diff mbox series

[v8,01/29] rust: alloc: add `Allocator` trait

Message ID 20241001150008.183102-2-dakr@kernel.org (mailing list archive)
State New
Headers show
Series Generic `Allocator` support for Rust | expand

Commit Message

Danilo Krummrich Oct. 1, 2024, 2:59 p.m. UTC
Add a kernel specific `Allocator` trait, that in contrast to the one in
Rust's core library doesn't require unstable features and supports GFP
flags.

Subsequent patches add the following trait implementors: `Kmalloc`,
`Vmalloc` and `KVmalloc`.

Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
 rust/kernel/alloc.rs | 101 +++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 101 insertions(+)

Comments

Gary Guo Oct. 1, 2024, 6:24 p.m. UTC | #1
On Tue,  1 Oct 2024 16:59:36 +0200
Danilo Krummrich <dakr@kernel.org> wrote:

> Add a kernel specific `Allocator` trait, that in contrast to the one in
> Rust's core library doesn't require unstable features and supports GFP
> flags.
> 
> Subsequent patches add the following trait implementors: `Kmalloc`,
> `Vmalloc` and `KVmalloc`.
> 
> Reviewed-by: Alice Ryhl <aliceryhl@google.com>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>

Reviewed-by: Gary Guo <gary@garyguo.net>

> ---
>  rust/kernel/alloc.rs | 101 +++++++++++++++++++++++++++++++++++++++++++
>  1 file changed, 101 insertions(+)
Benno Lossin Oct. 2, 2024, 2:59 p.m. UTC | #2
On 01.10.24 16:59, Danilo Krummrich wrote:
> Add a kernel specific `Allocator` trait, that in contrast to the one in
> Rust's core library doesn't require unstable features and supports GFP
> flags.
> 
> Subsequent patches add the following trait implementors: `Kmalloc`,
> `Vmalloc` and `KVmalloc`.
> 
> Reviewed-by: Alice Ryhl <aliceryhl@google.com>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
>  rust/kernel/alloc.rs | 101 +++++++++++++++++++++++++++++++++++++++++++
>  1 file changed, 101 insertions(+)

Reviewed-by: Benno Lossin <benno.lossin@proton.me>

---
Cheers,
Benno
diff mbox series

Patch

diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index 1966bd407017..4deeea3488be 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -11,6 +11,7 @@ 
 /// Indicates an allocation error.
 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 pub struct AllocError;
+use core::{alloc::Layout, ptr::NonNull};
 
 /// Flags to be used when allocating memory.
 ///
@@ -86,3 +87,103 @@  pub mod flags {
     /// small allocations.
     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
 }
+
+/// The kernel's [`Allocator`] trait.
+///
+/// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
+/// via [`Layout`].
+///
+/// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
+/// an object instance.
+///
+/// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
+/// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
+/// of `self` parameter.
+///
+/// # Safety
+///
+/// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
+///
+/// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
+///   function of the same type.
+///
+/// - Implementers must ensure that all trait functions abide by the guarantees documented in the
+///   `# Guarantees` sections.
+pub unsafe trait Allocator {
+    /// Allocate memory based on `layout` and `flags`.
+    ///
+    /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
+    /// constraints (i.e. minimum size and alignment as specified by `layout`).
+    ///
+    /// This function is equivalent to `realloc` when called with `None`.
+    ///
+    /// # Guarantees
+    ///
+    /// When the return value is `Ok(ptr)`, then `ptr` is
+    /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
+    ///   [`Allocator::free`] or [`Allocator::realloc`],
+    /// - aligned to `layout.align()`,
+    ///
+    /// Additionally, `Flags` are honored as documented in
+    /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
+    fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
+        // SAFETY: Passing `None` to `realloc` is valid by it's safety requirements and asks for a
+        // new memory allocation.
+        unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
+    }
+
+    /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
+    ///
+    /// If the requested size is zero, `realloc` behaves equivalent to `free`.
+    ///
+    /// If the requested size is larger than the size of the existing allocation, a successful call
+    /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
+    /// may also be larger.
+    ///
+    /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
+    /// may not shrink the buffer; this is implementation specific to the allocator.
+    ///
+    /// On allocation failure, the existing buffer, if any, remains valid.
+    ///
+    /// The buffer is represented as `NonNull<[u8]>`.
+    ///
+    /// # Safety
+    ///
+    /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
+    ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
+    ///   pointer returned by this [`Allocator`].
+    /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
+    ///   `old_layout` is ignored.
+    /// - `old_layout` must match the `Layout` the allocation has been created with.
+    ///
+    /// # Guarantees
+    ///
+    /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
+    /// it additionally guarantees that:
+    /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
+    ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
+    ///   p[0..min(layout.size(), old_layout.size())]`.
+    /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
+    unsafe fn realloc(
+        ptr: Option<NonNull<u8>>,
+        layout: Layout,
+        old_layout: Layout,
+        flags: Flags,
+    ) -> Result<NonNull<[u8]>, AllocError>;
+
+    /// Free an existing memory allocation.
+    ///
+    /// # Safety
+    ///
+    /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
+    ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
+    ///   [`Allocator`].
+    /// - `layout` must match the `Layout` the allocation has been created with.
+    /// - The memory allocation at `ptr` must never again be read from or written to.
+    unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
+        // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
+        // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
+        // smaller than or equal to the alignment previously used with this allocation.
+        let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
+    }
+}