Message ID | 20240801000641.1882-16-dakr@kernel.org (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | Generic `Allocator` support for Rust | expand |
On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote: > > `Vec` provides a contiguous growable array type (such as `Vec`) with > contents allocated with the kernel's allocators (e.g. `Kmalloc`, > `Vmalloc` or `KVmalloc`). > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the > kernel's GFP flags for all appropriate functions, always reports > allocation failures through `Result<_, AllocError>` and remains > independent from unstable features. > > Signed-off-by: Danilo Krummrich <dakr@kernel.org> > --- > rust/kernel/alloc.rs | 6 + > rust/kernel/alloc/kbox.rs | 16 +- > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++ > rust/kernel/prelude.rs | 2 +- > 4 files changed, 605 insertions(+), 2 deletions(-) > create mode 100644 rust/kernel/alloc/kvec.rs > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > index 4bddd023aa7f..bd93140f3094 100644 > --- a/rust/kernel/alloc.rs > +++ b/rust/kernel/alloc.rs > @@ -5,6 +5,7 @@ > #[cfg(not(any(test, testlib)))] > pub mod allocator; > pub mod kbox; > +pub mod kvec; > pub mod vec_ext; > > #[cfg(any(test, testlib))] > @@ -18,6 +19,11 @@ > pub use self::kbox::KVBox; > pub use self::kbox::VBox; > > +pub use self::kvec::KVVec; > +pub use self::kvec::KVec; > +pub use self::kvec::VVec; > +pub use self::kvec::Vec; > + > /// Indicates an allocation error. > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > pub struct AllocError; > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs > index 7074f00e07bc..39feaed4a8f8 100644 > --- a/rust/kernel/alloc/kbox.rs > +++ b/rust/kernel/alloc/kbox.rs > @@ -2,7 +2,7 @@ > > //! Implementation of [`Box`]. > > -use super::{AllocError, Allocator, Flags}; > +use super::{AllocError, Allocator, Flags, Vec}; > use core::fmt; > use core::marker::PhantomData; > use core::mem::ManuallyDrop; > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self> > } > } > > +impl<T, A, const N: usize> Box<[T; N], A> > +where > + A: Allocator, > +{ > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`. > + pub fn into_vec(b: Self) -> Vec<T, A> { This doc-comment seems wrong. [T] and [T; N] are not the same thing. > + let len = b.len(); > + unsafe { > + let ptr = Self::into_raw(b); > + Vec::from_raw_parts(ptr as _, len, len) > + } > + } > +} > + > impl<T, A> Box<MaybeUninit<T>, A> > where > A: Allocator, > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..04cc85f7d92c > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,583 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{AllocError, Allocator, Flags}; > +use crate::types::Unique; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`Vec`] containing the arguments. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + { > + $crate::alloc::KVec::new() > + } > + ); > + ($elem:expr; $n:expr) => ( > + { > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + } > + ); > + ($($x:expr),+ $(,)?) => ( > + { > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), > + Err(e) => Err(e), > + } > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`. A closing bracket is missing in this sentence. > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to > +/// allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory > +/// allocated with `A` or, for zero-sized types, is a dangling pointer. > +/// > +/// The length of the vector always represents the exact number of elements stored in the vector. > +/// > +/// The capacity of the vector always represents the absolute number of elements that can be stored > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be > +/// larger than `size_of<T>` times the capacity. > +/// > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and > +/// must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: Unique<T>, > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. > + /// > + /// # Safety > + /// > + /// `cap` must be in the `0..=isize::MAX` range. > + cap: usize, This section header should say Invariants, not Safety. > + len: usize, > + _p: PhantomData<A>, > +} > + > +/// Type alias for `Vec` with a `Kmalloc` allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; > + > +/// Type alias for `Vec` with a `Vmalloc` allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = VVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; > + > +/// Type alias for `Vec` with a `KVmalloc` allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; > + > +impl<T, A> Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn is_zst() -> bool { > + core::mem::size_of::<T>() == 0 > + } > + > + /// Returns the total number of elements the vector can hold without > + /// reallocating. > + pub fn capacity(&self) -> usize { > + if Self::is_zst() { > + usize::MAX > + } else { > + self.cap > + } > + } I would consider always storing usize::MAX in the capacity field for zst types? > + > + /// Returns the number of elements in the vector, also referred to > + /// as its 'length'. > + #[inline] > + pub fn len(&self) -> usize { > + self.len > + } > + > + /// Forces the length of the vector to new_len. > + /// > + /// # Safety > + /// > + /// - `new_len` must be less than or equal to [`Self::capacity()`]. > + /// - The elements at `old_len..new_len` must be initialized. > + #[inline] > + pub unsafe fn set_len(&mut self, new_len: usize) { > + self.len = new_len; > + } > + > + /// Extracts a slice containing the entire vector. > + /// > + /// Equivalent to `&s[..]`. > + #[inline] > + pub fn as_slice(&self) -> &[T] { > + self > + } > + > + /// Extracts a mutable slice of the entire vector. > + /// > + /// Equivalent to `&mut s[..]`. > + #[inline] > + pub fn as_mut_slice(&mut self) -> &mut [T] { > + self > + } > + > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling > + /// raw pointer valid for zero sized reads if the vector didn't allocate. > + #[inline] > + pub fn as_mut_ptr(&self) -> *mut T { > + self.ptr.as_ptr() > + } > + > + /// Returns a raw pointer to the slice's buffer. > + #[inline] > + pub fn as_ptr(&self) -> *const T { > + self.as_mut_ptr() > + } > + > + /// Returns `true` if the vector contains no elements. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// assert!(v.is_empty()); > + /// > + /// v.push(1, GFP_KERNEL); > + /// assert!(!v.is_empty()); > + /// ``` > + #[inline] > + pub fn is_empty(&self) -> bool { > + self.len() == 0 > + } > + > + /// Constructs a new, empty Vec<T, A>. > + /// > + /// This method does not allocate by itself. > + #[inline] > + pub const fn new() -> Self { > + Self { > + ptr: Unique::dangling(), > + cap: 0, > + len: 0, > + _p: PhantomData::<A>, > + } > + } > + > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`. > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > + // and valid, but uninitialized. > + unsafe { > + slice::from_raw_parts_mut( > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, > + self.capacity() - self.len, > + ) > + } Is this correct for ZSTs? > + } > + > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + Vec::reserve(self, 1, flags)?; > + let s = self.spare_capacity_mut(); > + s[0].write(v); > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + Self::reserve(&mut v, capacity, flags)?; > + > + Ok(v) > + } > + > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40]); > + /// > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > + where > + T: Clone, > + { > + self.reserve(other.len(), flags)?; > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > + slot.write(item.clone()); > + } > + > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase > + // the length by the same amount. We also know that the new length is <= capacity because > + // of the previous call to `reserve` above. > + unsafe { self.set_len(self.len() + other.len()) }; > + Ok(()) > + } > + > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator. > + /// > + /// # Safety > + /// > + /// This is highly unsafe, due to the number of invariants that aren’t checked: > + /// > + /// - `ptr` must be currently allocated via the given allocator `A`. > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.) > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be > + /// smaller or equal the size the pointer was allocated with. > + /// - `length` needs to be less than or equal to `capacity`. > + /// - The first `length` values must be properly initialized values of type `T`. > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety > + /// documentation of `pointer::offset`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let cap = if Self::is_zst() { 0 } else { capacity }; > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { Unique::new_unchecked(ptr) }, > + cap, > + len: length, > + _p: PhantomData::<A>, > + } > + } > + > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`). > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } > + > + /// Ensures that the capacity exceeds the length by at least `additional` elements. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let cap = v.capacity(); > + /// assert!(cap >= 10); > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let new_cap = v.capacity(); > + /// assert_eq!(new_cap, cap); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > + let len = self.len(); > + let cap = self.capacity(); > + > + if cap - len >= additional { > + return Ok(()); > + } > + > + if Self::is_zst() { > + // The capacity is already `usize::MAX` for SZTs, we can't go higher. > + return Err(AllocError); > + } > + > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size > + // is greater than `isize::MAX`. So the multiplication by two won't overflow. You know it won't overflow because of the type invariants. The thing about Layout::array should instead be used to argue why setting self.cap below does not break the invariants. > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > + > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > + // capacity to be zero if no memory has been allocated yet. > + let ptr = if cap == 0 { > + None > + } else { > + Some(self.ptr.as_non_null().cast()) > + }; > + > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > + // `A::realloc`. We also verified that the type is not a ZST. > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > + > + self.ptr = ptr.cast().into(); > + self.cap = new_cap; > + > + Ok(()) > + } > +} > + > +impl<T: Clone, A: Allocator> Vec<T, A> { > + /// Extend the vector by `n` clones of value. > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > + self.reserve(n, flags)?; > + > + let spare = self.spare_capacity_mut(); > + > + for i in 0..spare.len() - 1 { > + spare[i].write(value.clone()); > + } Minus one? Shouldn't this instead loop for `0..n`? > + > + // We can write the last element directly without cloning needlessly > + spare[spare.len() - 1].write(value); spare[n-1].write(value); > + > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not > + // exceeding the capacity of this `Vec`. > + unsafe { self.set_len(self.len() + n) }; > + > + Ok(()) > + } > + > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Self::with_capacity(n, flags)?; > + > + v.extend_with(n, value, flags)?; > + > + Ok(v) > + } > +} > + > +impl<T, A> Drop for Vec<T, A> > +where > + A: Allocator, > +{ > + fn drop(&mut self) { > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > + // memory. > + unsafe { > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > + self.as_mut_ptr(), > + self.len, > + )) > + }; > + > + // If `cap == 0` we never allocated any memory in the first place. > + if self.cap != 0 { > + // SAFETY: `self.ptr` was previously allocated with `A`. > + unsafe { A::free(self.ptr.as_non_null().cast()) }; Do you need a ZST check here? > + } > + } > +} > + > +impl<T> Default for KVec<T> { > + #[inline] > + fn default() -> Self { > + Self::new() > + } > +} > + > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > + fmt::Debug::fmt(&**self, f) > + } > +} > + > +impl<T, A> Deref for Vec<T, A> > +where > + A: Allocator, > +{ > + type Target = [T]; > + > + #[inline] > + fn deref(&self) -> &[T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > + } > +} > + > +impl<T, A> DerefMut for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn deref_mut(&mut self) -> &mut [T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > + } > +} > + > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > + > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + type Output = I::Output; > + > + #[inline] > + fn index(&self, index: I) -> &Self::Output { > + Index::index(&**self, index) > + } > +} > + > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > + IndexMut::index_mut(&mut **self, index) > + } > +} > + > +macro_rules! __impl_slice_eq { > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > + where > + T: PartialEq<U>, > + $($ty: $bound)? > + { > + #[inline] > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > + } > + } > +} > + > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > index 6bf77577eae7..bb80a43d20fb 100644 > --- a/rust/kernel/prelude.rs > +++ b/rust/kernel/prelude.rs > @@ -14,7 +14,7 @@ > #[doc(no_inline)] > pub use core::pin::Pin; > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > #[doc(no_inline)] > pub use alloc::vec::Vec; > -- > 2.45.2 >
On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote: > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote: > > > > `Vec` provides a contiguous growable array type (such as `Vec`) with > > contents allocated with the kernel's allocators (e.g. `Kmalloc`, > > `Vmalloc` or `KVmalloc`). > > > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the > > kernel's GFP flags for all appropriate functions, always reports > > allocation failures through `Result<_, AllocError>` and remains > > independent from unstable features. > > > > Signed-off-by: Danilo Krummrich <dakr@kernel.org> > > --- > > rust/kernel/alloc.rs | 6 + > > rust/kernel/alloc/kbox.rs | 16 +- > > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++ > > rust/kernel/prelude.rs | 2 +- > > 4 files changed, 605 insertions(+), 2 deletions(-) > > create mode 100644 rust/kernel/alloc/kvec.rs > > > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > > index 4bddd023aa7f..bd93140f3094 100644 > > --- a/rust/kernel/alloc.rs > > +++ b/rust/kernel/alloc.rs > > @@ -5,6 +5,7 @@ > > #[cfg(not(any(test, testlib)))] > > pub mod allocator; > > pub mod kbox; > > +pub mod kvec; > > pub mod vec_ext; > > > > #[cfg(any(test, testlib))] > > @@ -18,6 +19,11 @@ > > pub use self::kbox::KVBox; > > pub use self::kbox::VBox; > > > > +pub use self::kvec::KVVec; > > +pub use self::kvec::KVec; > > +pub use self::kvec::VVec; > > +pub use self::kvec::Vec; > > + > > /// Indicates an allocation error. > > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > > pub struct AllocError; > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs > > index 7074f00e07bc..39feaed4a8f8 100644 > > --- a/rust/kernel/alloc/kbox.rs > > +++ b/rust/kernel/alloc/kbox.rs > > @@ -2,7 +2,7 @@ > > > > //! Implementation of [`Box`]. > > > > -use super::{AllocError, Allocator, Flags}; > > +use super::{AllocError, Allocator, Flags, Vec}; > > use core::fmt; > > use core::marker::PhantomData; > > use core::mem::ManuallyDrop; > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self> > > } > > } > > > > +impl<T, A, const N: usize> Box<[T; N], A> > > +where > > + A: Allocator, > > +{ > > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`. > > + pub fn into_vec(b: Self) -> Vec<T, A> { > > This doc-comment seems wrong. [T] and [T; N] are not the same thing. Indeed, gonna fix. > > > + let len = b.len(); > > + unsafe { > > + let ptr = Self::into_raw(b); > > + Vec::from_raw_parts(ptr as _, len, len) > > + } > > + } > > +} > > + > > impl<T, A> Box<MaybeUninit<T>, A> > > where > > A: Allocator, > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > > new file mode 100644 > > index 000000000000..04cc85f7d92c > > --- /dev/null > > +++ b/rust/kernel/alloc/kvec.rs > > @@ -0,0 +1,583 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > + > > +//! Implementation of [`Vec`]. > > + > > +use super::{AllocError, Allocator, Flags}; > > +use crate::types::Unique; > > +use core::{ > > + fmt, > > + marker::PhantomData, > > + mem::{ManuallyDrop, MaybeUninit}, > > + ops::Deref, > > + ops::DerefMut, > > + ops::Index, > > + ops::IndexMut, > > + slice, > > + slice::SliceIndex, > > +}; > > + > > +/// Create a [`Vec`] containing the arguments. > > +/// > > +/// # Examples > > +/// > > +/// ``` > > +/// let mut v = kernel::kvec![]; > > +/// v.push(1, GFP_KERNEL)?; > > +/// assert_eq!(v, [1]); > > +/// > > +/// let mut v = kernel::kvec![1; 3]?; > > +/// v.push(4, GFP_KERNEL)?; > > +/// assert_eq!(v, [1, 1, 1, 4]); > > +/// > > +/// let mut v = kernel::kvec![1, 2, 3]?; > > +/// v.push(4, GFP_KERNEL)?; > > +/// assert_eq!(v, [1, 2, 3, 4]); > > +/// > > +/// # Ok::<(), Error>(()) > > +/// ``` > > +#[macro_export] > > +macro_rules! kvec { > > + () => ( > > + { > > + $crate::alloc::KVec::new() > > + } > > + ); > > + ($elem:expr; $n:expr) => ( > > + { > > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > > + } > > + ); > > + ($($x:expr),+ $(,)?) => ( > > + { > > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { > > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), > > + Err(e) => Err(e), > > + } > > + } > > + ); > > +} > > + > > +/// The kernel's [`Vec`] type. > > +/// > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`. > > A closing bracket is missing in this sentence. Gonna fix. > > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > > +/// > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > > +/// > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to > > +/// allocate (and free) the backing buffer. > > +/// > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > > +/// and manually modified. > > +/// > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > > +/// are added to the vector. > > +/// > > +/// # Invariants > > +/// > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer. > > +/// > > +/// The length of the vector always represents the exact number of elements stored in the vector. > > +/// > > +/// The capacity of the vector always represents the absolute number of elements that can be stored > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be > > +/// larger than `size_of<T>` times the capacity. > > +/// > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and > > +/// must be freed with). > > +pub struct Vec<T, A: Allocator> { > > + ptr: Unique<T>, > > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. > > + /// > > + /// # Safety > > + /// > > + /// `cap` must be in the `0..=isize::MAX` range. > > + cap: usize, > > This section header should say Invariants, not Safety. Agreed. > > > + len: usize, > > + _p: PhantomData<A>, > > +} > > + > > +/// Type alias for `Vec` with a `Kmalloc` allocator. > > +/// > > +/// # Examples > > +/// > > +/// ``` > > +/// let mut v = KVec::new(); > > +/// v.push(1, GFP_KERNEL)?; > > +/// assert_eq!(&v, &[1]); > > +/// > > +/// # Ok::<(), Error>(()) > > +/// ``` > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; > > + > > +/// Type alias for `Vec` with a `Vmalloc` allocator. > > +/// > > +/// # Examples > > +/// > > +/// ``` > > +/// let mut v = VVec::new(); > > +/// v.push(1, GFP_KERNEL)?; > > +/// assert_eq!(&v, &[1]); > > +/// > > +/// # Ok::<(), Error>(()) > > +/// ``` > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; > > + > > +/// Type alias for `Vec` with a `KVmalloc` allocator. > > +/// > > +/// # Examples > > +/// > > +/// ``` > > +/// let mut v = KVVec::new(); > > +/// v.push(1, GFP_KERNEL)?; > > +/// assert_eq!(&v, &[1]); > > +/// > > +/// # Ok::<(), Error>(()) > > +/// ``` > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; > > + > > +impl<T, A> Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + #[inline] > > + fn is_zst() -> bool { > > + core::mem::size_of::<T>() == 0 > > + } > > + > > + /// Returns the total number of elements the vector can hold without > > + /// reallocating. > > + pub fn capacity(&self) -> usize { > > + if Self::is_zst() { > > + usize::MAX > > + } else { > > + self.cap > > + } > > + } > > I would consider always storing usize::MAX in the capacity field for zst types? This wouldn't work. `self.cap` is supposed to represent the actual capacity of the vector, which for ZSTs is zero. > > > + > > + /// Returns the number of elements in the vector, also referred to > > + /// as its 'length'. > > + #[inline] > > + pub fn len(&self) -> usize { > > + self.len > > + } > > + > > + /// Forces the length of the vector to new_len. > > + /// > > + /// # Safety > > + /// > > + /// - `new_len` must be less than or equal to [`Self::capacity()`]. > > + /// - The elements at `old_len..new_len` must be initialized. > > + #[inline] > > + pub unsafe fn set_len(&mut self, new_len: usize) { > > + self.len = new_len; > > + } > > + > > + /// Extracts a slice containing the entire vector. > > + /// > > + /// Equivalent to `&s[..]`. > > + #[inline] > > + pub fn as_slice(&self) -> &[T] { > > + self > > + } > > + > > + /// Extracts a mutable slice of the entire vector. > > + /// > > + /// Equivalent to `&mut s[..]`. > > + #[inline] > > + pub fn as_mut_slice(&mut self) -> &mut [T] { > > + self > > + } > > + > > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling > > + /// raw pointer valid for zero sized reads if the vector didn't allocate. > > + #[inline] > > + pub fn as_mut_ptr(&self) -> *mut T { > > + self.ptr.as_ptr() > > + } > > + > > + /// Returns a raw pointer to the slice's buffer. > > + #[inline] > > + pub fn as_ptr(&self) -> *const T { > > + self.as_mut_ptr() > > + } > > + > > + /// Returns `true` if the vector contains no elements. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = KVec::new(); > > + /// assert!(v.is_empty()); > > + /// > > + /// v.push(1, GFP_KERNEL); > > + /// assert!(!v.is_empty()); > > + /// ``` > > + #[inline] > > + pub fn is_empty(&self) -> bool { > > + self.len() == 0 > > + } > > + > > + /// Constructs a new, empty Vec<T, A>. > > + /// > > + /// This method does not allocate by itself. > > + #[inline] > > + pub const fn new() -> Self { > > + Self { > > + ptr: Unique::dangling(), > > + cap: 0, > > + len: 0, > > + _p: PhantomData::<A>, > > + } > > + } > > + > > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`. > > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > > + // and valid, but uninitialized. > > + unsafe { > > + slice::from_raw_parts_mut( > > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, > > + self.capacity() - self.len, > > + ) > > + } > > Is this correct for ZSTs? Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX. > > > + } > > + > > + /// Appends an element to the back of the [`Vec`] instance. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = KVec::new(); > > + /// v.push(1, GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1]); > > + /// > > + /// v.push(2, GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1, 2]); > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > > + Vec::reserve(self, 1, flags)?; > > + let s = self.spare_capacity_mut(); > > + s[0].write(v); > > + > > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > > + // by 1. We also know that the new length is <= capacity because of the previous call to > > + // `reserve` above. > > + unsafe { self.set_len(self.len() + 1) }; > > + Ok(()) > > + } > > + > > + /// Creates a new [`Vec`] instance with at least the given capacity. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > > + /// > > + /// assert!(v.capacity() >= 20); > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > > + let mut v = Vec::new(); > > + > > + Self::reserve(&mut v, capacity, flags)?; > > + > > + Ok(v) > > + } > > + > > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = KVec::new(); > > + /// v.push(1, GFP_KERNEL)?; > > + /// > > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1, 20, 30, 40]); > > + /// > > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > > + where > > + T: Clone, > > + { > > + self.reserve(other.len(), flags)?; > > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > > + slot.write(item.clone()); > > + } > > + > > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase > > + // the length by the same amount. We also know that the new length is <= capacity because > > + // of the previous call to `reserve` above. > > + unsafe { self.set_len(self.len() + other.len()) }; > > + Ok(()) > > + } > > + > > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator. > > + /// > > + /// # Safety > > + /// > > + /// This is highly unsafe, due to the number of invariants that aren’t checked: > > + /// > > + /// - `ptr` must be currently allocated via the given allocator `A`. > > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less > > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the > > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.) > > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be > > + /// smaller or equal the size the pointer was allocated with. > > + /// - `length` needs to be less than or equal to `capacity`. > > + /// - The first `length` values must be properly initialized values of type `T`. > > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety > > + /// documentation of `pointer::offset`. > > + /// > > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > > + /// `cap` and `len`. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = kernel::kvec![1, 2, 3]?; > > + /// v.reserve(1, GFP_KERNEL)?; > > + /// > > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > > + /// > > + /// // SAFETY: We've just reserved memory for another element. > > + /// unsafe { ptr.add(len).write(4) }; > > + /// len += 1; > > + /// > > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > > + /// // from the exact same raw parts. > > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > > + /// > > + /// assert_eq!(v, [1, 2, 3, 4]); > > + /// > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > > + let cap = if Self::is_zst() { 0 } else { capacity }; > > + > > + Self { > > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > > + // memory allocation, allocated with `A`. > > + ptr: unsafe { Unique::new_unchecked(ptr) }, > > + cap, > > + len: length, > > + _p: PhantomData::<A>, > > + } > > + } > > + > > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`). > > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > > + let me = ManuallyDrop::new(self); > > + let len = me.len(); > > + let capacity = me.capacity(); > > + let ptr = me.as_mut_ptr(); > > + (ptr, len, capacity) > > + } > > + > > + /// Ensures that the capacity exceeds the length by at least `additional` elements. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = KVec::new(); > > + /// v.push(1, GFP_KERNEL)?; > > + /// > > + /// v.reserve(10, GFP_KERNEL)?; > > + /// let cap = v.capacity(); > > + /// assert!(cap >= 10); > > + /// > > + /// v.reserve(10, GFP_KERNEL)?; > > + /// let new_cap = v.capacity(); > > + /// assert_eq!(new_cap, cap); > > + /// > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > > + let len = self.len(); > > + let cap = self.capacity(); > > + > > + if cap - len >= additional { > > + return Ok(()); > > + } > > + > > + if Self::is_zst() { > > + // The capacity is already `usize::MAX` for SZTs, we can't go higher. > > + return Err(AllocError); > > + } > > + > > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size > > + // is greater than `isize::MAX`. So the multiplication by two won't overflow. > > You know it won't overflow because of the type invariants. The thing > about Layout::array should instead be used to argue why setting > self.cap below does not break the invariants. Good point, I will reword it. > > > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > > + > > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > > + // capacity to be zero if no memory has been allocated yet. > > + let ptr = if cap == 0 { > > + None > > + } else { > > + Some(self.ptr.as_non_null().cast()) > > + }; > > + > > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > > + // `A::realloc`. We also verified that the type is not a ZST. > > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > > + > > + self.ptr = ptr.cast().into(); > > + self.cap = new_cap; > > + > > + Ok(()) > > + } > > +} > > + > > +impl<T: Clone, A: Allocator> Vec<T, A> { > > + /// Extend the vector by `n` clones of value. > > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > > + self.reserve(n, flags)?; > > + > > + let spare = self.spare_capacity_mut(); > > + > > + for i in 0..spare.len() - 1 { > > + spare[i].write(value.clone()); > > + } > > Minus one? Shouldn't this instead loop for `0..n`? We can indeed just use `n` instead of `slice::len` here. Minus one, because we create clones for the first n - 1 elements and for the last one we just use the value itself. > > > + > > + // We can write the last element directly without cloning needlessly > > + spare[spare.len() - 1].write(value); > > spare[n-1].write(value); Yep, works too. > > > + > > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not > > + // exceeding the capacity of this `Vec`. > > + unsafe { self.set_len(self.len() + n) }; > > + > > + Ok(()) > > + } > > + > > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > > + let mut v = Self::with_capacity(n, flags)?; > > + > > + v.extend_with(n, value, flags)?; > > + > > + Ok(v) > > + } > > +} > > + > > +impl<T, A> Drop for Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + fn drop(&mut self) { > > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > > + // memory. > > + unsafe { > > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > > + self.as_mut_ptr(), > > + self.len, > > + )) > > + }; > > + > > + // If `cap == 0` we never allocated any memory in the first place. > > + if self.cap != 0 { > > + // SAFETY: `self.ptr` was previously allocated with `A`. > > + unsafe { A::free(self.ptr.as_non_null().cast()) }; > > Do you need a ZST check here? No, for ZST `self.cap` is always zero. > > > + } > > + } > > +} > > + > > +impl<T> Default for KVec<T> { > > + #[inline] > > + fn default() -> Self { > > + Self::new() > > + } > > +} > > + > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > > + fmt::Debug::fmt(&**self, f) > > + } > > +} > > + > > +impl<T, A> Deref for Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + type Target = [T]; > > + > > + #[inline] > > + fn deref(&self) -> &[T] { > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > + // initialized elements of type `T`. > > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > > + } > > +} > > + > > +impl<T, A> DerefMut for Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + #[inline] > > + fn deref_mut(&mut self) -> &mut [T] { > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > + // initialized elements of type `T`. > > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > > + } > > +} > > + > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > > + > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + type Output = I::Output; > > + > > + #[inline] > > + fn index(&self, index: I) -> &Self::Output { > > + Index::index(&**self, index) > > + } > > +} > > + > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > > +where > > + A: Allocator, > > +{ > > + #[inline] > > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > > + IndexMut::index_mut(&mut **self, index) > > + } > > +} > > + > > +macro_rules! __impl_slice_eq { > > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { > > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > > + where > > + T: PartialEq<U>, > > + $($ty: $bound)? > > + { > > + #[inline] > > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > > + } > > + } > > +} > > + > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > > index 6bf77577eae7..bb80a43d20fb 100644 > > --- a/rust/kernel/prelude.rs > > +++ b/rust/kernel/prelude.rs > > @@ -14,7 +14,7 @@ > > #[doc(no_inline)] > > pub use core::pin::Pin; > > > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > > > #[doc(no_inline)] > > pub use alloc::vec::Vec; > > -- > > 2.45.2 > > >
On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote: > > On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote: > > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote: > > > > > > `Vec` provides a contiguous growable array type (such as `Vec`) with > > > contents allocated with the kernel's allocators (e.g. `Kmalloc`, > > > `Vmalloc` or `KVmalloc`). > > > > > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the > > > kernel's GFP flags for all appropriate functions, always reports > > > allocation failures through `Result<_, AllocError>` and remains > > > independent from unstable features. > > > > > > Signed-off-by: Danilo Krummrich <dakr@kernel.org> > > > --- > > > rust/kernel/alloc.rs | 6 + > > > rust/kernel/alloc/kbox.rs | 16 +- > > > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++ > > > rust/kernel/prelude.rs | 2 +- > > > 4 files changed, 605 insertions(+), 2 deletions(-) > > > create mode 100644 rust/kernel/alloc/kvec.rs > > > > > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > > > index 4bddd023aa7f..bd93140f3094 100644 > > > --- a/rust/kernel/alloc.rs > > > +++ b/rust/kernel/alloc.rs > > > @@ -5,6 +5,7 @@ > > > #[cfg(not(any(test, testlib)))] > > > pub mod allocator; > > > pub mod kbox; > > > +pub mod kvec; > > > pub mod vec_ext; > > > > > > #[cfg(any(test, testlib))] > > > @@ -18,6 +19,11 @@ > > > pub use self::kbox::KVBox; > > > pub use self::kbox::VBox; > > > > > > +pub use self::kvec::KVVec; > > > +pub use self::kvec::KVec; > > > +pub use self::kvec::VVec; > > > +pub use self::kvec::Vec; > > > + > > > /// Indicates an allocation error. > > > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > > > pub struct AllocError; > > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs > > > index 7074f00e07bc..39feaed4a8f8 100644 > > > --- a/rust/kernel/alloc/kbox.rs > > > +++ b/rust/kernel/alloc/kbox.rs > > > @@ -2,7 +2,7 @@ > > > > > > //! Implementation of [`Box`]. > > > > > > -use super::{AllocError, Allocator, Flags}; > > > +use super::{AllocError, Allocator, Flags, Vec}; > > > use core::fmt; > > > use core::marker::PhantomData; > > > use core::mem::ManuallyDrop; > > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self> > > > } > > > } > > > > > > +impl<T, A, const N: usize> Box<[T; N], A> > > > +where > > > + A: Allocator, > > > +{ > > > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`. > > > + pub fn into_vec(b: Self) -> Vec<T, A> { > > > > This doc-comment seems wrong. [T] and [T; N] are not the same thing. > > Indeed, gonna fix. > > > > > > + let len = b.len(); > > > + unsafe { > > > + let ptr = Self::into_raw(b); > > > + Vec::from_raw_parts(ptr as _, len, len) > > > + } > > > + } > > > +} > > > + > > > impl<T, A> Box<MaybeUninit<T>, A> > > > where > > > A: Allocator, > > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > > > new file mode 100644 > > > index 000000000000..04cc85f7d92c > > > --- /dev/null > > > +++ b/rust/kernel/alloc/kvec.rs > > > @@ -0,0 +1,583 @@ > > > +// SPDX-License-Identifier: GPL-2.0 > > > + > > > +//! Implementation of [`Vec`]. > > > + > > > +use super::{AllocError, Allocator, Flags}; > > > +use crate::types::Unique; > > > +use core::{ > > > + fmt, > > > + marker::PhantomData, > > > + mem::{ManuallyDrop, MaybeUninit}, > > > + ops::Deref, > > > + ops::DerefMut, > > > + ops::Index, > > > + ops::IndexMut, > > > + slice, > > > + slice::SliceIndex, > > > +}; > > > + > > > +/// Create a [`Vec`] containing the arguments. > > > +/// > > > +/// # Examples > > > +/// > > > +/// ``` > > > +/// let mut v = kernel::kvec![]; > > > +/// v.push(1, GFP_KERNEL)?; > > > +/// assert_eq!(v, [1]); > > > +/// > > > +/// let mut v = kernel::kvec![1; 3]?; > > > +/// v.push(4, GFP_KERNEL)?; > > > +/// assert_eq!(v, [1, 1, 1, 4]); > > > +/// > > > +/// let mut v = kernel::kvec![1, 2, 3]?; > > > +/// v.push(4, GFP_KERNEL)?; > > > +/// assert_eq!(v, [1, 2, 3, 4]); > > > +/// > > > +/// # Ok::<(), Error>(()) > > > +/// ``` > > > +#[macro_export] > > > +macro_rules! kvec { > > > + () => ( > > > + { > > > + $crate::alloc::KVec::new() > > > + } > > > + ); > > > + ($elem:expr; $n:expr) => ( > > > + { > > > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > > > + } > > > + ); > > > + ($($x:expr),+ $(,)?) => ( > > > + { > > > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { > > > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), > > > + Err(e) => Err(e), > > > + } > > > + } > > > + ); > > > +} > > > + > > > +/// The kernel's [`Vec`] type. > > > +/// > > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`. > > > > A closing bracket is missing in this sentence. > > Gonna fix. > > > > > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > > > +/// > > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > > > +/// > > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to > > > +/// allocate (and free) the backing buffer. > > > +/// > > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > > > +/// and manually modified. > > > +/// > > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > > > +/// are added to the vector. > > > +/// > > > +/// # Invariants > > > +/// > > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory > > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer. > > > +/// > > > +/// The length of the vector always represents the exact number of elements stored in the vector. > > > +/// > > > +/// The capacity of the vector always represents the absolute number of elements that can be stored > > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be > > > +/// larger than `size_of<T>` times the capacity. > > > +/// > > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and > > > +/// must be freed with). > > > +pub struct Vec<T, A: Allocator> { > > > + ptr: Unique<T>, > > > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. > > > + /// > > > + /// # Safety > > > + /// > > > + /// `cap` must be in the `0..=isize::MAX` range. > > > + cap: usize, > > > > This section header should say Invariants, not Safety. > > Agreed. > > > > > > + len: usize, > > > + _p: PhantomData<A>, > > > +} > > > + > > > +/// Type alias for `Vec` with a `Kmalloc` allocator. > > > +/// > > > +/// # Examples > > > +/// > > > +/// ``` > > > +/// let mut v = KVec::new(); > > > +/// v.push(1, GFP_KERNEL)?; > > > +/// assert_eq!(&v, &[1]); > > > +/// > > > +/// # Ok::<(), Error>(()) > > > +/// ``` > > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; > > > + > > > +/// Type alias for `Vec` with a `Vmalloc` allocator. > > > +/// > > > +/// # Examples > > > +/// > > > +/// ``` > > > +/// let mut v = VVec::new(); > > > +/// v.push(1, GFP_KERNEL)?; > > > +/// assert_eq!(&v, &[1]); > > > +/// > > > +/// # Ok::<(), Error>(()) > > > +/// ``` > > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; > > > + > > > +/// Type alias for `Vec` with a `KVmalloc` allocator. > > > +/// > > > +/// # Examples > > > +/// > > > +/// ``` > > > +/// let mut v = KVVec::new(); > > > +/// v.push(1, GFP_KERNEL)?; > > > +/// assert_eq!(&v, &[1]); > > > +/// > > > +/// # Ok::<(), Error>(()) > > > +/// ``` > > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; > > > + > > > +impl<T, A> Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + #[inline] > > > + fn is_zst() -> bool { > > > + core::mem::size_of::<T>() == 0 > > > + } > > > + > > > + /// Returns the total number of elements the vector can hold without > > > + /// reallocating. > > > + pub fn capacity(&self) -> usize { > > > + if Self::is_zst() { > > > + usize::MAX > > > + } else { > > > + self.cap > > > + } > > > + } > > > > I would consider always storing usize::MAX in the capacity field for zst types? > > This wouldn't work. `self.cap` is supposed to represent the actual capacity of > the vector, which for ZSTs is zero. Storing usize::MAX values of a zero-sized type takes up zero bytes, and your vector has space for zero bytes. Seems sensible to me to use usize::MAX. Anyway, it's up to you. I'm ok either way. > > > + > > > + /// Returns the number of elements in the vector, also referred to > > > + /// as its 'length'. > > > + #[inline] > > > + pub fn len(&self) -> usize { > > > + self.len > > > + } > > > + > > > + /// Forces the length of the vector to new_len. > > > + /// > > > + /// # Safety > > > + /// > > > + /// - `new_len` must be less than or equal to [`Self::capacity()`]. > > > + /// - The elements at `old_len..new_len` must be initialized. > > > + #[inline] > > > + pub unsafe fn set_len(&mut self, new_len: usize) { > > > + self.len = new_len; > > > + } > > > + > > > + /// Extracts a slice containing the entire vector. > > > + /// > > > + /// Equivalent to `&s[..]`. > > > + #[inline] > > > + pub fn as_slice(&self) -> &[T] { > > > + self > > > + } > > > + > > > + /// Extracts a mutable slice of the entire vector. > > > + /// > > > + /// Equivalent to `&mut s[..]`. > > > + #[inline] > > > + pub fn as_mut_slice(&mut self) -> &mut [T] { > > > + self > > > + } > > > + > > > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling > > > + /// raw pointer valid for zero sized reads if the vector didn't allocate. > > > + #[inline] > > > + pub fn as_mut_ptr(&self) -> *mut T { > > > + self.ptr.as_ptr() > > > + } > > > + > > > + /// Returns a raw pointer to the slice's buffer. > > > + #[inline] > > > + pub fn as_ptr(&self) -> *const T { > > > + self.as_mut_ptr() > > > + } > > > + > > > + /// Returns `true` if the vector contains no elements. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let mut v = KVec::new(); > > > + /// assert!(v.is_empty()); > > > + /// > > > + /// v.push(1, GFP_KERNEL); > > > + /// assert!(!v.is_empty()); > > > + /// ``` > > > + #[inline] > > > + pub fn is_empty(&self) -> bool { > > > + self.len() == 0 > > > + } > > > + > > > + /// Constructs a new, empty Vec<T, A>. > > > + /// > > > + /// This method does not allocate by itself. > > > + #[inline] > > > + pub const fn new() -> Self { > > > + Self { > > > + ptr: Unique::dangling(), > > > + cap: 0, > > > + len: 0, > > > + _p: PhantomData::<A>, > > > + } > > > + } > > > + > > > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`. > > > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > > > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > > > + // and valid, but uninitialized. > > > + unsafe { > > > + slice::from_raw_parts_mut( > > > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, > > > + self.capacity() - self.len, > > > + ) > > > + } > > > > Is this correct for ZSTs? > > Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX. > > > > > > + } > > > + > > > + /// Appends an element to the back of the [`Vec`] instance. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let mut v = KVec::new(); > > > + /// v.push(1, GFP_KERNEL)?; > > > + /// assert_eq!(&v, &[1]); > > > + /// > > > + /// v.push(2, GFP_KERNEL)?; > > > + /// assert_eq!(&v, &[1, 2]); > > > + /// # Ok::<(), Error>(()) > > > + /// ``` > > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > > > + Vec::reserve(self, 1, flags)?; > > > + let s = self.spare_capacity_mut(); > > > + s[0].write(v); > > > + > > > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > > > + // by 1. We also know that the new length is <= capacity because of the previous call to > > > + // `reserve` above. > > > + unsafe { self.set_len(self.len() + 1) }; > > > + Ok(()) > > > + } > > > + > > > + /// Creates a new [`Vec`] instance with at least the given capacity. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > > > + /// > > > + /// assert!(v.capacity() >= 20); > > > + /// # Ok::<(), Error>(()) > > > + /// ``` > > > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > > > + let mut v = Vec::new(); > > > + > > > + Self::reserve(&mut v, capacity, flags)?; > > > + > > > + Ok(v) > > > + } > > > + > > > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let mut v = KVec::new(); > > > + /// v.push(1, GFP_KERNEL)?; > > > + /// > > > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > > > + /// assert_eq!(&v, &[1, 20, 30, 40]); > > > + /// > > > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > > > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > > > + /// # Ok::<(), Error>(()) > > > + /// ``` > > > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > > > + where > > > + T: Clone, > > > + { > > > + self.reserve(other.len(), flags)?; > > > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > > > + slot.write(item.clone()); > > > + } > > > + > > > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase > > > + // the length by the same amount. We also know that the new length is <= capacity because > > > + // of the previous call to `reserve` above. > > > + unsafe { self.set_len(self.len() + other.len()) }; > > > + Ok(()) > > > + } > > > + > > > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator. > > > + /// > > > + /// # Safety > > > + /// > > > + /// This is highly unsafe, due to the number of invariants that aren’t checked: > > > + /// > > > + /// - `ptr` must be currently allocated via the given allocator `A`. > > > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less > > > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the > > > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.) > > > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be > > > + /// smaller or equal the size the pointer was allocated with. > > > + /// - `length` needs to be less than or equal to `capacity`. > > > + /// - The first `length` values must be properly initialized values of type `T`. > > > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety > > > + /// documentation of `pointer::offset`. > > > + /// > > > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > > > + /// `cap` and `len`. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let mut v = kernel::kvec![1, 2, 3]?; > > > + /// v.reserve(1, GFP_KERNEL)?; > > > + /// > > > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > > > + /// > > > + /// // SAFETY: We've just reserved memory for another element. > > > + /// unsafe { ptr.add(len).write(4) }; > > > + /// len += 1; > > > + /// > > > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > > > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > > > + /// // from the exact same raw parts. > > > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > > > + /// > > > + /// assert_eq!(v, [1, 2, 3, 4]); > > > + /// > > > + /// # Ok::<(), Error>(()) > > > + /// ``` > > > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > > > + let cap = if Self::is_zst() { 0 } else { capacity }; > > > + > > > + Self { > > > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > > > + // memory allocation, allocated with `A`. > > > + ptr: unsafe { Unique::new_unchecked(ptr) }, > > > + cap, > > > + len: length, > > > + _p: PhantomData::<A>, > > > + } > > > + } > > > + > > > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`). > > > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > > > + let me = ManuallyDrop::new(self); > > > + let len = me.len(); > > > + let capacity = me.capacity(); > > > + let ptr = me.as_mut_ptr(); > > > + (ptr, len, capacity) > > > + } > > > + > > > + /// Ensures that the capacity exceeds the length by at least `additional` elements. > > > + /// > > > + /// # Examples > > > + /// > > > + /// ``` > > > + /// let mut v = KVec::new(); > > > + /// v.push(1, GFP_KERNEL)?; > > > + /// > > > + /// v.reserve(10, GFP_KERNEL)?; > > > + /// let cap = v.capacity(); > > > + /// assert!(cap >= 10); > > > + /// > > > + /// v.reserve(10, GFP_KERNEL)?; > > > + /// let new_cap = v.capacity(); > > > + /// assert_eq!(new_cap, cap); > > > + /// > > > + /// # Ok::<(), Error>(()) > > > + /// ``` > > > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > > > + let len = self.len(); > > > + let cap = self.capacity(); > > > + > > > + if cap - len >= additional { > > > + return Ok(()); > > > + } > > > + > > > + if Self::is_zst() { > > > + // The capacity is already `usize::MAX` for SZTs, we can't go higher. > > > + return Err(AllocError); > > > + } > > > + > > > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size > > > + // is greater than `isize::MAX`. So the multiplication by two won't overflow. > > > > You know it won't overflow because of the type invariants. The thing > > about Layout::array should instead be used to argue why setting > > self.cap below does not break the invariants. > > Good point, I will reword it. > > > > > > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > > > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > > > + > > > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > > > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > > > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > > > + // capacity to be zero if no memory has been allocated yet. > > > + let ptr = if cap == 0 { > > > + None > > > + } else { > > > + Some(self.ptr.as_non_null().cast()) > > > + }; > > > + > > > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > > > + // `A::realloc`. We also verified that the type is not a ZST. > > > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > > > + > > > + self.ptr = ptr.cast().into(); > > > + self.cap = new_cap; > > > + > > > + Ok(()) > > > + } > > > +} > > > + > > > +impl<T: Clone, A: Allocator> Vec<T, A> { > > > + /// Extend the vector by `n` clones of value. > > > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > > > + self.reserve(n, flags)?; > > > + > > > + let spare = self.spare_capacity_mut(); > > > + > > > + for i in 0..spare.len() - 1 { > > > + spare[i].write(value.clone()); > > > + } > > > > Minus one? Shouldn't this instead loop for `0..n`? > > We can indeed just use `n` instead of `slice::len` here. But `spare.len()` could be longer than `n`? > > Minus one, because we create clones for the first n - 1 elements and for the > last one we just use the value itself. > > > > > > + > > > + // We can write the last element directly without cloning needlessly > > > + spare[spare.len() - 1].write(value); > > > > spare[n-1].write(value); > > Yep, works too. > > > > > > + > > > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not > > > + // exceeding the capacity of this `Vec`. > > > + unsafe { self.set_len(self.len() + n) }; > > > + > > > + Ok(()) > > > + } > > > + > > > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > > > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > > > + let mut v = Self::with_capacity(n, flags)?; > > > + > > > + v.extend_with(n, value, flags)?; > > > + > > > + Ok(v) > > > + } > > > +} > > > + > > > +impl<T, A> Drop for Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + fn drop(&mut self) { > > > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > > > + // memory. > > > + unsafe { > > > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > > > + self.as_mut_ptr(), > > > + self.len, > > > + )) > > > + }; > > > + > > > + // If `cap == 0` we never allocated any memory in the first place. > > > + if self.cap != 0 { > > > + // SAFETY: `self.ptr` was previously allocated with `A`. > > > + unsafe { A::free(self.ptr.as_non_null().cast()) }; > > > > Do you need a ZST check here? > > No, for ZST `self.cap` is always zero. > > > > > > + } > > > + } > > > +} > > > + > > > +impl<T> Default for KVec<T> { > > > + #[inline] > > > + fn default() -> Self { > > > + Self::new() > > > + } > > > +} > > > + > > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > > > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > > > + fmt::Debug::fmt(&**self, f) > > > + } > > > +} > > > + > > > +impl<T, A> Deref for Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + type Target = [T]; > > > + > > > + #[inline] > > > + fn deref(&self) -> &[T] { > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > > + // initialized elements of type `T`. > > > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > > > + } > > > +} > > > + > > > +impl<T, A> DerefMut for Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + #[inline] > > > + fn deref_mut(&mut self) -> &mut [T] { > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > > + // initialized elements of type `T`. > > > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > > > + } > > > +} > > > + > > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > > > + > > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + type Output = I::Output; > > > + > > > + #[inline] > > > + fn index(&self, index: I) -> &Self::Output { > > > + Index::index(&**self, index) > > > + } > > > +} > > > + > > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > > > +where > > > + A: Allocator, > > > +{ > > > + #[inline] > > > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > > > + IndexMut::index_mut(&mut **self, index) > > > + } > > > +} > > > + > > > +macro_rules! __impl_slice_eq { > > > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { > > > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > > > + where > > > + T: PartialEq<U>, > > > + $($ty: $bound)? > > > + { > > > + #[inline] > > > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > > > + } > > > + } > > > +} > > > + > > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > > > index 6bf77577eae7..bb80a43d20fb 100644 > > > --- a/rust/kernel/prelude.rs > > > +++ b/rust/kernel/prelude.rs > > > @@ -14,7 +14,7 @@ > > > #[doc(no_inline)] > > > pub use core::pin::Pin; > > > > > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > > > > > #[doc(no_inline)] > > > pub use alloc::vec::Vec; > > > -- > > > 2.45.2 > > > > >
On Thu, Aug 01, 2024 at 05:31:48PM +0200, Alice Ryhl wrote: > On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote: > > > > On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote: > > > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote: > > > > > > > > `Vec` provides a contiguous growable array type (such as `Vec`) with > > > > contents allocated with the kernel's allocators (e.g. `Kmalloc`, > > > > `Vmalloc` or `KVmalloc`). > > > > > > > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the > > > > kernel's GFP flags for all appropriate functions, always reports > > > > allocation failures through `Result<_, AllocError>` and remains > > > > independent from unstable features. > > > > > > > > Signed-off-by: Danilo Krummrich <dakr@kernel.org> > > > > --- > > > > rust/kernel/alloc.rs | 6 + > > > > rust/kernel/alloc/kbox.rs | 16 +- > > > > rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++ > > > > rust/kernel/prelude.rs | 2 +- > > > > 4 files changed, 605 insertions(+), 2 deletions(-) > > > > create mode 100644 rust/kernel/alloc/kvec.rs > > > > > > > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > > > > index 4bddd023aa7f..bd93140f3094 100644 > > > > --- a/rust/kernel/alloc.rs > > > > +++ b/rust/kernel/alloc.rs > > > > @@ -5,6 +5,7 @@ > > > > #[cfg(not(any(test, testlib)))] > > > > pub mod allocator; > > > > pub mod kbox; > > > > +pub mod kvec; > > > > pub mod vec_ext; > > > > > > > > #[cfg(any(test, testlib))] > > > > @@ -18,6 +19,11 @@ > > > > pub use self::kbox::KVBox; > > > > pub use self::kbox::VBox; > > > > > > > > +pub use self::kvec::KVVec; > > > > +pub use self::kvec::KVec; > > > > +pub use self::kvec::VVec; > > > > +pub use self::kvec::Vec; > > > > + > > > > /// Indicates an allocation error. > > > > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > > > > pub struct AllocError; > > > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs > > > > index 7074f00e07bc..39feaed4a8f8 100644 > > > > --- a/rust/kernel/alloc/kbox.rs > > > > +++ b/rust/kernel/alloc/kbox.rs > > > > @@ -2,7 +2,7 @@ > > > > > > > > //! Implementation of [`Box`]. > > > > > > > > -use super::{AllocError, Allocator, Flags}; > > > > +use super::{AllocError, Allocator, Flags, Vec}; > > > > use core::fmt; > > > > use core::marker::PhantomData; > > > > use core::mem::ManuallyDrop; > > > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self> > > > > } > > > > } > > > > > > > > +impl<T, A, const N: usize> Box<[T; N], A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + /// Convert a `Box<[T], A>` to a `Vec<T, A>`. > > > > + pub fn into_vec(b: Self) -> Vec<T, A> { > > > > > > This doc-comment seems wrong. [T] and [T; N] are not the same thing. > > > > Indeed, gonna fix. > > > > > > > > > + let len = b.len(); > > > > + unsafe { > > > > + let ptr = Self::into_raw(b); > > > > + Vec::from_raw_parts(ptr as _, len, len) > > > > + } > > > > + } > > > > +} > > > > + > > > > impl<T, A> Box<MaybeUninit<T>, A> > > > > where > > > > A: Allocator, > > > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > > > > new file mode 100644 > > > > index 000000000000..04cc85f7d92c > > > > --- /dev/null > > > > +++ b/rust/kernel/alloc/kvec.rs > > > > @@ -0,0 +1,583 @@ > > > > +// SPDX-License-Identifier: GPL-2.0 > > > > + > > > > +//! Implementation of [`Vec`]. > > > > + > > > > +use super::{AllocError, Allocator, Flags}; > > > > +use crate::types::Unique; > > > > +use core::{ > > > > + fmt, > > > > + marker::PhantomData, > > > > + mem::{ManuallyDrop, MaybeUninit}, > > > > + ops::Deref, > > > > + ops::DerefMut, > > > > + ops::Index, > > > > + ops::IndexMut, > > > > + slice, > > > > + slice::SliceIndex, > > > > +}; > > > > + > > > > +/// Create a [`Vec`] containing the arguments. > > > > +/// > > > > +/// # Examples > > > > +/// > > > > +/// ``` > > > > +/// let mut v = kernel::kvec![]; > > > > +/// v.push(1, GFP_KERNEL)?; > > > > +/// assert_eq!(v, [1]); > > > > +/// > > > > +/// let mut v = kernel::kvec![1; 3]?; > > > > +/// v.push(4, GFP_KERNEL)?; > > > > +/// assert_eq!(v, [1, 1, 1, 4]); > > > > +/// > > > > +/// let mut v = kernel::kvec![1, 2, 3]?; > > > > +/// v.push(4, GFP_KERNEL)?; > > > > +/// assert_eq!(v, [1, 2, 3, 4]); > > > > +/// > > > > +/// # Ok::<(), Error>(()) > > > > +/// ``` > > > > +#[macro_export] > > > > +macro_rules! kvec { > > > > + () => ( > > > > + { > > > > + $crate::alloc::KVec::new() > > > > + } > > > > + ); > > > > + ($elem:expr; $n:expr) => ( > > > > + { > > > > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > > > > + } > > > > + ); > > > > + ($($x:expr),+ $(,)?) => ( > > > > + { > > > > + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { > > > > + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), > > > > + Err(e) => Err(e), > > > > + } > > > > + } > > > > + ); > > > > +} > > > > + > > > > +/// The kernel's [`Vec`] type. > > > > +/// > > > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > > > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`. > > > > > > A closing bracket is missing in this sentence. > > > > Gonna fix. > > > > > > > > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > > > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > > > > +/// > > > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > > > > +/// > > > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > > > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > > > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to > > > > +/// allocate (and free) the backing buffer. > > > > +/// > > > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > > > > +/// and manually modified. > > > > +/// > > > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > > > > +/// are added to the vector. > > > > +/// > > > > +/// # Invariants > > > > +/// > > > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory > > > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer. > > > > +/// > > > > +/// The length of the vector always represents the exact number of elements stored in the vector. > > > > +/// > > > > +/// The capacity of the vector always represents the absolute number of elements that can be stored > > > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be > > > > +/// larger than `size_of<T>` times the capacity. > > > > +/// > > > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and > > > > +/// must be freed with). > > > > +pub struct Vec<T, A: Allocator> { > > > > + ptr: Unique<T>, > > > > + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. > > > > + /// > > > > + /// # Safety > > > > + /// > > > > + /// `cap` must be in the `0..=isize::MAX` range. > > > > + cap: usize, > > > > > > This section header should say Invariants, not Safety. > > > > Agreed. > > > > > > > > > + len: usize, > > > > + _p: PhantomData<A>, > > > > +} > > > > + > > > > +/// Type alias for `Vec` with a `Kmalloc` allocator. > > > > +/// > > > > +/// # Examples > > > > +/// > > > > +/// ``` > > > > +/// let mut v = KVec::new(); > > > > +/// v.push(1, GFP_KERNEL)?; > > > > +/// assert_eq!(&v, &[1]); > > > > +/// > > > > +/// # Ok::<(), Error>(()) > > > > +/// ``` > > > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; > > > > + > > > > +/// Type alias for `Vec` with a `Vmalloc` allocator. > > > > +/// > > > > +/// # Examples > > > > +/// > > > > +/// ``` > > > > +/// let mut v = VVec::new(); > > > > +/// v.push(1, GFP_KERNEL)?; > > > > +/// assert_eq!(&v, &[1]); > > > > +/// > > > > +/// # Ok::<(), Error>(()) > > > > +/// ``` > > > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; > > > > + > > > > +/// Type alias for `Vec` with a `KVmalloc` allocator. > > > > +/// > > > > +/// # Examples > > > > +/// > > > > +/// ``` > > > > +/// let mut v = KVVec::new(); > > > > +/// v.push(1, GFP_KERNEL)?; > > > > +/// assert_eq!(&v, &[1]); > > > > +/// > > > > +/// # Ok::<(), Error>(()) > > > > +/// ``` > > > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; > > > > + > > > > +impl<T, A> Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + #[inline] > > > > + fn is_zst() -> bool { > > > > + core::mem::size_of::<T>() == 0 > > > > + } > > > > + > > > > + /// Returns the total number of elements the vector can hold without > > > > + /// reallocating. > > > > + pub fn capacity(&self) -> usize { > > > > + if Self::is_zst() { > > > > + usize::MAX > > > > + } else { > > > > + self.cap > > > > + } > > > > + } > > > > > > I would consider always storing usize::MAX in the capacity field for zst types? > > > > This wouldn't work. `self.cap` is supposed to represent the actual capacity of > > the vector, which for ZSTs is zero. > > Storing usize::MAX values of a zero-sized type takes up zero bytes, > and your vector has space for zero bytes. Seems sensible to me to use > usize::MAX. The logic here really is that `self.cap` represents the actual buffer size, whereas `Self::capacity` represents the number of elements we can still store without reallocating. Depending on the case we need to know one or the other. I can add a comment to make this more clear if you prefer. > > Anyway, it's up to you. I'm ok either way. > > > > > + > > > > + /// Returns the number of elements in the vector, also referred to > > > > + /// as its 'length'. > > > > + #[inline] > > > > + pub fn len(&self) -> usize { > > > > + self.len > > > > + } > > > > + > > > > + /// Forces the length of the vector to new_len. > > > > + /// > > > > + /// # Safety > > > > + /// > > > > + /// - `new_len` must be less than or equal to [`Self::capacity()`]. > > > > + /// - The elements at `old_len..new_len` must be initialized. > > > > + #[inline] > > > > + pub unsafe fn set_len(&mut self, new_len: usize) { > > > > + self.len = new_len; > > > > + } > > > > + > > > > + /// Extracts a slice containing the entire vector. > > > > + /// > > > > + /// Equivalent to `&s[..]`. > > > > + #[inline] > > > > + pub fn as_slice(&self) -> &[T] { > > > > + self > > > > + } > > > > + > > > > + /// Extracts a mutable slice of the entire vector. > > > > + /// > > > > + /// Equivalent to `&mut s[..]`. > > > > + #[inline] > > > > + pub fn as_mut_slice(&mut self) -> &mut [T] { > > > > + self > > > > + } > > > > + > > > > + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling > > > > + /// raw pointer valid for zero sized reads if the vector didn't allocate. > > > > + #[inline] > > > > + pub fn as_mut_ptr(&self) -> *mut T { > > > > + self.ptr.as_ptr() > > > > + } > > > > + > > > > + /// Returns a raw pointer to the slice's buffer. > > > > + #[inline] > > > > + pub fn as_ptr(&self) -> *const T { > > > > + self.as_mut_ptr() > > > > + } > > > > + > > > > + /// Returns `true` if the vector contains no elements. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let mut v = KVec::new(); > > > > + /// assert!(v.is_empty()); > > > > + /// > > > > + /// v.push(1, GFP_KERNEL); > > > > + /// assert!(!v.is_empty()); > > > > + /// ``` > > > > + #[inline] > > > > + pub fn is_empty(&self) -> bool { > > > > + self.len() == 0 > > > > + } > > > > + > > > > + /// Constructs a new, empty Vec<T, A>. > > > > + /// > > > > + /// This method does not allocate by itself. > > > > + #[inline] > > > > + pub const fn new() -> Self { > > > > + Self { > > > > + ptr: Unique::dangling(), > > > > + cap: 0, > > > > + len: 0, > > > > + _p: PhantomData::<A>, > > > > + } > > > > + } > > > > + > > > > + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`. > > > > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > > > > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > > > > + // and valid, but uninitialized. > > > > + unsafe { > > > > + slice::from_raw_parts_mut( > > > > + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, > > > > + self.capacity() - self.len, > > > > + ) > > > > + } > > > > > > Is this correct for ZSTs? > > > > Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX. > > > > > > > > > + } > > > > + > > > > + /// Appends an element to the back of the [`Vec`] instance. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let mut v = KVec::new(); > > > > + /// v.push(1, GFP_KERNEL)?; > > > > + /// assert_eq!(&v, &[1]); > > > > + /// > > > > + /// v.push(2, GFP_KERNEL)?; > > > > + /// assert_eq!(&v, &[1, 2]); > > > > + /// # Ok::<(), Error>(()) > > > > + /// ``` > > > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > > > > + Vec::reserve(self, 1, flags)?; > > > > + let s = self.spare_capacity_mut(); > > > > + s[0].write(v); > > > > + > > > > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > > > > + // by 1. We also know that the new length is <= capacity because of the previous call to > > > > + // `reserve` above. > > > > + unsafe { self.set_len(self.len() + 1) }; > > > > + Ok(()) > > > > + } > > > > + > > > > + /// Creates a new [`Vec`] instance with at least the given capacity. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > > > > + /// > > > > + /// assert!(v.capacity() >= 20); > > > > + /// # Ok::<(), Error>(()) > > > > + /// ``` > > > > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > > > > + let mut v = Vec::new(); > > > > + > > > > + Self::reserve(&mut v, capacity, flags)?; > > > > + > > > > + Ok(v) > > > > + } > > > > + > > > > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let mut v = KVec::new(); > > > > + /// v.push(1, GFP_KERNEL)?; > > > > + /// > > > > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > > > > + /// assert_eq!(&v, &[1, 20, 30, 40]); > > > > + /// > > > > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > > > > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > > > > + /// # Ok::<(), Error>(()) > > > > + /// ``` > > > > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > > > > + where > > > > + T: Clone, > > > > + { > > > > + self.reserve(other.len(), flags)?; > > > > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > > > > + slot.write(item.clone()); > > > > + } > > > > + > > > > + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase > > > > + // the length by the same amount. We also know that the new length is <= capacity because > > > > + // of the previous call to `reserve` above. > > > > + unsafe { self.set_len(self.len() + other.len()) }; > > > > + Ok(()) > > > > + } > > > > + > > > > + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator. > > > > + /// > > > > + /// # Safety > > > > + /// > > > > + /// This is highly unsafe, due to the number of invariants that aren’t checked: > > > > + /// > > > > + /// - `ptr` must be currently allocated via the given allocator `A`. > > > > + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less > > > > + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the > > > > + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.) > > > > + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be > > > > + /// smaller or equal the size the pointer was allocated with. > > > > + /// - `length` needs to be less than or equal to `capacity`. > > > > + /// - The first `length` values must be properly initialized values of type `T`. > > > > + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety > > > > + /// documentation of `pointer::offset`. > > > > + /// > > > > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > > > > + /// `cap` and `len`. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let mut v = kernel::kvec![1, 2, 3]?; > > > > + /// v.reserve(1, GFP_KERNEL)?; > > > > + /// > > > > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > > > > + /// > > > > + /// // SAFETY: We've just reserved memory for another element. > > > > + /// unsafe { ptr.add(len).write(4) }; > > > > + /// len += 1; > > > > + /// > > > > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > > > > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > > > > + /// // from the exact same raw parts. > > > > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > > > > + /// > > > > + /// assert_eq!(v, [1, 2, 3, 4]); > > > > + /// > > > > + /// # Ok::<(), Error>(()) > > > > + /// ``` > > > > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > > > > + let cap = if Self::is_zst() { 0 } else { capacity }; > > > > + > > > > + Self { > > > > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > > > > + // memory allocation, allocated with `A`. > > > > + ptr: unsafe { Unique::new_unchecked(ptr) }, > > > > + cap, > > > > + len: length, > > > > + _p: PhantomData::<A>, > > > > + } > > > > + } > > > > + > > > > + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`). > > > > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > > > > + let me = ManuallyDrop::new(self); > > > > + let len = me.len(); > > > > + let capacity = me.capacity(); > > > > + let ptr = me.as_mut_ptr(); > > > > + (ptr, len, capacity) > > > > + } > > > > + > > > > + /// Ensures that the capacity exceeds the length by at least `additional` elements. > > > > + /// > > > > + /// # Examples > > > > + /// > > > > + /// ``` > > > > + /// let mut v = KVec::new(); > > > > + /// v.push(1, GFP_KERNEL)?; > > > > + /// > > > > + /// v.reserve(10, GFP_KERNEL)?; > > > > + /// let cap = v.capacity(); > > > > + /// assert!(cap >= 10); > > > > + /// > > > > + /// v.reserve(10, GFP_KERNEL)?; > > > > + /// let new_cap = v.capacity(); > > > > + /// assert_eq!(new_cap, cap); > > > > + /// > > > > + /// # Ok::<(), Error>(()) > > > > + /// ``` > > > > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > > > > + let len = self.len(); > > > > + let cap = self.capacity(); > > > > + > > > > + if cap - len >= additional { > > > > + return Ok(()); > > > > + } > > > > + > > > > + if Self::is_zst() { > > > > + // The capacity is already `usize::MAX` for SZTs, we can't go higher. > > > > + return Err(AllocError); > > > > + } > > > > + > > > > + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size > > > > + // is greater than `isize::MAX`. So the multiplication by two won't overflow. > > > > > > You know it won't overflow because of the type invariants. The thing > > > about Layout::array should instead be used to argue why setting > > > self.cap below does not break the invariants. > > > > Good point, I will reword it. > > > > > > > > > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > > > > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > > > > + > > > > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > > > > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > > > > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > > > > + // capacity to be zero if no memory has been allocated yet. > > > > + let ptr = if cap == 0 { > > > > + None > > > > + } else { > > > > + Some(self.ptr.as_non_null().cast()) > > > > + }; > > > > + > > > > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > > > > + // `A::realloc`. We also verified that the type is not a ZST. > > > > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > > > > + > > > > + self.ptr = ptr.cast().into(); > > > > + self.cap = new_cap; > > > > + > > > > + Ok(()) > > > > + } > > > > +} > > > > + > > > > +impl<T: Clone, A: Allocator> Vec<T, A> { > > > > + /// Extend the vector by `n` clones of value. > > > > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > > > > + self.reserve(n, flags)?; > > > > + > > > > + let spare = self.spare_capacity_mut(); > > > > + > > > > + for i in 0..spare.len() - 1 { > > > > + spare[i].write(value.clone()); > > > > + } > > > > > > Minus one? Shouldn't this instead loop for `0..n`? > > > > We can indeed just use `n` instead of `slice::len` here. > > But `spare.len()` could be longer than `n`? You're right, we *have to* use `n`. Gonna fix that. > > > > > Minus one, because we create clones for the first n - 1 elements and for the > > last one we just use the value itself. > > > > > > > > > + > > > > + // We can write the last element directly without cloning needlessly > > > > + spare[spare.len() - 1].write(value); > > > > > > spare[n-1].write(value); > > > > Yep, works too. > > > > > > > > > + > > > > + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not > > > > + // exceeding the capacity of this `Vec`. > > > > + unsafe { self.set_len(self.len() + n) }; > > > > + > > > > + Ok(()) > > > > + } > > > > + > > > > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > > > > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > > > > + let mut v = Self::with_capacity(n, flags)?; > > > > + > > > > + v.extend_with(n, value, flags)?; > > > > + > > > > + Ok(v) > > > > + } > > > > +} > > > > + > > > > +impl<T, A> Drop for Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + fn drop(&mut self) { > > > > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > > > > + // memory. > > > > + unsafe { > > > > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > > > > + self.as_mut_ptr(), > > > > + self.len, > > > > + )) > > > > + }; > > > > + > > > > + // If `cap == 0` we never allocated any memory in the first place. > > > > + if self.cap != 0 { > > > > + // SAFETY: `self.ptr` was previously allocated with `A`. > > > > + unsafe { A::free(self.ptr.as_non_null().cast()) }; > > > > > > Do you need a ZST check here? > > > > No, for ZST `self.cap` is always zero. > > > > > > > > > + } > > > > + } > > > > +} > > > > + > > > > +impl<T> Default for KVec<T> { > > > > + #[inline] > > > > + fn default() -> Self { > > > > + Self::new() > > > > + } > > > > +} > > > > + > > > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > > > > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > > > > + fmt::Debug::fmt(&**self, f) > > > > + } > > > > +} > > > > + > > > > +impl<T, A> Deref for Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + type Target = [T]; > > > > + > > > > + #[inline] > > > > + fn deref(&self) -> &[T] { > > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > > > + // initialized elements of type `T`. > > > > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > > > > + } > > > > +} > > > > + > > > > +impl<T, A> DerefMut for Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + #[inline] > > > > + fn deref_mut(&mut self) -> &mut [T] { > > > > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > > > > + // initialized elements of type `T`. > > > > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > > > > + } > > > > +} > > > > + > > > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > > > > + > > > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + type Output = I::Output; > > > > + > > > > + #[inline] > > > > + fn index(&self, index: I) -> &Self::Output { > > > > + Index::index(&**self, index) > > > > + } > > > > +} > > > > + > > > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > > > > +where > > > > + A: Allocator, > > > > +{ > > > > + #[inline] > > > > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > > > > + IndexMut::index_mut(&mut **self, index) > > > > + } > > > > +} > > > > + > > > > +macro_rules! __impl_slice_eq { > > > > + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { > > > > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > > > > + where > > > > + T: PartialEq<U>, > > > > + $($ty: $bound)? > > > > + { > > > > + #[inline] > > > > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > > > > + } > > > > + } > > > > +} > > > > + > > > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > > > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > > > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > > > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > > > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > > > > index 6bf77577eae7..bb80a43d20fb 100644 > > > > --- a/rust/kernel/prelude.rs > > > > +++ b/rust/kernel/prelude.rs > > > > @@ -14,7 +14,7 @@ > > > > #[doc(no_inline)] > > > > pub use core::pin::Pin; > > > > > > > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > > > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > > > > > > > #[doc(no_inline)] > > > > pub use alloc::vec::Vec; > > > > -- > > > > 2.45.2 > > > > > > > >
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs index 4bddd023aa7f..bd93140f3094 100644 --- a/rust/kernel/alloc.rs +++ b/rust/kernel/alloc.rs @@ -5,6 +5,7 @@ #[cfg(not(any(test, testlib)))] pub mod allocator; pub mod kbox; +pub mod kvec; pub mod vec_ext; #[cfg(any(test, testlib))] @@ -18,6 +19,11 @@ pub use self::kbox::KVBox; pub use self::kbox::VBox; +pub use self::kvec::KVVec; +pub use self::kvec::KVec; +pub use self::kvec::VVec; +pub use self::kvec::Vec; + /// Indicates an allocation error. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct AllocError; diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs index 7074f00e07bc..39feaed4a8f8 100644 --- a/rust/kernel/alloc/kbox.rs +++ b/rust/kernel/alloc/kbox.rs @@ -2,7 +2,7 @@ //! Implementation of [`Box`]. -use super::{AllocError, Allocator, Flags}; +use super::{AllocError, Allocator, Flags, Vec}; use core::fmt; use core::marker::PhantomData; use core::mem::ManuallyDrop; @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self> } } +impl<T, A, const N: usize> Box<[T; N], A> +where + A: Allocator, +{ + /// Convert a `Box<[T], A>` to a `Vec<T, A>`. + pub fn into_vec(b: Self) -> Vec<T, A> { + let len = b.len(); + unsafe { + let ptr = Self::into_raw(b); + Vec::from_raw_parts(ptr as _, len, len) + } + } +} + impl<T, A> Box<MaybeUninit<T>, A> where A: Allocator, diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs new file mode 100644 index 000000000000..04cc85f7d92c --- /dev/null +++ b/rust/kernel/alloc/kvec.rs @@ -0,0 +1,583 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Vec`]. + +use super::{AllocError, Allocator, Flags}; +use crate::types::Unique; +use core::{ + fmt, + marker::PhantomData, + mem::{ManuallyDrop, MaybeUninit}, + ops::Deref, + ops::DerefMut, + ops::Index, + ops::IndexMut, + slice, + slice::SliceIndex, +}; + +/// Create a [`Vec`] containing the arguments. +/// +/// # Examples +/// +/// ``` +/// let mut v = kernel::kvec![]; +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(v, [1]); +/// +/// let mut v = kernel::kvec![1; 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 1, 1, 4]); +/// +/// let mut v = kernel::kvec![1, 2, 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 2, 3, 4]); +/// +/// # Ok::<(), Error>(()) +/// ``` +#[macro_export] +macro_rules! kvec { + () => ( + { + $crate::alloc::KVec::new() + } + ); + ($elem:expr; $n:expr) => ( + { + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) + } + ); + ($($x:expr),+ $(,)?) => ( + { + match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) { + Ok(b) => Ok($crate::alloc::KBox::into_vec(b)), + Err(e) => Err(e), + } + } + ); +} + +/// The kernel's [`Vec`] type. +/// +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`. +/// +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. +/// +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. +/// +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the +/// capacity of the vector (the number of elements that currently fit into the vector), it's length +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to +/// allocate (and free) the backing buffer. +/// +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts +/// and manually modified. +/// +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements +/// are added to the vector. +/// +/// # Invariants +/// +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory +/// allocated with `A` or, for zero-sized types, is a dangling pointer. +/// +/// The length of the vector always represents the exact number of elements stored in the vector. +/// +/// The capacity of the vector always represents the absolute number of elements that can be stored +/// within the vector without re-allocation. However, it is legal for the backing buffer to be +/// larger than `size_of<T>` times the capacity. +/// +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and +/// must be freed with). +pub struct Vec<T, A: Allocator> { + ptr: Unique<T>, + /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. + /// + /// # Safety + /// + /// `cap` must be in the `0..=isize::MAX` range. + cap: usize, + len: usize, + _p: PhantomData<A>, +} + +/// Type alias for `Vec` with a `Kmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>; + +/// Type alias for `Vec` with a `Vmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = VVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>; + +/// Type alias for `Vec` with a `KVmalloc` allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>; + +impl<T, A> Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn is_zst() -> bool { + core::mem::size_of::<T>() == 0 + } + + /// Returns the total number of elements the vector can hold without + /// reallocating. + pub fn capacity(&self) -> usize { + if Self::is_zst() { + usize::MAX + } else { + self.cap + } + } + + /// Returns the number of elements in the vector, also referred to + /// as its 'length'. + #[inline] + pub fn len(&self) -> usize { + self.len + } + + /// Forces the length of the vector to new_len. + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`Self::capacity()`]. + /// - The elements at `old_len..new_len` must be initialized. + #[inline] + pub unsafe fn set_len(&mut self, new_len: usize) { + self.len = new_len; + } + + /// Extracts a slice containing the entire vector. + /// + /// Equivalent to `&s[..]`. + #[inline] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Extracts a mutable slice of the entire vector. + /// + /// Equivalent to `&mut s[..]`. + #[inline] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling + /// raw pointer valid for zero sized reads if the vector didn't allocate. + #[inline] + pub fn as_mut_ptr(&self) -> *mut T { + self.ptr.as_ptr() + } + + /// Returns a raw pointer to the slice's buffer. + #[inline] + pub fn as_ptr(&self) -> *const T { + self.as_mut_ptr() + } + + /// Returns `true` if the vector contains no elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1, GFP_KERNEL); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Constructs a new, empty Vec<T, A>. + /// + /// This method does not allocate by itself. + #[inline] + pub const fn new() -> Self { + Self { + ptr: Unique::dangling(), + cap: 0, + len: 0, + _p: PhantomData::<A>, + } + } + + /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`. + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated + // and valid, but uninitialized. + unsafe { + slice::from_raw_parts_mut( + self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, + self.capacity() - self.len, + ) + } + } + + /// Appends an element to the back of the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// assert_eq!(&v, &[1]); + /// + /// v.push(2, GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 2]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { + Vec::reserve(self, 1, flags)?; + let s = self.spare_capacity_mut(); + s[0].write(v); + + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length + // by 1. We also know that the new length is <= capacity because of the previous call to + // `reserve` above. + unsafe { self.set_len(self.len() + 1) }; + Ok(()) + } + + /// Creates a new [`Vec`] instance with at least the given capacity. + /// + /// # Examples + /// + /// ``` + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; + /// + /// assert!(v.capacity() >= 20); + /// # Ok::<(), Error>(()) + /// ``` + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Vec::new(); + + Self::reserve(&mut v, capacity, flags)?; + + Ok(v) + } + + /// Pushes clones of the elements of slice into the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40]); + /// + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> + where + T: Clone, + { + self.reserve(other.len(), flags)?; + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { + slot.write(item.clone()); + } + + // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase + // the length by the same amount. We also know that the new length is <= capacity because + // of the previous call to `reserve` above. + unsafe { self.set_len(self.len() + other.len()) }; + Ok(()) + } + + /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator. + /// + /// # Safety + /// + /// This is highly unsafe, due to the number of invariants that aren’t checked: + /// + /// - `ptr` must be currently allocated via the given allocator `A`. + /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less + /// strict alignment is not sufficient, the alignment really needs to be equal to satisfy the + /// `dealloc` requirement that memory must be allocated and deallocated with the same layout.) + /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be + /// smaller or equal the size the pointer was allocated with. + /// - `length` needs to be less than or equal to `capacity`. + /// - The first `length` values must be properly initialized values of type `T`. + /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety + /// documentation of `pointer::offset`. + /// + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for + /// `cap` and `len`. + /// + /// # Examples + /// + /// ``` + /// let mut v = kernel::kvec![1, 2, 3]?; + /// v.reserve(1, GFP_KERNEL)?; + /// + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); + /// + /// // SAFETY: We've just reserved memory for another element. + /// unsafe { ptr.add(len).write(4) }; + /// len += 1; + /// + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it + /// // from the exact same raw parts. + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; + /// + /// assert_eq!(v, [1, 2, 3, 4]); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { + let cap = if Self::is_zst() { 0 } else { capacity }; + + Self { + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid + // memory allocation, allocated with `A`. + ptr: unsafe { Unique::new_unchecked(ptr) }, + cap, + len: length, + _p: PhantomData::<A>, + } + } + + /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`). + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let me = ManuallyDrop::new(self); + let len = me.len(); + let capacity = me.capacity(); + let ptr = me.as_mut_ptr(); + (ptr, len, capacity) + } + + /// Ensures that the capacity exceeds the length by at least `additional` elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let cap = v.capacity(); + /// assert!(cap >= 10); + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let new_cap = v.capacity(); + /// assert_eq!(new_cap, cap); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { + let len = self.len(); + let cap = self.capacity(); + + if cap - len >= additional { + return Ok(()); + } + + if Self::is_zst() { + // The capacity is already `usize::MAX` for SZTs, we can't go higher. + return Err(AllocError); + } + + // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size + // is greater than `isize::MAX`. So the multiplication by two won't overflow. + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; + + // We need to make sure that `ptr` is either NULL or comes from a previous call to + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s + // capacity to be zero if no memory has been allocated yet. + let ptr = if cap == 0 { + None + } else { + Some(self.ptr.as_non_null().cast()) + }; + + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to + // `A::realloc`. We also verified that the type is not a ZST. + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; + + self.ptr = ptr.cast().into(); + self.cap = new_cap; + + Ok(()) + } +} + +impl<T: Clone, A: Allocator> Vec<T, A> { + /// Extend the vector by `n` clones of value. + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { + self.reserve(n, flags)?; + + let spare = self.spare_capacity_mut(); + + for i in 0..spare.len() - 1 { + spare[i].write(value.clone()); + } + + // We can write the last element directly without cloning needlessly + spare[spare.len() - 1].write(value); + + // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not + // exceeding the capacity of this `Vec`. + unsafe { self.set_len(self.len() + n) }; + + Ok(()) + } + + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Self::with_capacity(n, flags)?; + + v.extend_with(n, value, flags)?; + + Ok(v) + } +} + +impl<T, A> Drop for Vec<T, A> +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: We need to drop the vector's elements in place, before we free the backing + // memory. + unsafe { + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( + self.as_mut_ptr(), + self.len, + )) + }; + + // If `cap == 0` we never allocated any memory in the first place. + if self.cap != 0 { + // SAFETY: `self.ptr` was previously allocated with `A`. + unsafe { A::free(self.ptr.as_non_null().cast()) }; + } + } +} + +impl<T> Default for KVec<T> { + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T, A> Deref for Vec<T, A> +where + A: Allocator, +{ + type Target = [T]; + + #[inline] + fn deref(&self) -> &[T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl<T, A> DerefMut for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn deref_mut(&mut self) -> &mut [T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} + +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> +where + A: Allocator, +{ + type Output = I::Output; + + #[inline] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +macro_rules! __impl_slice_eq { + ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => { + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs + where + T: PartialEq<U>, + $($ty: $bound)? + { + #[inline] + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } + } + } +} + +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs index 6bf77577eae7..bb80a43d20fb 100644 --- a/rust/kernel/prelude.rs +++ b/rust/kernel/prelude.rs @@ -14,7 +14,7 @@ #[doc(no_inline)] pub use core::pin::Pin; -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; #[doc(no_inline)] pub use alloc::vec::Vec;
`Vec` provides a contiguous growable array type (such as `Vec`) with contents allocated with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). In contrast to Rust's `Vec` type, the kernel `Vec` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. Signed-off-by: Danilo Krummrich <dakr@kernel.org> --- rust/kernel/alloc.rs | 6 + rust/kernel/alloc/kbox.rs | 16 +- rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++ rust/kernel/prelude.rs | 2 +- 4 files changed, 605 insertions(+), 2 deletions(-) create mode 100644 rust/kernel/alloc/kvec.rs