h> +#include <linux/sysfs.h> +#include <linux/units.h> +#include <linux/util_macros.h> +#include <linux/iio/iio.h> +#include <linux/iio/sysfs.h> +#include <linux/iio/buffer.h> +#include <linux/iio/triggered_buffer.h> +#include <linux/iio/trigger_consumer.h> + +#define AD4000_READ_COMMAND 0x54 +#define AD4000_WRITE_COMMAND 0x14 + +#define AD4000_CONFIG_REG_DEFAULT 0xE1 + +/* AD4000 Configuration Register programmable bits */ +#define AD4000_CFG_STATUS BIT(4) /* Status bits output */ +#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ +#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ +#define AD4000_CFG_TURBO BIT(1) /* Turbo mode */ + +#define AD4000_TQUIET1_NS 190 +#define AD4000_TQUIET2_NS 60 +#define AD4000_TCONV_NS 320 + +#define AD4000_18BIT_MSK GENMASK(31, 14) +#define AD4000_20BIT_MSK GENMASK(31, 12) + +#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ +{ \ + .type = IIO_VOLTAGE, \ + .indexed = 1, \ + .differential = 1, \ + .channel = 0, \ + .channel2 = 1, \ + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ + BIT(IIO_CHAN_INFO_SCALE), \ + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ + .scan_type = { \ + .sign = _sign, \ + .realbits = _real_bits, \ + .storagebits = _real_bits > 16 ? 32 : 16, \ + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ + .endianness = IIO_BE, \ + }, \ +} + +#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _3wire) \ +{ \ + .type = IIO_VOLTAGE, \ + .indexed = 1, \ + .channel = 0, \ + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ + BIT(IIO_CHAN_INFO_SCALE) | \ + BIT(IIO_CHAN_INFO_OFFSET), \ + .info_mask_separate_available = _3wire ? BIT(IIO_CHAN_INFO_SCALE) : 0, \ + .scan_type = { \ + .sign = _sign, \ + .realbits = _real_bits, \ + .storagebits = _real_bits > 16 ? 32 : 16, \ + .shift = _real_bits > 16 ? 32 - _real_bits : 0, \ + .endianness = IIO_BE, \ + }, \ +} + +enum ad4000_spi_mode { + /* datasheet calls this "4-wire mode" (controller CS goes to ADC SDI!) */ + AD4000_SPI_MODE_DEFAULT, + /* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */ + AD4000_SPI_MODE_SINGLE, +}; + +/* maps adi,spi-mode property value to enum */ +static const char * const ad4000_spi_modes[] = { + [AD4000_SPI_MODE_DEFAULT] = "", + [AD4000_SPI_MODE_SINGLE] = "single", +}; + +struct ad4000_chip_info { + const char *dev_name; + struct iio_chan_spec chan_spec; + struct iio_chan_spec three_w_chan_spec; +}; + +static const struct ad4000_chip_info ad4000_chip_info = { + .dev_name = "ad4000", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4001_chip_info = { + .dev_name = "ad4001", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), +}; + +static const struct ad4000_chip_info ad4002_chip_info = { + .dev_name = "ad4002", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4003_chip_info = { + .dev_name = "ad4003", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4004_chip_info = { + .dev_name = "ad4004", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4005_chip_info = { + .dev_name = "ad4005", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), +}; + +static const struct ad4000_chip_info ad4006_chip_info = { + .dev_name = "ad4006", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4007_chip_info = { + .dev_name = "ad4007", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4008_chip_info = { + .dev_name = "ad4008", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4010_chip_info = { + .dev_name = "ad4010", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .three_w_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4011_chip_info = { + .dev_name = "ad4011", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4020_chip_info = { + .dev_name = "ad4020", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info ad4021_chip_info = { + .dev_name = "ad4021", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info ad4022_chip_info = { + .dev_name = "ad4022", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info adaq4001_chip_info = { + .dev_name = "adaq4001", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), +}; + +static const struct ad4000_chip_info adaq4003_chip_info = { + .dev_name = "adaq4003", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .three_w_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +struct ad4000_state { + struct spi_device *spi; + struct gpio_desc *cnv_gpio; + struct spi_transfer xfers[2]; + struct spi_message msg; + int vref_mv; + enum ad4000_spi_mode spi_mode; + bool span_comp; + bool turbo_mode; + u16 gain_milli; + int scale_tbl[2][2]; + + /* + * DMA (thus cache coherency maintenance) requires the + * transfer buffers to live in their own cache lines. + */ + struct { + union { + __be16 sample_buf16; + __be32 sample_buf32; + } data; + s64 timestamp __aligned(8); + } scan __aligned(IIO_DMA_MINALIGN); + __be16 tx_buf; + __be16 rx_buf; +}; + +static void ad4000_fill_scale_tbl(struct ad4000_state *st, + struct iio_chan_spec const *chan) +{ + int val, tmp0, tmp1; + int scale_bits; + u64 tmp2; + + /* + * ADCs that output two's complement code have one less bit to express + * voltage magnitude. + */ + if (chan->scan_type.sign == 's') + scale_bits = chan->scan_type.realbits - 1; + else + scale_bits = chan->scan_type.realbits; + + /* + * The gain is stored as a fraction of 1000 and, as we need to + * divide vref_mv by the gain, we invert the gain/1000 fraction. + * Also multiply by an extra MILLI to preserve precision. + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator. + */ + val = mult_frac(st->vref_mv, MICRO, st->gain_milli); + /* Would multiply by NANO here but we multiplied by extra MILLI */ + tmp2 = shift_right((u64)val * MICRO, scale_bits); + tmp0 = div_s64_rem(tmp2, NANO, &tmp1); + /* Store scale for when span compression is disabled */ + st->scale_tbl[0][0] = tmp0; /* Integer part */ + st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */ + /* Store scale for when span compression is enabled */ + st->scale_tbl[1][0] = tmp0; + /* The integer part is always zero so don't bother to divide it. */ + if (chan->differential) + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5); + else + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10); +} + +static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) +{ + st->tx_buf = cpu_to_be16(AD4000_WRITE_COMMAND << BITS_PER_BYTE | val); + return spi_write(st->spi, &st->tx_buf, sizeof(st->tx_buf)); +} + +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) +{ + struct spi_transfer t[] = { + { + .tx_buf = &st->tx_buf, + .rx_buf = &st->rx_buf, + .len = 2, + }, + }; + int ret; + + st->tx_buf = cpu_to_be16(AD4000_READ_COMMAND << BITS_PER_BYTE); + ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); + if (ret < 0) + return ret; + + *val = be16_to_cpu(st->rx_buf); + + return ret; +} + +static void ad4000_unoptimize_msg(void *msg) +{ + spi_unoptimize_message(msg); +} + +/* + * This executes a data sample transfer for when the device connections are + * in "3-wire" mode, selected by setting the adi,spi-mode device tree property + * to "single". In this connection mode, the ADC SDI pin is connected to MOSI or + * to VIO and ADC CNV pin is connected either to a SPI controller CS or to a GPIO. + * AD4000 series of devices initiate conversions on the rising edge of CNV pin. + * + * If the CNV pin is connected to an SPI controller CS line (which is by default + * active low), the ADC readings would have a latency (delay) of one read. + * Moreover, since we also do ADC sampling for filling the buffer on triggered + * buffer mode, the timestamps of buffer readings would be disarranged. + * To prevent the read latency and reduce the time discrepancy between the + * sample read request and the time of actual sampling by the ADC, do a + * preparatory transfer to pulse the CS/CNV line. + */ +static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st, + const struct iio_chan_spec *chan) +{ + unsigned int cnv_pulse_time = st->turbo_mode ? AD4000_TQUIET1_NS + : AD4000_TCONV_NS; + struct spi_transfer *xfers = st->xfers; + int ret; + + xfers[0].cs_change = 1; + xfers[0].cs_change_delay.value = cnv_pulse_time; + xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; + + xfers[1].rx_buf = &st->scan.data; + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); + xfers[1].delay.value = AD4000_TQUIET2_NS; + xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS; + + spi_message_init_with_transfers(&st->msg, st->xfers, 2); + + ret = spi_optimize_message(st->spi, &st->msg); + if (ret) + return ret; + + return devm_add_action_or_reset(&st->spi->dev, ad4000_unoptimize_msg, + &st->msg); +} + +/* + * This executes a data sample transfer for when the device connections are + * in "4-wire" mode, selected when the adi,spi-mode device tree + * property is absent or empty. In this connection mode, the controller CS pin + * is connected to ADC SDI pin and a GPIO is connected to ADC CNV pin. + * The GPIO connected to ADC CNV pin is set outside of the SPI transfer. + */ +static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st, + const struct iio_chan_spec *chan) +{ + unsigned int cnv_to_sdi_time = st->turbo_mode ? AD4000_TQUIET1_NS + : AD4000_TCONV_NS; + struct spi_transfer *xfers = st->xfers; + int ret; + + /* + * Dummy transfer to cause enough delay between CNV going high and SDI + * going low. + */ + xfers[0].cs_off = 1; + xfers[0].delay.value = cnv_to_sdi_time; + xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS; + + xfers[1].rx_buf = &st->scan.data; + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); + + spi_message_init_with_transfers(&st->msg, st->xfers, 2); + + ret = spi_optimize_message(st->spi, &st->msg); + if (ret) + return ret; + + return devm_add_action_or_reset(&st->spi->dev, ad4000_unoptimize_msg, + &st->msg); +} + +static int ad4000_convert_and_acquire(struct ad4000_state *st) +{ + int ret; + + /* + * In 4-wire mode, the CNV line is held high for the entire conversion + * and acquisition process. In other modes, the CNV GPIO is optional + * and, if provided, replaces controller CS. If CNV GPIO is not defined + * gpiod_set_value_cansleep() has no effect. + */ + gpiod_set_value_cansleep(st->cnv_gpio, 1); + ret = spi_sync(st->spi, &st->msg); + gpiod_set_value_cansleep(st->cnv_gpio, 0); + + return ret; +} + +static int ad4000_single_conversion(struct iio_dev *indio_dev, + const struct iio_chan_spec *chan, int *val) +{ + struct ad4000_state *st = iio_priv(indio_dev); + u32 sample; + int ret; + + ret = ad4000_convert_and_acquire(st); + if (ret < 0) + return ret; + + if (chan->scan_type.storagebits > 16) + sample = be32_to_cpu(st->scan.data.sample_buf32); + else + sample = be16_to_cpu(st->scan.data.sample_buf16); + + switch (chan->scan_type.realbits) { + case 16: + break; + case 18: + sample = FIELD_GET(AD4000_18BIT_MSK, sample); + break; + case 20: + sample = FIELD_GET(AD4000_20BIT_MSK, sample); + break; + default: + return -EINVAL; + } + + if (chan->scan_type.sign == 's') + *val = sign_extend32(sample, chan->scan_type.realbits - 1); + + return IIO_VAL_INT; +} + +static int ad4000_read_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, int *val, + int *val2, long info) +{ + struct ad4000_state *st = iio_priv(indio_dev); + + switch (info) { + case IIO_CHAN_INFO_RAW: + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) + return ad4000_single_conversion(indio_dev, chan, val); + unreachable(); + case IIO_CHAN_INFO_SCALE: + *val = st->scale_tbl[st->span_comp][0]; + *val2 = st->scale_tbl[st->span_comp][1]; + return IIO_VAL_INT_PLUS_NANO; + case IIO_CHAN_INFO_OFFSET: + *val = 0; + if (st->span_comp) + *val = mult_frac(st->vref_mv, 1, 10); + + return IIO_VAL_INT; + default: + return -EINVAL; + } +} + +static int ad4000_read_avail(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, + const int **vals, int *type, int *length, + long info) +{ + struct ad4000_state *st = iio_priv(indio_dev); + + switch (info) { + case IIO_CHAN_INFO_SCALE: + *vals = (int *)st->scale_tbl; + *length = 2 * 2; + *type = IIO_VAL_INT_PLUS_NANO; + return IIO_AVAIL_LIST; + default: + return -EINVAL; + } +} + +static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, long mask) +{ + switch (mask) { + case IIO_CHAN_INFO_SCALE: + return IIO_VAL_INT_PLUS_NANO; + default: + return IIO_VAL_INT_PLUS_MICRO; + } +} + +static int ad4000_write_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, int val, int val2, + long mask) +{ + struct ad4000_state *st = iio_priv(indio_dev); + unsigned int reg_val; + bool span_comp_en; + int ret; + + switch (mask) { + case IIO_CHAN_INFO_SCALE: + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { + ret = ad4000_read_reg(st, ®_val); + if (ret < 0) + return ret; + + span_comp_en = val2 == st->scale_tbl[1][1]; + reg_val &= ~AD4000_CFG_SPAN_COMP; + reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); + + ret = ad4000_write_reg(st, reg_val); + if (ret < 0) + return ret; + + st->span_comp = span_comp_en; + return 0; + } + unreachable(); + default: + return -EINVAL; + } +} + +static irqreturn_t ad4000_trigger_handler(int irq, void *p) +{ + struct iio_poll_func *pf = p; + struct iio_dev *indio_dev = pf->indio_dev; + struct ad4000_state *st = iio_priv(indio_dev); + int ret; + + ret = ad4000_convert_and_acquire(st); + if (ret < 0) + goto err_out; + + iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, + iio_get_time_ns(indio_dev)); + +err_out: + iio_trigger_notify_done(indio_dev->trig); + return IRQ_HANDLED; +} + +static const struct iio_info ad4000_3wire_info = { + .read_raw = &ad4000_read_raw, + .read_avail = &ad4000_read_avail, + .write_raw = &ad4000_write_raw, + .write_raw_get_fmt = &ad4000_write_raw_get_fmt, + +}; + +static const struct iio_info ad4000_info = { + .read_raw = &ad4000_read_raw, +}; + +static int ad4000_config(struct ad4000_state *st) +{ + unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT; + + if (device_property_present(&st->spi->dev, "adi,high-z-input")) + reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1); + + return ad4000_write_reg(st, reg_val); +} + +static int ad4000_probe(struct spi_device *spi) +{ + const struct ad4000_chip_info *chip; + struct iio_dev *indio_dev; + struct ad4000_state *st; + int ret; + + indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); + if (!indio_dev) + return -ENOMEM; + + chip = spi_get_device_match_data(spi); + if (!chip) + return -EINVAL; + + st = iio_priv(indio_dev); + st->spi = spi; + + ret = devm_regulator_get_enable(&spi->dev, "vdd"); + if (ret) + return dev_err_probe(&spi->dev, ret, "Failed to enable VDD supply\n"); + + ret = devm_regulator_get_enable(&spi->dev, "vio"); + if (ret) + return dev_err_probe(&spi->dev, ret, "Failed to enable VIO supply\n"); + + st->vref_mv = devm_regulator_get_enable_read_voltage(&spi->dev, "ref"); + if (ret < 0) + return dev_err_probe(&spi->dev, st->vref_mv, + "Failed to get ref regulator reference\n"); + st->vref_mv = st->vref_mv / 1000; + + st->cnv_gpio = devm_gpiod_get_optional(&spi->dev, "cnv", GPIOD_OUT_HIGH); + if (IS_ERR(st->cnv_gpio)) + return dev_err_probe(&spi->dev, PTR_ERR(st->cnv_gpio), + "Failed to get CNV GPIO"); + + ret = device_property_match_property_string(&spi->dev, "adi,spi-mode", + ad4000_spi_modes, + ARRAY_SIZE(ad4000_spi_modes)); + /* Default to 4-wire mode if adi,spi-mode property is not present */ + if (ret == -EINVAL) + st->spi_mode = AD4000_SPI_MODE_DEFAULT; + else if (ret < 0) + return dev_err_probe(&spi->dev, ret, + "getting adi,spi-mode property failed\n"); + else + st->spi_mode = ret; + + switch (st->spi_mode) { + case AD4000_SPI_MODE_DEFAULT: + indio_dev->info = &ad4000_info; + indio_dev->channels = &chip->chan_spec; + ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels); + if (ret) + return ret; + + break; + case AD4000_SPI_MODE_SINGLE: + indio_dev->info = &ad4000_3wire_info; + indio_dev->channels = &chip->three_w_chan_spec; + + /* + * In "3-wire mode", the ADC SDI line must be kept high when + * data is not being clocked out of the controller. + * Request the SPI controller to make MOSI idle high. + */ + spi->mode = SPI_MODE_0 | SPI_MOSI_IDLE_HIGH; + ret = spi_setup(spi); + if (ret < 0) + return ret; + + ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); + if (ret) + return ret; + + ret = ad4000_config(st); + if (ret < 0) + dev_warn(&st->spi->dev, "Failed to config device\n"); + + break; + } + + indio_dev->name = chip->dev_name; + indio_dev->num_channels = 1; + + /* Hardware gain only applies to ADAQ devices */ + st->gain_milli = 1000; + if (device_property_present(&spi->dev, "adi,gain-milli")) { + ret = device_property_read_u16(&spi->dev, "adi,gain-milli", + &st->gain_milli); + if (ret) + return dev_err_probe(&spi->dev, ret, + "Failed to read gain property\n"); + } + + ad4000_fill_scale_tbl(st, indio_dev->channels); + + ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, + &iio_pollfunc_store_time, + &ad4000_trigger_handler, NULL); + if (ret) + return ret; + + return devm_iio_device_register(&spi->dev, indio_dev); +} + +static const struct spi_device_id ad4000_id[] = { + { "ad4000", (kernel_ulong_t)&ad4000_chip_info }, + { "ad4001", (kernel_ulong_t)&ad4001_chip_info }, + { "ad4002", (kernel_ulong_t)&ad4002_chip_info }, + { "ad4003", (kernel_ulong_t)&ad4003_chip_info }, + { "ad4004", (kernel_ulong_t)&ad4004_chip_info }, + { "ad4005", (kernel_ulong_t)&ad4005_chip_info }, + { "ad4006", (kernel_ulong_t)&ad4006_chip_info }, + { "ad4007", (kernel_ulong_t)&ad4007_chip_info }, + { "ad4008", (kernel_ulong_t)&ad4008_chip_info }, + { "ad4010", (kernel_ulong_t)&ad4010_chip_info }, + { "ad4011", (kernel_ulong_t)&ad4011_chip_info }, + { "ad4020", (kernel_ulong_t)&ad4020_chip_info }, + { "ad4021", (kernel_ulong_t)&ad4021_chip_info }, + { "ad4022", (kernel_ulong_t)&ad4022_chip_info }, + { "adaq4001", (kernel_ulong_t)&adaq4001_chip_info }, + { "adaq4003", (kernel_ulong_t)&adaq4003_chip_info }, + { } +}; +MODULE_DEVICE_TABLE(spi, ad4000_id); + +static const struct of_device_id ad4000_of_match[] = { + { .compatible = "adi,ad4000", .data = &ad4000_chip_info }, + { .compatible = "adi,ad4001", .data = &ad4001_chip_info }, + { .compatible = "adi,ad4002", .data = &ad4002_chip_info }, + { .compatible = "adi,ad4003", .data = &ad4003_chip_info }, + { .compatible = "adi,ad4004", .data = &ad4004_chip_info }, + { .compatible = "adi,ad4005", .data = &ad4005_chip_info }, + { .compatible = "adi,ad4006", .data = &ad4006_chip_info }, + { .compatible = "adi,ad4007", .data = &ad4007_chip_info }, + { .compatible = "adi,ad4008", .data = &ad4008_chip_info }, + { .compatible = "adi,ad4010", .data = &ad4010_chip_info }, + { .compatible = "adi,ad4011", .data = &ad4011_chip_info }, + { .compatible = "adi,ad4020", .data = &ad4020_chip_info }, + { .compatible = "adi,ad4021", .data = &ad4021_chip_info }, + { .compatible = "adi,ad4022", .data = &ad4022_chip_info }, + { .compatible = "adi,adaq4001", .data = &adaq4001_chip_info }, + { .compatible = "adi,adaq4003", .data = &adaq4003_chip_info }, + { } +}; +MODULE_DEVICE_TABLE(of, ad4000_of_match); + +static struct spi_driver ad4000_driver = { + .driver = { + .name = "ad4000", + .of_match_table = ad4000_of_match, + }, + .probe = ad4000_probe, + .id_table = ad4000_id, +}; +module_spi_driver(ad4000_driver); + +MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>"); +MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver"); +MODULE_LICENSE("GPL");
Add support for AD4000 series of low noise, low power, high speed, successive aproximation register (SAR) ADCs. Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> --- MAINTAINERS | 1 + drivers/iio/adc/Kconfig | 12 + drivers/iio/adc/Makefile | 1 + drivers/iio/adc/ad4000.c | 715 +++++++++++++++++++++++++++++++++++++++ 4 files changed, 729 insertions(+) create mode 100644 drivers/iio/adc/ad4000.c