Message ID | 1389371417-379-7-git-send-email-roy.franz@linaro.org (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
On 10 January 2014 17:30, Roy Franz <roy.franz@linaro.org> wrote: > This patch adds EFI stub support for the ARM Linux kernel. The EFI stub > operates similarly to the x86 stub: it is a shim between the EFI firmware > and the normal zImage entry point, and sets up the environment that the > zImage is expecting. This includes loading the initrd (optionaly) and > device tree from the system partition based on the kernel command line. > The stub updates the device tree as necessary, adding entries for EFI > runtime services. The PE/COFF "MZ" header at offset 0 results in the > first instruction being an add that corrupts r5, which is not used by > the zImage interface. > > Signed-off-by: Roy Franz <roy.franz@linaro.org> > Acked-by: Grant Likely <grant.likely@linaro.org> > --- [...] > diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S > new file mode 100644 > index 0000000..dbb7101 > --- /dev/null > +++ b/arch/arm/boot/compressed/efi-header.S > @@ -0,0 +1,117 @@ > +@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> > +@ > +@ This file contains the PE/COFF header that is part of the > +@ EFI stub. > +@ > + > + .org 0x3c > + @ > + @ The PE header can be anywhere in the file, but for > + @ simplicity we keep it together with the MSDOS header > + @ The offset to the PE/COFF header needs to be at offset > + @ 0x3C in the MSDOS header. > + @ The only 2 fields of the MSDOS header that are used are this > + @ PE/COFF offset, and the "MZ" bytes at offset 0x0. > + @ > + .long pe_header @ Offset to the PE header. > + > + .align 3 > +pe_header: > + .ascii "PE" > + .short 0 > + > +coff_header: > + .short 0x01c2 @ ARM or Thumb Could you explain why you are using 0x1c2 (Thumb) here and not 0x1c0 (ARM) ? Cheers, Ard.
On Fri, Jan 10, 2014 at 10:30 AM, Roy Franz <roy.franz@linaro.org> wrote: > This patch adds EFI stub support for the ARM Linux kernel. The EFI stub > operates similarly to the x86 stub: it is a shim between the EFI firmware > and the normal zImage entry point, and sets up the environment that the > zImage is expecting. This includes loading the initrd (optionaly) and > device tree from the system partition based on the kernel command line. > The stub updates the device tree as necessary, adding entries for EFI > runtime services. The PE/COFF "MZ" header at offset 0 results in the > first instruction being an add that corrupts r5, which is not used by > the zImage interface. > > Signed-off-by: Roy Franz <roy.franz@linaro.org> > Acked-by: Grant Likely <grant.likely@linaro.org> > --- [snip] > + /* Look up the base of DRAM from the device tree. */ > + fdt = (void *)fdt_addr; > + node = fdt_subnode_offset(fdt, 0, "memory"); > + region = fdt_getprop(fdt, node, "reg", NULL); > + if (region) { > + dram_base = fdt64_to_cpu(region->base); This will not work if the address is 32-bit size. > + } else { > + /* There is no way to get amount or addresses of physical > + * memory installed using EFI calls. If the device tree > + * we read from disk doesn't have this, there is no way > + * for us to construct this informaion. > + */ > + pr_efi_err(sys_table, "No 'memory' node in device tree.\n"); > + goto fail_free_fdt; The current pc can't be used to determine the DRAM base like AUTO_ZRELADDR? Rob
On Tue, Jan 14, 2014 at 11:29 AM, Rob Herring <robherring2@gmail.com> wrote: > On Fri, Jan 10, 2014 at 10:30 AM, Roy Franz <roy.franz@linaro.org> wrote: >> This patch adds EFI stub support for the ARM Linux kernel. The EFI stub >> operates similarly to the x86 stub: it is a shim between the EFI firmware >> and the normal zImage entry point, and sets up the environment that the >> zImage is expecting. This includes loading the initrd (optionaly) and >> device tree from the system partition based on the kernel command line. >> The stub updates the device tree as necessary, adding entries for EFI >> runtime services. The PE/COFF "MZ" header at offset 0 results in the >> first instruction being an add that corrupts r5, which is not used by >> the zImage interface. >> >> Signed-off-by: Roy Franz <roy.franz@linaro.org> >> Acked-by: Grant Likely <grant.likely@linaro.org> >> --- > > [snip] > >> + /* Look up the base of DRAM from the device tree. */ >> + fdt = (void *)fdt_addr; >> + node = fdt_subnode_offset(fdt, 0, "memory"); >> + region = fdt_getprop(fdt, node, "reg", NULL); >> + if (region) { >> + dram_base = fdt64_to_cpu(region->base); > > This will not work if the address is 32-bit size. > >> + } else { >> + /* There is no way to get amount or addresses of physical >> + * memory installed using EFI calls. If the device tree >> + * we read from disk doesn't have this, there is no way >> + * for us to construct this informaion. >> + */ >> + pr_efi_err(sys_table, "No 'memory' node in device tree.\n"); >> + goto fail_free_fdt; > > The current pc can't be used to determine the DRAM base like AUTO_ZRELADDR? > > Rob Hi Rob, UEFI may load the stub based kernel anywhere, so we don't get any useful information from where we were loaded. I am currently working on getting the base address from the EFI memory map, so all of the above code will go away, the only FDT operations that the stub will perform is to add the EFI related fields. Roy
On Tue, Jan 14, 2014 at 1:05 AM, Ard Biesheuvel <ard.biesheuvel@linaro.org> wrote: > On 10 January 2014 17:30, Roy Franz <roy.franz@linaro.org> wrote: >> This patch adds EFI stub support for the ARM Linux kernel. The EFI stub >> operates similarly to the x86 stub: it is a shim between the EFI firmware >> and the normal zImage entry point, and sets up the environment that the >> zImage is expecting. This includes loading the initrd (optionaly) and >> device tree from the system partition based on the kernel command line. >> The stub updates the device tree as necessary, adding entries for EFI >> runtime services. The PE/COFF "MZ" header at offset 0 results in the >> first instruction being an add that corrupts r5, which is not used by >> the zImage interface. >> >> Signed-off-by: Roy Franz <roy.franz@linaro.org> >> Acked-by: Grant Likely <grant.likely@linaro.org> >> --- > > [...] > >> diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S >> new file mode 100644 >> index 0000000..dbb7101 >> --- /dev/null >> +++ b/arch/arm/boot/compressed/efi-header.S >> @@ -0,0 +1,117 @@ >> +@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> >> +@ >> +@ This file contains the PE/COFF header that is part of the >> +@ EFI stub. >> +@ >> + >> + .org 0x3c >> + @ >> + @ The PE header can be anywhere in the file, but for >> + @ simplicity we keep it together with the MSDOS header >> + @ The offset to the PE/COFF header needs to be at offset >> + @ 0x3C in the MSDOS header. >> + @ The only 2 fields of the MSDOS header that are used are this >> + @ PE/COFF offset, and the "MZ" bytes at offset 0x0. >> + @ >> + .long pe_header @ Offset to the PE header. >> + >> + .align 3 >> +pe_header: >> + .ascii "PE" >> + .short 0 >> + >> +coff_header: >> + .short 0x01c2 @ ARM or Thumb > > Could you explain why you are using 0x1c2 (Thumb) here and not 0x1c0 (ARM) ? > > Cheers, > Ard. Nope. It should be 0x1c0. Roy
On Tue, Jan 14, 2014 at 5:47 PM, Roy Franz <roy.franz@linaro.org> wrote: > On Tue, Jan 14, 2014 at 1:05 AM, Ard Biesheuvel > <ard.biesheuvel@linaro.org> wrote: >> On 10 January 2014 17:30, Roy Franz <roy.franz@linaro.org> wrote: >>> This patch adds EFI stub support for the ARM Linux kernel. The EFI stub >>> operates similarly to the x86 stub: it is a shim between the EFI firmware >>> and the normal zImage entry point, and sets up the environment that the >>> zImage is expecting. This includes loading the initrd (optionaly) and >>> device tree from the system partition based on the kernel command line. >>> The stub updates the device tree as necessary, adding entries for EFI >>> runtime services. The PE/COFF "MZ" header at offset 0 results in the >>> first instruction being an add that corrupts r5, which is not used by >>> the zImage interface. >>> >>> Signed-off-by: Roy Franz <roy.franz@linaro.org> >>> Acked-by: Grant Likely <grant.likely@linaro.org> >>> --- >> >> [...] >> >>> diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S >>> new file mode 100644 >>> index 0000000..dbb7101 >>> --- /dev/null >>> +++ b/arch/arm/boot/compressed/efi-header.S >>> @@ -0,0 +1,117 @@ >>> +@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> >>> +@ >>> +@ This file contains the PE/COFF header that is part of the >>> +@ EFI stub. >>> +@ >>> + >>> + .org 0x3c >>> + @ >>> + @ The PE header can be anywhere in the file, but for >>> + @ simplicity we keep it together with the MSDOS header >>> + @ The offset to the PE/COFF header needs to be at offset >>> + @ 0x3C in the MSDOS header. >>> + @ The only 2 fields of the MSDOS header that are used are this >>> + @ PE/COFF offset, and the "MZ" bytes at offset 0x0. >>> + @ >>> + .long pe_header @ Offset to the PE header. >>> + >>> + .align 3 >>> +pe_header: >>> + .ascii "PE" >>> + .short 0 >>> + >>> +coff_header: >>> + .short 0x01c2 @ ARM or Thumb >> >> Could you explain why you are using 0x1c2 (Thumb) here and not 0x1c0 (ARM) ? >> >> Cheers, >> Ard. > > Nope. It should be 0x1c0. > > Roy OK, now I resolved the nagging feeling that I had already fixed this... Right now, the EDK2 UEFI implementation requires the machine type for ARM to be "0x1c2". I don't think that this is correct, but correcting this in EDK2 slipped through the cracks, but is now back on my todo list. I think that for now we should leave this as 0x1c2 so that the unpatched EDK2 builds will boot it, and some time after EDK2 is updated this can be changed. I'll work on a patch for EDK2 and get the discussion going on that list to resolve this in EDK2. Roy
On 15 January 2014 03:16, Roy Franz <roy.franz@linaro.org> wrote: > On Tue, Jan 14, 2014 at 5:47 PM, Roy Franz <roy.franz@linaro.org> wrote: >> On Tue, Jan 14, 2014 at 1:05 AM, Ard Biesheuvel >> <ard.biesheuvel@linaro.org> wrote: >>> On 10 January 2014 17:30, Roy Franz <roy.franz@linaro.org> wrote: >>>> This patch adds EFI stub support for the ARM Linux kernel. The EFI stub >>>> operates similarly to the x86 stub: it is a shim between the EFI firmware >>>> and the normal zImage entry point, and sets up the environment that the >>>> zImage is expecting. This includes loading the initrd (optionaly) and >>>> device tree from the system partition based on the kernel command line. >>>> The stub updates the device tree as necessary, adding entries for EFI >>>> runtime services. The PE/COFF "MZ" header at offset 0 results in the >>>> first instruction being an add that corrupts r5, which is not used by >>>> the zImage interface. >>>> >>>> Signed-off-by: Roy Franz <roy.franz@linaro.org> >>>> Acked-by: Grant Likely <grant.likely@linaro.org> >>>> --- >>> >>> [...] >>> >>>> diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S >>>> new file mode 100644 >>>> index 0000000..dbb7101 >>>> --- /dev/null >>>> +++ b/arch/arm/boot/compressed/efi-header.S >>>> @@ -0,0 +1,117 @@ >>>> +@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> >>>> +@ >>>> +@ This file contains the PE/COFF header that is part of the >>>> +@ EFI stub. >>>> +@ >>>> + >>>> + .org 0x3c >>>> + @ >>>> + @ The PE header can be anywhere in the file, but for >>>> + @ simplicity we keep it together with the MSDOS header >>>> + @ The offset to the PE/COFF header needs to be at offset >>>> + @ 0x3C in the MSDOS header. >>>> + @ The only 2 fields of the MSDOS header that are used are this >>>> + @ PE/COFF offset, and the "MZ" bytes at offset 0x0. >>>> + @ >>>> + .long pe_header @ Offset to the PE header. >>>> + >>>> + .align 3 Btw you also have a whitespace error here. >>>> +pe_header: >>>> + .ascii "PE" >>>> + .short 0 >>>> + >>>> +coff_header: >>>> + .short 0x01c2 @ ARM or Thumb >>> >>> Could you explain why you are using 0x1c2 (Thumb) here and not 0x1c0 (ARM) ? >>> >>> Cheers, >>> Ard. >> >> Nope. It should be 0x1c0. >> >> Roy > > OK, now I resolved the nagging feeling that I had already fixed > this... Right now, the EDK2 UEFI implementation > requires the machine type for ARM to be "0x1c2". I don't think that > this is correct, but correcting this in EDK2 slipped through > the cracks, but is now back on my todo list. > > I think that for now we should leave this as 0x1c2 so that the > unpatched EDK2 builds will boot it, and some time after EDK2 is > updated > this can be changed. I'll work on a patch for EDK2 and get the > discussion going on that list to resolve this in EDK2. > OK. I have updated sbsigntool (Linaro's version) so it supports either, but I agree that using the ARM constant is the correct way.
On Tue, Jan 14, 2014 at 06:16:58PM -0800, Roy Franz wrote: > >>> + .align 3 > >>> +pe_header: > >>> + .ascii "PE" > >>> + .short 0 > >>> + > >>> +coff_header: > >>> + .short 0x01c2 @ ARM or Thumb > >> > >> Could you explain why you are using 0x1c2 (Thumb) here and not 0x1c0 (ARM) ? > > > > Nope. It should be 0x1c0. > > OK, now I resolved the nagging feeling that I had already fixed > this... Right now, the EDK2 UEFI implementation > requires the machine type for ARM to be "0x1c2". I don't think that > this is correct, but correcting this in EDK2 slipped through > the cracks, but is now back on my todo list. Nope, it should be 0x1c2. 0x1c0 is the COFF code for ARM only, which corresponds roughly with OABI - which is not supported (and never will be) by the UEFI specification. 0x1c2 means ARM or Thumb (Interworking), which is what we have. The UEFI specification (correctly) neglects to even mention 0x1c0 and 0x1c4. Do also note that the COFF information relates to the executable, the stub. The rest of the kernel image is just a blob as far as UEFI is concerned. > I think that for now we should leave this as 0x1c2 so that the > unpatched EDK2 builds will boot it, and some time after EDK2 is > updated > this can be changed. I'll work on a patch for EDK2 and get the > discussion going on that list to resolve this in EDK2. No need. / Leif
diff --git a/arch/arm/boot/compressed/Makefile b/arch/arm/boot/compressed/Makefile index e7190bb..c0c7fee 100644 --- a/arch/arm/boot/compressed/Makefile +++ b/arch/arm/boot/compressed/Makefile @@ -99,11 +99,22 @@ libfdt_objs := $(addsuffix .o, $(basename $(libfdt))) $(addprefix $(obj)/,$(libfdt) $(libfdt_hdrs)): $(obj)/%: $(srctree)/scripts/dtc/libfdt/% $(call cmd,shipped) -$(addprefix $(obj)/,$(libfdt_objs) atags_to_fdt.o): \ +$(addprefix $(obj)/,$(libfdt_objs) atags_to_fdt.o efi-stub.o): \ $(addprefix $(obj)/,$(libfdt_hdrs)) ifeq ($(CONFIG_ARM_ATAG_DTB_COMPAT),y) -OBJS += $(libfdt_objs) atags_to_fdt.o +OBJS += atags_to_fdt.o +USE_LIBFDT = y +endif + +ifeq ($(CONFIG_EFI_STUB),y) +CFLAGS_efi-stub.o += -DTEXT_OFFSET=$(TEXT_OFFSET) +OBJS += efi-stub.o +USE_LIBFDT = y +endif + +ifeq ($(USE_LIBFDT),y) +OBJS += $(libfdt_objs) endif targets := vmlinux vmlinux.lds \ diff --git a/arch/arm/boot/compressed/efi-header.S b/arch/arm/boot/compressed/efi-header.S new file mode 100644 index 0000000..dbb7101 --- /dev/null +++ b/arch/arm/boot/compressed/efi-header.S @@ -0,0 +1,117 @@ +@ Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> +@ +@ This file contains the PE/COFF header that is part of the +@ EFI stub. +@ + + .org 0x3c + @ + @ The PE header can be anywhere in the file, but for + @ simplicity we keep it together with the MSDOS header + @ The offset to the PE/COFF header needs to be at offset + @ 0x3C in the MSDOS header. + @ The only 2 fields of the MSDOS header that are used are this + @ PE/COFF offset, and the "MZ" bytes at offset 0x0. + @ + .long pe_header @ Offset to the PE header. + + .align 3 +pe_header: + .ascii "PE" + .short 0 + +coff_header: + .short 0x01c2 @ ARM or Thumb + .short 2 @ nr_sections + .long 0 @ TimeDateStamp + .long 0 @ PointerToSymbolTable + .long 1 @ NumberOfSymbols + .short section_table - optional_header @ SizeOfOptionalHeader + .short 0x306 @ Characteristics. + @ IMAGE_FILE_32BIT_MACHINE | + @ IMAGE_FILE_DEBUG_STRIPPED | + @ IMAGE_FILE_EXECUTABLE_IMAGE | + @ IMAGE_FILE_LINE_NUMS_STRIPPED + +optional_header: + .short 0x10b @ PE32 format + .byte 0x02 @ MajorLinkerVersion + .byte 0x14 @ MinorLinkerVersion + + .long _edata - efi_stub_entry @ SizeOfCode + + .long 0 @ SizeOfInitializedData + .long 0 @ SizeOfUninitializedData + + .long efi_stub_entry @ AddressOfEntryPoint + .long efi_stub_entry @ BaseOfCode + .long 0 @ data + +extra_header_fields: + .long 0 @ ImageBase + .long 0x20 @ SectionAlignment + .long 0x8 @ FileAlignment + .short 0 @ MajorOperatingSystemVersion + .short 0 @ MinorOperatingSystemVersion + .short 0 @ MajorImageVersion + .short 0 @ MinorImageVersion + .short 0 @ MajorSubsystemVersion + .short 0 @ MinorSubsystemVersion + .long 0 @ Win32VersionValue + + .long _edata @ SizeOfImage + + @ Everything before the entry point is considered part of the header + .long efi_stub_entry @ SizeOfHeaders + .long 0 @ CheckSum + .short 0xa @ Subsystem (EFI application) + .short 0 @ DllCharacteristics + .long 0 @ SizeOfStackReserve + .long 0 @ SizeOfStackCommit + .long 0 @ SizeOfHeapReserve + .long 0 @ SizeOfHeapCommit + .long 0 @ LoaderFlags + .long 0x6 @ NumberOfRvaAndSizes + + .quad 0 @ ExportTable + .quad 0 @ ImportTable + .quad 0 @ ResourceTable + .quad 0 @ ExceptionTable + .quad 0 @ CertificationTable + .quad 0 @ BaseRelocationTable + # Section table +section_table: + + # + # The EFI application loader requires a relocation section + # because EFI applications must be relocatable. This is a + # dummy section as far as we are concerned. + # + .ascii ".reloc" + .byte 0 + .byte 0 @ end of 0 padding of section name + .long 0 + .long 0 + .long 0 @ SizeOfRawData + .long 0 @ PointerToRawData + .long 0 @ PointerToRelocations + .long 0 @ PointerToLineNumbers + .short 0 @ NumberOfRelocations + .short 0 @ NumberOfLineNumbers + .long 0x42100040 @ Characteristics (section flags) + + + .ascii ".text" + .byte 0 + .byte 0 + .byte 0 @ end of 0 padding of section name + .long _edata - efi_stub_entry @ VirtualSize + .long efi_stub_entry @ VirtualAddress + .long _edata - efi_stub_entry @ SizeOfRawData + .long efi_stub_entry @ PointerToRawData + + .long 0 @ PointerToRelocations (0 for executables) + .long 0 @ PointerToLineNumbers (0 for executables) + .short 0 @ NumberOfRelocations (0 for executables) + .short 0 @ NumberOfLineNumbers (0 for executables) + .long 0xe0500020 @ Characteristics (section flags) diff --git a/arch/arm/boot/compressed/efi-stub.c b/arch/arm/boot/compressed/efi-stub.c new file mode 100644 index 0000000..7d5feb3 --- /dev/null +++ b/arch/arm/boot/compressed/efi-stub.c @@ -0,0 +1,214 @@ +/* + * linux/arch/arm/boot/compressed/efi-stub.c + * + * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> + * + * This file implements the EFI boot stub for the ARM kernel + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/efi.h> +#include <libfdt.h> +#include "efi-stub.h" + +/* EFI function call wrappers. These are not required for + * ARM, but wrappers are required for X86 to convert between + * ABIs. These wrappers are provided to allow code sharing + * between X86 and ARM. Since these wrappers directly invoke the + * EFI function pointer, the function pointer type must be properly + * defined, which is not the case for X86 One advantage of this is + * it allows for type checking of arguments, which is not + * possible with the X86 wrappers. + */ +#define efi_call_phys0(f) f() +#define efi_call_phys1(f, a1) f(a1) +#define efi_call_phys2(f, a1, a2) f(a1, a2) +#define efi_call_phys3(f, a1, a2, a3) f(a1, a2, a3) +#define efi_call_phys4(f, a1, a2, a3, a4) f(a1, a2, a3, a4) +#define efi_call_phys5(f, a1, a2, a3, a4, a5) f(a1, a2, a3, a4, a5) + +/* The maximum uncompressed kernel size is 32 MBytes, so we will reserve + * that for the decompressed kernel. We have no easy way to tell what + * the actuall size of code + data the uncompressed kernel will use. + */ +#define MAX_UNCOMP_KERNEL_SIZE 0x02000000 + +/* The kernel zImage should be located between 32 Mbytes + * and 128 MBytes from the base of DRAM. The min + * address leaves space for a maximal size uncompressed image, + * and the max address is due to how the zImage decompressor + * picks a destination address. + */ +#define ZIMAGE_OFFSET_LIMIT 0x08000000 +#define MIN_ZIMAGE_OFFSET MAX_UNCOMP_KERNEL_SIZE + +/* Include shared EFI stub code, and required headers. */ +#include "../../../../include/generated/compile.h" +#include "../../../../include/generated/utsrelease.h" +#include "../../../../drivers/firmware/efi/efi-stub-helper.c" +#include "../../../../drivers/firmware/efi/fdt.c" + + +int efi_entry(void *handle, efi_system_table_t *sys_table, + unsigned long *zimage_addr) +{ + efi_loaded_image_t *image; + int status; + unsigned long nr_pages; + const struct fdt_region *region; + + void *fdt; + int err; + int node; + unsigned long zimage_size = 0; + unsigned long dram_base; + /* addr/point and size pairs for memory management*/ + unsigned long initrd_addr; + unsigned long initrd_size = 0; + unsigned long fdt_addr; + unsigned long fdt_size = 0; + efi_physical_addr_t kernel_reserve_addr; + unsigned long kernel_reserve_size = 0; + char *cmdline_ptr; + int cmdline_size = 0; + + + unsigned long new_fdt_addr; + + /* Check if we were booted by the EFI firmware */ + if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) + goto fail; + + pr_efi(sys_table, "Booting Linux using EFI stub.\n"); + + /* Get the command line from EFI, using the LOADED_IMAGE + * protocol. We are going to copy the command line into the + * device tree, so this memory just needs to not conflict with + * boot protocol requirements. + */ + efi_get_cmdline(sys_table, &image, handle, &cmdline_ptr); + if (!cmdline_ptr) { + pr_efi_err(sys_table, "Unable to allocate memory for command line.\n"); + goto fail; + } + + /* We first load the device tree, as we need to get the base address of + * DRAM from the device tree. The zImage, device tree, and initrd + * have address restrictions that are relative to the base of DRAM. + */ + status = handle_cmdline_files(sys_table, image, cmdline_ptr, "dtb=", + 0xffffffff, &fdt_addr, &fdt_size); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Unable to load device tree blob.\n"); + goto fail_free_cmdline; + } + + err = fdt_check_header((void *)fdt_addr); + if (err != 0) { + pr_efi_err(sys_table, "Device tree header not valid.\n"); + goto fail_free_fdt; + } + if (fdt_totalsize((void *)fdt_addr) > fdt_size) { + pr_efi_err(sys_table, "Incomplete device tree.\n"); + goto fail_free_fdt; + + } + + + /* Look up the base of DRAM from the device tree. */ + fdt = (void *)fdt_addr; + node = fdt_subnode_offset(fdt, 0, "memory"); + region = fdt_getprop(fdt, node, "reg", NULL); + if (region) { + dram_base = fdt64_to_cpu(region->base); + } else { + /* There is no way to get amount or addresses of physical + * memory installed using EFI calls. If the device tree + * we read from disk doesn't have this, there is no way + * for us to construct this informaion. + */ + pr_efi_err(sys_table, "No 'memory' node in device tree.\n"); + goto fail_free_fdt; + } + + /* Reserve memory for the uncompressed kernel image. This is + * all that prevents any future allocations from conflicting + * with the kernel. Since we can't tell from the compressed + * image how much DRAM the kernel actually uses (due to BSS + * size uncertainty) we allocate the maximum possible size. + */ + kernel_reserve_addr = dram_base; + kernel_reserve_size = MAX_UNCOMP_KERNEL_SIZE; + nr_pages = round_up(kernel_reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; + status = efi_call_phys4(sys_table->boottime->allocate_pages, + EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, + nr_pages, &kernel_reserve_addr); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n"); + goto fail_free_fdt; + } + + /* Relocate the zImage, if required. ARM doesn't have a + * preferred address, so we set it to 0, as we want to allocate + * as low in memory as possible. + */ + zimage_size = image->image_size; + status = efi_relocate_kernel(sys_table, zimage_addr, zimage_size, + zimage_size, 0, 0); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Failed to relocate kernel.\n"); + goto fail_free_kernel_reserve; + } + + /* Check to see if we were able to allocate memory low enough + * in memory. + */ + if (*zimage_addr + zimage_size > dram_base + ZIMAGE_OFFSET_LIMIT) { + pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n"); + goto fail_free_zimage; + } + status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=", + dram_base + ZIMAGE_OFFSET_LIMIT, + &initrd_addr, &initrd_size); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Unable to load initrd.\n"); + goto fail_free_zimage; + } + + + /* + * Now we need to allocate new memory for the final FDT so that + * we can add EFI and command line related fields to it. + * This function will allocate the new FDT and update it, + * retrying memory allocations if they are too small. + * It also call + */ + status = allocate_new_fdt_and_exit_boot(sys_table, handle, + &new_fdt_addr, + dram_base + ZIMAGE_OFFSET_LIMIT, + initrd_addr, initrd_size, + cmdline_ptr, fdt_addr, + fdt_size); + if (status == EFI_SUCCESS) + return new_fdt_addr; + + efi_free(sys_table, initrd_size, initrd_addr); + +fail_free_zimage: + efi_free(sys_table, zimage_size, *zimage_addr); + +fail_free_kernel_reserve: + efi_free(sys_table, kernel_reserve_size, kernel_reserve_addr); + +fail_free_fdt: + efi_free(sys_table, fdt_size, fdt_addr); + +fail_free_cmdline: + efi_free(sys_table, cmdline_size, (u32)cmdline_ptr); + +fail: + return EFI_STUB_ERROR; +} diff --git a/arch/arm/boot/compressed/efi-stub.h b/arch/arm/boot/compressed/efi-stub.h new file mode 100644 index 0000000..0fe9376 --- /dev/null +++ b/arch/arm/boot/compressed/efi-stub.h @@ -0,0 +1,5 @@ +#ifndef _ARM_EFI_STUB_H +#define _ARM_EFI_STUB_H +/* Error code returned to ASM code instead of valid FDT address. */ +#define EFI_STUB_ERROR (~0) +#endif diff --git a/arch/arm/boot/compressed/head.S b/arch/arm/boot/compressed/head.S index 066b034..eeb394c 100644 --- a/arch/arm/boot/compressed/head.S +++ b/arch/arm/boot/compressed/head.S @@ -10,6 +10,7 @@ */ #include <linux/linkage.h> #include <asm/assembler.h> +#include "efi-stub.h" .arch armv7-a /* @@ -120,22 +121,93 @@ */ .align .arm @ Always enter in ARM state + .text start: .type start,#function - .rept 7 +#ifdef CONFIG_EFI_STUB + @ Magic MSDOS signature for PE/COFF + ADD opcode + @ the EFI stub only supports little endian, as the EFI functions + @ it invokes are little endian. + .word 0x62805a4d +#else + mov r0, r0 +#endif + .rept 5 mov r0, r0 .endr - ARM( mov r0, r0 ) - ARM( b 1f ) - THUMB( adr r12, BSYM(1f) ) - THUMB( bx r12 ) + + adrl r12, BSYM(zimage_continue) + ARM( mov pc, r12 ) + THUMB( bx r12 ) + @ zimage_continue will be in ARM or thumb mode as configured .word 0x016f2818 @ Magic numbers to help the loader .word start @ absolute load/run zImage address .word _edata @ zImage end address + +#ifdef CONFIG_EFI_STUB + @ Portions of the MSDOS file header must be at offset + @ 0x3c from the start of the file. All PE/COFF headers + @ are kept contiguous for simplicity. +#include "efi-header.S" + +efi_stub_entry: + @ The EFI stub entry point is not at a fixed address, however + @ this address must be set in the PE/COFF header. + @ EFI entry point is in A32 mode, switch to T32 if configured. + THUMB( adr r12, BSYM(1f) ) + THUMB( bx r12 ) THUMB( .thumb ) 1: ARM_BE8( setend be ) @ go BE8 if compiled for BE8 + @ Save lr on stack for possible return to EFI firmware. + @ Don't care about fp, but need 64 bit alignment.... + stmfd sp!, {fp, lr} + + @ allocate space on stack for passing current zImage address + @ and for the EFI stub to return of new entry point of + @ zImage, as EFI stub may copy the kernel. Pointer address + @ is passed in r2. r0 and r1 are passed through from the + @ EFI firmware to efi_entry + adr r3, start + str r3, [sp, #-8]! + mov r2, sp @ pass pointer in r2 + bl efi_entry + ldr r3, [sp], #8 @ get new zImage address from stack + + @ Check for error return from EFI stub. r0 has FDT address + @ or EFI_STUB_ERROR error code. + cmp r0, #EFI_STUB_ERROR + beq efi_load_fail + + @ Save return values of efi_entry + stmfd sp!, {r0, r3} + bl cache_clean_flush + bl cache_off + ldmfd sp!, {r0, r3} + + @ Set parameters for booting zImage according to boot protocol + @ put FDT address in r2, it was returned by efi_entry() + @ r1 is FDT machine type, and r0 needs to be 0 + mov r2, r0 + mov r1, #0xFFFFFFFF + mov r0, #0 + + @ Branch to (possibly) relocated zImage that is in r3 + @ Make sure we are in A32 mode, as zImage requires + THUMB( bx r3 ) + ARM( mov pc, r3 ) + +efi_load_fail: + @ Return EFI_LOAD_ERROR to EFI firmware on error. + @ Switch back to ARM mode for EFI is done based on + @ return address on stack in case we are in THUMB mode + ldr r0, =0x80000001 + ldmfd sp!, {fp, pc} @ put lr from stack into pc +#endif + + THUMB( .thumb ) +zimage_continue: mrs r9, cpsr #ifdef CONFIG_ARM_VIRT_EXT bl __hyp_stub_install @ get into SVC mode, reversibly @@ -168,7 +240,6 @@ not_angel: * by the linker here, but it should preserve r7, r8, and r9. */ - .text #ifdef CONFIG_AUTO_ZRELADDR @ determine final kernel image address