diff mbox

crypto: mcryptd: protect the per-CPU queue with a lock

Message ID 20171130123927.GA12606@linutronix.de (mailing list archive)
State Accepted
Delegated to: Herbert Xu
Headers show

Commit Message

Sebastian Andrzej Siewior Nov. 30, 2017, 12:39 p.m. UTC
mcryptd_enqueue_request() grabs the per-CPU queue struct and protects
access to it with disabled preemption. Then it schedules a worker on the
same CPU. The worker in mcryptd_queue_worker() guards access to the same
per-CPU variable with disabled preemption.

If we take CPU-hotplug into account then it is possible that between
queue_work_on() and the actual invocation of the worker the CPU goes
down and the worker will be scheduled on _another_ CPU. And here the
preempt_disable() protection does not work anymore. The easiest thing is
to add a spin_lock() to guard access to the list.

Another detail: mcryptd_queue_worker() is not processing more than
MCRYPTD_BATCH invocation in a row. If there are still items left, then
it will invoke queue_work() to proceed with more later. *I* would
suggest to simply drop that check because it does not use a system
workqueue and the workqueue is already marked as "CPU_INTENSIVE". And if
preemption is required then the scheduler should do it.
However if queue_work() is used then the work item is marked as CPU
unbound. That means it will try to run on the local CPU but it may run
on another CPU as well. Especially with CONFIG_DEBUG_WQ_FORCE_RR_CPU=y.
Again, the preempt_disable() won't work here but lock which was
introduced will help.
In order to keep work-item on the local CPU (and avoid RR) I changed it
to queue_work_on().

Cc: stable@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
---
 crypto/mcryptd.c         | 23 ++++++++++-------------
 include/crypto/mcryptd.h |  1 +
 2 files changed, 11 insertions(+), 13 deletions(-)

Comments

Herbert Xu Dec. 11, 2017, 11:46 a.m. UTC | #1
On Thu, Nov 30, 2017 at 01:39:27PM +0100, Sebastian Andrzej Siewior wrote:
> mcryptd_enqueue_request() grabs the per-CPU queue struct and protects
> access to it with disabled preemption. Then it schedules a worker on the
> same CPU. The worker in mcryptd_queue_worker() guards access to the same
> per-CPU variable with disabled preemption.
> 
> If we take CPU-hotplug into account then it is possible that between
> queue_work_on() and the actual invocation of the worker the CPU goes
> down and the worker will be scheduled on _another_ CPU. And here the
> preempt_disable() protection does not work anymore. The easiest thing is
> to add a spin_lock() to guard access to the list.
> 
> Another detail: mcryptd_queue_worker() is not processing more than
> MCRYPTD_BATCH invocation in a row. If there are still items left, then
> it will invoke queue_work() to proceed with more later. *I* would
> suggest to simply drop that check because it does not use a system
> workqueue and the workqueue is already marked as "CPU_INTENSIVE". And if
> preemption is required then the scheduler should do it.
> However if queue_work() is used then the work item is marked as CPU
> unbound. That means it will try to run on the local CPU but it may run
> on another CPU as well. Especially with CONFIG_DEBUG_WQ_FORCE_RR_CPU=y.
> Again, the preempt_disable() won't work here but lock which was
> introduced will help.
> In order to keep work-item on the local CPU (and avoid RR) I changed it
> to queue_work_on().
> 
> Cc: stable@vger.kernel.org
> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>

Patch applied.  Thanks.
diff mbox

Patch

diff --git a/crypto/mcryptd.c b/crypto/mcryptd.c
index 4e6472658852..eca04d3729b3 100644
--- a/crypto/mcryptd.c
+++ b/crypto/mcryptd.c
@@ -81,6 +81,7 @@  static int mcryptd_init_queue(struct mcryptd_queue *queue,
 		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
 		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
+		spin_lock_init(&cpu_queue->q_lock);
 	}
 	return 0;
 }
@@ -104,15 +105,16 @@  static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
 	int cpu, err;
 	struct mcryptd_cpu_queue *cpu_queue;
 
-	cpu = get_cpu();
-	cpu_queue = this_cpu_ptr(queue->cpu_queue);
-	rctx->tag.cpu = cpu;
+	cpu_queue = raw_cpu_ptr(queue->cpu_queue);
+	spin_lock(&cpu_queue->q_lock);
+	cpu = smp_processor_id();
+	rctx->tag.cpu = smp_processor_id();
 
 	err = crypto_enqueue_request(&cpu_queue->queue, request);
 	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
 		 cpu, cpu_queue, request);
+	spin_unlock(&cpu_queue->q_lock);
 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
-	put_cpu();
 
 	return err;
 }
@@ -161,16 +163,11 @@  static void mcryptd_queue_worker(struct work_struct *work)
 	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
 	i = 0;
 	while (i < MCRYPTD_BATCH || single_task_running()) {
-		/*
-		 * preempt_disable/enable is used to prevent
-		 * being preempted by mcryptd_enqueue_request()
-		 */
-		local_bh_disable();
-		preempt_disable();
+
+		spin_lock_bh(&cpu_queue->q_lock);
 		backlog = crypto_get_backlog(&cpu_queue->queue);
 		req = crypto_dequeue_request(&cpu_queue->queue);
-		preempt_enable();
-		local_bh_enable();
+		spin_unlock_bh(&cpu_queue->q_lock);
 
 		if (!req) {
 			mcryptd_opportunistic_flush();
@@ -185,7 +182,7 @@  static void mcryptd_queue_worker(struct work_struct *work)
 		++i;
 	}
 	if (cpu_queue->queue.qlen)
-		queue_work(kcrypto_wq, &cpu_queue->work);
+		queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
 }
 
 void mcryptd_flusher(struct work_struct *__work)
diff --git a/include/crypto/mcryptd.h b/include/crypto/mcryptd.h
index cceafa01f907..b67404fc4b34 100644
--- a/include/crypto/mcryptd.h
+++ b/include/crypto/mcryptd.h
@@ -27,6 +27,7 @@  static inline struct mcryptd_ahash *__mcryptd_ahash_cast(
 
 struct mcryptd_cpu_queue {
 	struct crypto_queue queue;
+	spinlock_t q_lock;
 	struct work_struct work;
 };