Message ID | 20241103152639.202480-1-salil.mehta@huawei.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | hw/intc/arm-gicv3*: Refactor GICv3 CPU reginfo to have common invocation | expand |
On 11/4/24 1:26 AM, Salil Mehta wrote: > Refactor GICv3 code for TCG and KVM to initialize the GIC CPU interface > register information by introducing a new common hook > `ARMGICv3CommonClass::init_cpu_reginfo`. This hook can be assigned to > the respective TCG or KVM variants during the GICv3 initialization > phase and invoked during the GICv3 realization phase. The primary goals > of this refactor include: > > 1. Enhancing code modularity and reusability in future patch-sets. > 2. Providing a common invocation function for TCG and KVM during GICv3 > realization. > 3. Improving code readability. > > Note: This is a non-intrusive patch with *no* functional changes > intended. Code has been tested to confirm correct initialization > sequences across relevant scenarios. > > Co-developed-by: Keqian Zhu <zhukeqian1@huawei.com> > Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com> > Signed-off-by: Salil Mehta <salil.mehta@huawei.com> > --- > hw/intc/arm_gicv3.c | 1 + > hw/intc/arm_gicv3_cpuif.c | 245 ++++++++++++++--------------- > hw/intc/arm_gicv3_cpuif_common.c | 10 ++ > hw/intc/arm_gicv3_kvm.c | 12 +- > hw/intc/gicv3_internal.h | 1 + > include/hw/intc/arm_gicv3_common.h | 1 + > 6 files changed, 140 insertions(+), 130 deletions(-) > With the following nitpicks addressed: Reviewed-by: Gavin Shan <gshan@redhat.com> > diff --git a/hw/intc/arm_gicv3.c b/hw/intc/arm_gicv3.c > index 58e18fff54..2a30625916 100644 > --- a/hw/intc/arm_gicv3.c > +++ b/hw/intc/arm_gicv3.c > @@ -459,6 +459,7 @@ static void arm_gicv3_class_init(ObjectClass *klass, void *data) > ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); > > agcc->post_load = arm_gicv3_post_load; > + agcc->init_cpu_reginfo = gicv3_init_cpu_reginfo; > device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); > } > > diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c > index ea1d1b3455..75a06d6f28 100644 > --- a/hw/intc/arm_gicv3_cpuif.c > +++ b/hw/intc/arm_gicv3_cpuif.c > @@ -3025,143 +3025,138 @@ static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) > gicv3_cpuif_virt_irq_fiq_update(cs); > } > > -void gicv3_init_cpuif(GICv3State *s) > +void gicv3_init_cpu_reginfo(CPUState *cs) > { Ideally, this function together with the dependent register information and definitions can be moved to arm_gicv3.c where is the only place this function is referred and used. In this way, gicv3_init_cpu_reginfo() becomes a static function and needn't to be exported in gicv3_internal.h. > - /* Called from the GICv3 realize function; register our system > - * registers with the CPU > - */ > - int i; > + ARMCPU *cpu = ARM_CPU(cs); > + GICv3CPUState *gcs = icc_cs_from_env(&cpu->env); > > - for (i = 0; i < s->num_cpu; i++) { > - ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); > - GICv3CPUState *cs = &s->cpu[i]; > + /* > + * If the CPU doesn't define a GICv3 configuration, probably because > + * in real hardware it doesn't have one, then we use default values > + * matching the one used by most Arm CPUs. This applies to: > + * cpu->gic_num_lrs > + * cpu->gic_vpribits > + * cpu->gic_vprebits > + * cpu->gic_pribits > + */ > > - /* > - * If the CPU doesn't define a GICv3 configuration, probably because > - * in real hardware it doesn't have one, then we use default values > - * matching the one used by most Arm CPUs. This applies to: > - * cpu->gic_num_lrs > - * cpu->gic_vpribits > - * cpu->gic_vprebits > - * cpu->gic_pribits > - */ > + /* > + * Note that we can't just use the GICv3CPUState as an opaque pointer > + * in define_arm_cp_regs_with_opaque(), because when we're called back > + * it might be with code translated by CPU 0 but run by CPU 1, in > + * which case we'd get the wrong value. > + * So instead we define the regs with no ri->opaque info, and > + * get back to the GICv3CPUState from the CPUARMState. > + * > + * These CP regs callbacks can be called from either TCG or HVF code. > + */ > + define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); > > - /* Note that we can't just use the GICv3CPUState as an opaque pointer > - * in define_arm_cp_regs_with_opaque(), because when we're called back > - * it might be with code translated by CPU 0 but run by CPU 1, in > - * which case we'd get the wrong value. > - * So instead we define the regs with no ri->opaque info, and > - * get back to the GICv3CPUState from the CPUARMState. > - * > - * These CP regs callbacks can be called from either TCG or HVF code. > - */ > - define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); > + /* > + * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also > + * implement FEAT_GICv3_NMI, which is the CPU interface part > + * of NMI support. This is distinct from whether the GIC proper > + * (redistributors and distributor) have NMI support. In QEMU > + * that is a property of the GIC device in s->nmi_support; > + * cs->nmi_support indicates the CPU interface's support. > + */ > + if (cpu_isar_feature(aa64_nmi, cpu)) { > + gcs->nmi_support = true; > + define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); > + } > > - /* > - * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also > - * implement FEAT_GICv3_NMI, which is the CPU interface part > - * of NMI support. This is distinct from whether the GIC proper > - * (redistributors and distributor) have NMI support. In QEMU > - * that is a property of the GIC device in s->nmi_support; > - * cs->nmi_support indicates the CPU interface's support. > - */ > - if (cpu_isar_feature(aa64_nmi, cpu)) { > - cs->nmi_support = true; > - define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); > - } > + /* > + * The CPU implementation specifies the number of supported > + * bits of physical priority. For backwards compatibility > + * of migration, we have a compat property that forces use > + * of 8 priority bits regardless of what the CPU really has. > + */ > + if (gcs->gic->force_8bit_prio) { > + gcs->pribits = 8; > + } else { > + gcs->pribits = cpu->gic_pribits ?: 5; > + } > > - /* > - * The CPU implementation specifies the number of supported > - * bits of physical priority. For backwards compatibility > - * of migration, we have a compat property that forces use > - * of 8 priority bits regardless of what the CPU really has. > - */ > - if (s->force_8bit_prio) { > - cs->pribits = 8; > - } else { > - cs->pribits = cpu->gic_pribits ?: 5; > - } > + /* > + * The GICv3 has separate ID register fields for virtual priority > + * and preemption bit values, but only a single ID register field > + * for the physical priority bits. The preemption bit count is > + * always the same as the priority bit count, except that 8 bits > + * of priority means 7 preemption bits. We precalculate the > + * preemption bits because it simplifies the code and makes the > + * parallels between the virtual and physical bits of the GIC > + * a bit clearer. > + */ > + gcs->prebits = gcs->pribits; > + if (gcs->prebits == 8) { > + gcs->prebits--; > + } > + /* > + * Check that CPU code defining pribits didn't violate > + * architectural constraints our implementation relies on. > + */ > + g_assert(gcs->pribits >= 4 && gcs->pribits <= 8); > > - /* > - * The GICv3 has separate ID register fields for virtual priority > - * and preemption bit values, but only a single ID register field > - * for the physical priority bits. The preemption bit count is > - * always the same as the priority bit count, except that 8 bits > - * of priority means 7 preemption bits. We precalculate the > - * preemption bits because it simplifies the code and makes the > - * parallels between the virtual and physical bits of the GIC > - * a bit clearer. > - */ > - cs->prebits = cs->pribits; > - if (cs->prebits == 8) { > - cs->prebits--; > - } > - /* > - * Check that CPU code defining pribits didn't violate > - * architectural constraints our implementation relies on. > - */ > - g_assert(cs->pribits >= 4 && cs->pribits <= 8); > + /* > + * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions > + * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. > + */ > + if (gcs->prebits >= 6) { > + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); > + } > + if (gcs->prebits == 7) { > + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); > + } > > - /* > - * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions > - * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. > - */ > - if (cs->prebits >= 6) { > - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); > - } > - if (cs->prebits == 7) { > - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); > - } > + if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { > + int j; > > - if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { > - int j; > + gcs->num_list_regs = cpu->gic_num_lrs ?: 4; > + gcs->vpribits = cpu->gic_vpribits ?: 5; > + gcs->vprebits = cpu->gic_vprebits ?: 5; > > - cs->num_list_regs = cpu->gic_num_lrs ?: 4; > - cs->vpribits = cpu->gic_vpribits ?: 5; > - cs->vprebits = cpu->gic_vprebits ?: 5; > > - /* Check against architectural constraints: getting these > - * wrong would be a bug in the CPU code defining these, > - * and the implementation relies on them holding. > - */ > - g_assert(cs->vprebits <= cs->vpribits); > - g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); > - g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); > + /* Check against architectural constraints: getting these > + * wrong would be a bug in the CPU code defining these, > + * and the implementation relies on them holding. > + */ > + g_assert(gcs->vprebits <= gcs->vpribits); > + g_assert(gcs->vprebits >= 5 && gcs->vprebits <= 7); > + g_assert(gcs->vpribits >= 5 && gcs->vpribits <= 8); > [gshan@gshan q]$ ./scripts/checkpatch.pl --codespell patch/check/0003* WARNING: Block comments use a leading /* on a separate line #240: FILE: hw/intc/arm_gicv3_cpuif.c:3119: + /* Check against architectural constraints: getting these > - define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); > + define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); > > - for (j = 0; j < cs->num_list_regs; j++) { > - /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs > - * are split into two cp15 regs, LR (the low part, with the > - * same encoding as the AArch64 LR) and LRC (the high part). > - */ > - ARMCPRegInfo lr_regset[] = { > - { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, > - .opc0 = 3, .opc1 = 4, .crn = 12, > - .crm = 12 + (j >> 3), .opc2 = j & 7, > - .type = ARM_CP_IO | ARM_CP_NO_RAW, > - .nv2_redirect_offset = 0x400 + 8 * j, > - .access = PL2_RW, > - .readfn = ich_lr_read, > - .writefn = ich_lr_write, > - }, > - { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, > - .cp = 15, .opc1 = 4, .crn = 12, > - .crm = 14 + (j >> 3), .opc2 = j & 7, > - .type = ARM_CP_IO | ARM_CP_NO_RAW, > - .access = PL2_RW, > - .readfn = ich_lr_read, > - .writefn = ich_lr_write, > - }, > - }; > - define_arm_cp_regs(cpu, lr_regset); > - } > - if (cs->vprebits >= 6) { > - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); > - } > - if (cs->vprebits == 7) { > - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); > - } > + for (j = 0; j < gcs->num_list_regs; j++) { > + /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs > + * are split into two cp15 regs, LR (the low part, with the > + * same encoding as the AArch64 LR) and LRC (the high part). > + */ > + ARMCPRegInfo lr_regset[] = { > + { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, > + .opc0 = 3, .opc1 = 4, .crn = 12, > + .crm = 12 + (j >> 3), .opc2 = j & 7, > + .type = ARM_CP_IO | ARM_CP_NO_RAW, > + .nv2_redirect_offset = 0x400 + 8 * j, > + .access = PL2_RW, > + .readfn = ich_lr_read, > + .writefn = ich_lr_write, > + }, > + { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, > + .cp = 15, .opc1 = 4, .crn = 12, > + .crm = 14 + (j >> 3), .opc2 = j & 7, > + .type = ARM_CP_IO | ARM_CP_NO_RAW, > + .access = PL2_RW, > + .readfn = ich_lr_read, > + .writefn = ich_lr_write, > + }, > + }; > + define_arm_cp_regs(cpu, lr_regset); > + } [gshan@gshan q]$ ./scripts/checkpatch.pl --codespell patch/check/0003* WARNING: Block comments use a leading /* on a separate line #284: FILE: hw/intc/arm_gicv3_cpuif.c:3130: + /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs > + if (gcs->vprebits >= 6) { > + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); > + } > + if (gcs->vprebits == 7) { > + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); > } > if (tcg_enabled() || qtest_enabled()) { > /* > @@ -3169,7 +3164,7 @@ void gicv3_init_cpuif(GICv3State *s) > * state only changes on EL changes involving EL2 or EL3, so for > * the non-TCG case this is OK, as EL2 and EL3 can't exist. > */ > - arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); > + arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, gcs); > } else { > assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); > assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); > diff --git a/hw/intc/arm_gicv3_cpuif_common.c b/hw/intc/arm_gicv3_cpuif_common.c > index ff1239f65d..f4d5ca447b 100644 > --- a/hw/intc/arm_gicv3_cpuif_common.c > +++ b/hw/intc/arm_gicv3_cpuif_common.c > @@ -20,3 +20,13 @@ void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) > > env->gicv3state = (void *)s; > }; > + > +void gicv3_init_cpuif(GICv3State *s) > +{ > + ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_GET_CLASS(s); > + > + /* define and register `system registers` with the vCPU */ > + for (int i = 0; i < s->num_cpu; i++) { > + agcc->init_cpu_reginfo(s->cpu[i].cpu); > + } > +} > diff --git a/hw/intc/arm_gicv3_kvm.c b/hw/intc/arm_gicv3_kvm.c > index 9ea6b8e218..b4128786ca 100644 > --- a/hw/intc/arm_gicv3_kvm.c > +++ b/hw/intc/arm_gicv3_kvm.c > @@ -777,6 +777,10 @@ static void vm_change_state_handler(void *opaque, bool running, > } > } > > +static void kvm_gicv3_init_cpu_reginfo(CPUState *cs) > +{ > + define_arm_cp_regs(ARM_CPU(cs), gicv3_cpuif_reginfo); > +} > > static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) > { > @@ -812,11 +816,8 @@ static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) > > gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL); > > - for (i = 0; i < s->num_cpu; i++) { > - ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); > - > - define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); > - } > + /* Initialize vCPU interface */ > + gicv3_init_cpuif(s); > > /* Try to create the device via the device control API */ > s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false); > @@ -902,6 +903,7 @@ static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) > > agcc->pre_save = kvm_arm_gicv3_get; > agcc->post_load = kvm_arm_gicv3_put; > + agcc->init_cpu_reginfo = kvm_gicv3_init_cpu_reginfo; > device_class_set_parent_realize(dc, kvm_arm_gicv3_realize, > &kgc->parent_realize); > resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL, > diff --git a/hw/intc/gicv3_internal.h b/hw/intc/gicv3_internal.h > index bc9f518fe8..cc8edc499b 100644 > --- a/hw/intc/gicv3_internal.h > +++ b/hw/intc/gicv3_internal.h > @@ -722,6 +722,7 @@ void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr); > > void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns); > void gicv3_init_cpuif(GICv3State *s); > +void gicv3_init_cpu_reginfo(CPUState *cs); > > /** > * gicv3_cpuif_update: > diff --git a/include/hw/intc/arm_gicv3_common.h b/include/hw/intc/arm_gicv3_common.h > index cd09bee3bc..7171f770e4 100644 > --- a/include/hw/intc/arm_gicv3_common.h > +++ b/include/hw/intc/arm_gicv3_common.h > @@ -338,6 +338,7 @@ struct ARMGICv3CommonClass { > > void (*pre_save)(GICv3State *s); > void (*post_load)(GICv3State *s); > + void (*init_cpu_reginfo)(CPUState *cs); > }; > > void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, Thanks, Gavin
diff --git a/hw/intc/arm_gicv3.c b/hw/intc/arm_gicv3.c index 58e18fff54..2a30625916 100644 --- a/hw/intc/arm_gicv3.c +++ b/hw/intc/arm_gicv3.c @@ -459,6 +459,7 @@ static void arm_gicv3_class_init(ObjectClass *klass, void *data) ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); agcc->post_load = arm_gicv3_post_load; + agcc->init_cpu_reginfo = gicv3_init_cpu_reginfo; device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); } diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c index ea1d1b3455..75a06d6f28 100644 --- a/hw/intc/arm_gicv3_cpuif.c +++ b/hw/intc/arm_gicv3_cpuif.c @@ -3025,143 +3025,138 @@ static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) gicv3_cpuif_virt_irq_fiq_update(cs); } -void gicv3_init_cpuif(GICv3State *s) +void gicv3_init_cpu_reginfo(CPUState *cs) { - /* Called from the GICv3 realize function; register our system - * registers with the CPU - */ - int i; + ARMCPU *cpu = ARM_CPU(cs); + GICv3CPUState *gcs = icc_cs_from_env(&cpu->env); - for (i = 0; i < s->num_cpu; i++) { - ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); - GICv3CPUState *cs = &s->cpu[i]; + /* + * If the CPU doesn't define a GICv3 configuration, probably because + * in real hardware it doesn't have one, then we use default values + * matching the one used by most Arm CPUs. This applies to: + * cpu->gic_num_lrs + * cpu->gic_vpribits + * cpu->gic_vprebits + * cpu->gic_pribits + */ - /* - * If the CPU doesn't define a GICv3 configuration, probably because - * in real hardware it doesn't have one, then we use default values - * matching the one used by most Arm CPUs. This applies to: - * cpu->gic_num_lrs - * cpu->gic_vpribits - * cpu->gic_vprebits - * cpu->gic_pribits - */ + /* + * Note that we can't just use the GICv3CPUState as an opaque pointer + * in define_arm_cp_regs_with_opaque(), because when we're called back + * it might be with code translated by CPU 0 but run by CPU 1, in + * which case we'd get the wrong value. + * So instead we define the regs with no ri->opaque info, and + * get back to the GICv3CPUState from the CPUARMState. + * + * These CP regs callbacks can be called from either TCG or HVF code. + */ + define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); - /* Note that we can't just use the GICv3CPUState as an opaque pointer - * in define_arm_cp_regs_with_opaque(), because when we're called back - * it might be with code translated by CPU 0 but run by CPU 1, in - * which case we'd get the wrong value. - * So instead we define the regs with no ri->opaque info, and - * get back to the GICv3CPUState from the CPUARMState. - * - * These CP regs callbacks can be called from either TCG or HVF code. - */ - define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); + /* + * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also + * implement FEAT_GICv3_NMI, which is the CPU interface part + * of NMI support. This is distinct from whether the GIC proper + * (redistributors and distributor) have NMI support. In QEMU + * that is a property of the GIC device in s->nmi_support; + * cs->nmi_support indicates the CPU interface's support. + */ + if (cpu_isar_feature(aa64_nmi, cpu)) { + gcs->nmi_support = true; + define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); + } - /* - * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also - * implement FEAT_GICv3_NMI, which is the CPU interface part - * of NMI support. This is distinct from whether the GIC proper - * (redistributors and distributor) have NMI support. In QEMU - * that is a property of the GIC device in s->nmi_support; - * cs->nmi_support indicates the CPU interface's support. - */ - if (cpu_isar_feature(aa64_nmi, cpu)) { - cs->nmi_support = true; - define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); - } + /* + * The CPU implementation specifies the number of supported + * bits of physical priority. For backwards compatibility + * of migration, we have a compat property that forces use + * of 8 priority bits regardless of what the CPU really has. + */ + if (gcs->gic->force_8bit_prio) { + gcs->pribits = 8; + } else { + gcs->pribits = cpu->gic_pribits ?: 5; + } - /* - * The CPU implementation specifies the number of supported - * bits of physical priority. For backwards compatibility - * of migration, we have a compat property that forces use - * of 8 priority bits regardless of what the CPU really has. - */ - if (s->force_8bit_prio) { - cs->pribits = 8; - } else { - cs->pribits = cpu->gic_pribits ?: 5; - } + /* + * The GICv3 has separate ID register fields for virtual priority + * and preemption bit values, but only a single ID register field + * for the physical priority bits. The preemption bit count is + * always the same as the priority bit count, except that 8 bits + * of priority means 7 preemption bits. We precalculate the + * preemption bits because it simplifies the code and makes the + * parallels between the virtual and physical bits of the GIC + * a bit clearer. + */ + gcs->prebits = gcs->pribits; + if (gcs->prebits == 8) { + gcs->prebits--; + } + /* + * Check that CPU code defining pribits didn't violate + * architectural constraints our implementation relies on. + */ + g_assert(gcs->pribits >= 4 && gcs->pribits <= 8); - /* - * The GICv3 has separate ID register fields for virtual priority - * and preemption bit values, but only a single ID register field - * for the physical priority bits. The preemption bit count is - * always the same as the priority bit count, except that 8 bits - * of priority means 7 preemption bits. We precalculate the - * preemption bits because it simplifies the code and makes the - * parallels between the virtual and physical bits of the GIC - * a bit clearer. - */ - cs->prebits = cs->pribits; - if (cs->prebits == 8) { - cs->prebits--; - } - /* - * Check that CPU code defining pribits didn't violate - * architectural constraints our implementation relies on. - */ - g_assert(cs->pribits >= 4 && cs->pribits <= 8); + /* + * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions + * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. + */ + if (gcs->prebits >= 6) { + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); + } + if (gcs->prebits == 7) { + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); + } - /* - * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions - * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. - */ - if (cs->prebits >= 6) { - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); - } - if (cs->prebits == 7) { - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); - } + if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { + int j; - if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { - int j; + gcs->num_list_regs = cpu->gic_num_lrs ?: 4; + gcs->vpribits = cpu->gic_vpribits ?: 5; + gcs->vprebits = cpu->gic_vprebits ?: 5; - cs->num_list_regs = cpu->gic_num_lrs ?: 4; - cs->vpribits = cpu->gic_vpribits ?: 5; - cs->vprebits = cpu->gic_vprebits ?: 5; - /* Check against architectural constraints: getting these - * wrong would be a bug in the CPU code defining these, - * and the implementation relies on them holding. - */ - g_assert(cs->vprebits <= cs->vpribits); - g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); - g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); + /* Check against architectural constraints: getting these + * wrong would be a bug in the CPU code defining these, + * and the implementation relies on them holding. + */ + g_assert(gcs->vprebits <= gcs->vpribits); + g_assert(gcs->vprebits >= 5 && gcs->vprebits <= 7); + g_assert(gcs->vpribits >= 5 && gcs->vpribits <= 8); - define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); + define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); - for (j = 0; j < cs->num_list_regs; j++) { - /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs - * are split into two cp15 regs, LR (the low part, with the - * same encoding as the AArch64 LR) and LRC (the high part). - */ - ARMCPRegInfo lr_regset[] = { - { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, - .crm = 12 + (j >> 3), .opc2 = j & 7, - .type = ARM_CP_IO | ARM_CP_NO_RAW, - .nv2_redirect_offset = 0x400 + 8 * j, - .access = PL2_RW, - .readfn = ich_lr_read, - .writefn = ich_lr_write, - }, - { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 12, - .crm = 14 + (j >> 3), .opc2 = j & 7, - .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL2_RW, - .readfn = ich_lr_read, - .writefn = ich_lr_write, - }, - }; - define_arm_cp_regs(cpu, lr_regset); - } - if (cs->vprebits >= 6) { - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); - } - if (cs->vprebits == 7) { - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); - } + for (j = 0; j < gcs->num_list_regs; j++) { + /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs + * are split into two cp15 regs, LR (the low part, with the + * same encoding as the AArch64 LR) and LRC (the high part). + */ + ARMCPRegInfo lr_regset[] = { + { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, + .crm = 12 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .nv2_redirect_offset = 0x400 + 8 * j, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 12, + .crm = 14 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + }; + define_arm_cp_regs(cpu, lr_regset); + } + if (gcs->vprebits >= 6) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); + } + if (gcs->vprebits == 7) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); } if (tcg_enabled() || qtest_enabled()) { /* @@ -3169,7 +3164,7 @@ void gicv3_init_cpuif(GICv3State *s) * state only changes on EL changes involving EL2 or EL3, so for * the non-TCG case this is OK, as EL2 and EL3 can't exist. */ - arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); + arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, gcs); } else { assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); diff --git a/hw/intc/arm_gicv3_cpuif_common.c b/hw/intc/arm_gicv3_cpuif_common.c index ff1239f65d..f4d5ca447b 100644 --- a/hw/intc/arm_gicv3_cpuif_common.c +++ b/hw/intc/arm_gicv3_cpuif_common.c @@ -20,3 +20,13 @@ void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) env->gicv3state = (void *)s; }; + +void gicv3_init_cpuif(GICv3State *s) +{ + ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_GET_CLASS(s); + + /* define and register `system registers` with the vCPU */ + for (int i = 0; i < s->num_cpu; i++) { + agcc->init_cpu_reginfo(s->cpu[i].cpu); + } +} diff --git a/hw/intc/arm_gicv3_kvm.c b/hw/intc/arm_gicv3_kvm.c index 9ea6b8e218..b4128786ca 100644 --- a/hw/intc/arm_gicv3_kvm.c +++ b/hw/intc/arm_gicv3_kvm.c @@ -777,6 +777,10 @@ static void vm_change_state_handler(void *opaque, bool running, } } +static void kvm_gicv3_init_cpu_reginfo(CPUState *cs) +{ + define_arm_cp_regs(ARM_CPU(cs), gicv3_cpuif_reginfo); +} static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) { @@ -812,11 +816,8 @@ static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL); - for (i = 0; i < s->num_cpu; i++) { - ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); - - define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); - } + /* Initialize vCPU interface */ + gicv3_init_cpuif(s); /* Try to create the device via the device control API */ s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false); @@ -902,6 +903,7 @@ static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) agcc->pre_save = kvm_arm_gicv3_get; agcc->post_load = kvm_arm_gicv3_put; + agcc->init_cpu_reginfo = kvm_gicv3_init_cpu_reginfo; device_class_set_parent_realize(dc, kvm_arm_gicv3_realize, &kgc->parent_realize); resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL, diff --git a/hw/intc/gicv3_internal.h b/hw/intc/gicv3_internal.h index bc9f518fe8..cc8edc499b 100644 --- a/hw/intc/gicv3_internal.h +++ b/hw/intc/gicv3_internal.h @@ -722,6 +722,7 @@ void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr); void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns); void gicv3_init_cpuif(GICv3State *s); +void gicv3_init_cpu_reginfo(CPUState *cs); /** * gicv3_cpuif_update: diff --git a/include/hw/intc/arm_gicv3_common.h b/include/hw/intc/arm_gicv3_common.h index cd09bee3bc..7171f770e4 100644 --- a/include/hw/intc/arm_gicv3_common.h +++ b/include/hw/intc/arm_gicv3_common.h @@ -338,6 +338,7 @@ struct ARMGICv3CommonClass { void (*pre_save)(GICv3State *s); void (*post_load)(GICv3State *s); + void (*init_cpu_reginfo)(CPUState *cs); }; void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,