Patchwork [6/7] psi: pressure stall information for CPU, memory, and IO

login
register
mail settings
Submitter Johannes Weiner
Date May 7, 2018, 9:01 p.m.
Message ID <20180507210135.1823-7-hannes@cmpxchg.org>
Download mbox | patch
Permalink /patch/10384799/
State New
Headers show

Comments

Johannes Weiner - May 7, 2018, 9:01 p.m.
When systems are overcommitted and resources become contended, it's
hard to tell exactly the impact this has on workload productivity, or
how close the system is to lockups and OOM kills. In particular, when
machines work multiple jobs concurrently, the impact of overcommit in
terms of latency and throughput on the individual job can be enormous.

In order to maximize hardware utilization without sacrificing
individual job health or risk complete machine lockups, this patch
implements a way to quantify resource pressure in the system.

A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or
IO, respectively. Stall states are aggregate versions of the per-task
delay accounting delays:

       cpu: some tasks are runnable but not executing on a CPU
       memory: tasks are reclaiming, or waiting for swapin or thrashing cache
       io: tasks are waiting for io completions

These percentages of walltime can be thought of as pressure
percentages, and they give a general sense of system health and
productivity loss incurred by resource overcommit. They can also
indicate when the system is approaching lockup scenarios and OOMs.

To do this, psi keeps track of the task states associated with each
CPU and samples the time they spend in stall states. Every 2 seconds,
the samples are averaged across CPUs - weighted by the CPUs' non-idle
time to eliminate artifacts from unused CPUs - and translated into
percentages of walltime. A running average of those percentages is
maintained over 10s, 1m, and 5m periods (similar to the loadaverage).

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
---
 Documentation/accounting/psi.txt |  73 ++++++
 include/linux/psi.h              |  27 ++
 include/linux/psi_types.h        |  84 ++++++
 include/linux/sched.h            |  10 +
 include/linux/sched/stat.h       |  10 +-
 init/Kconfig                     |  16 ++
 kernel/fork.c                    |   4 +
 kernel/sched/Makefile            |   1 +
 kernel/sched/core.c              |   3 +
 kernel/sched/psi.c               | 424 +++++++++++++++++++++++++++++++
 kernel/sched/sched.h             | 166 ++++++------
 kernel/sched/stats.h             |  91 ++++++-
 mm/compaction.c                  |   5 +
 mm/filemap.c                     |  15 +-
 mm/page_alloc.c                  |  10 +
 mm/vmscan.c                      |  13 +
 16 files changed, 859 insertions(+), 93 deletions(-)
 create mode 100644 Documentation/accounting/psi.txt
 create mode 100644 include/linux/psi.h
 create mode 100644 include/linux/psi_types.h
 create mode 100644 kernel/sched/psi.c
Randy Dunlap - May 8, 2018, 12:42 a.m.
On 05/07/2018 02:01 PM, Johannes Weiner wrote:
> 
> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
> ---
>  Documentation/accounting/psi.txt |  73 ++++++
>  include/linux/psi.h              |  27 ++
>  include/linux/psi_types.h        |  84 ++++++
>  include/linux/sched.h            |  10 +
>  include/linux/sched/stat.h       |  10 +-
>  init/Kconfig                     |  16 ++
>  kernel/fork.c                    |   4 +
>  kernel/sched/Makefile            |   1 +
>  kernel/sched/core.c              |   3 +
>  kernel/sched/psi.c               | 424 +++++++++++++++++++++++++++++++
>  kernel/sched/sched.h             | 166 ++++++------
>  kernel/sched/stats.h             |  91 ++++++-
>  mm/compaction.c                  |   5 +
>  mm/filemap.c                     |  15 +-
>  mm/page_alloc.c                  |  10 +
>  mm/vmscan.c                      |  13 +
>  16 files changed, 859 insertions(+), 93 deletions(-)
>  create mode 100644 Documentation/accounting/psi.txt
>  create mode 100644 include/linux/psi.h
>  create mode 100644 include/linux/psi_types.h
>  create mode 100644 kernel/sched/psi.c
> 
> diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.txt
> new file mode 100644
> index 000000000000..e051810d5127
> --- /dev/null
> +++ b/Documentation/accounting/psi.txt
> @@ -0,0 +1,73 @@

Looks good to me.


> diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c
> new file mode 100644
> index 000000000000..052c529a053b
> --- /dev/null
> +++ b/kernel/sched/psi.c
> @@ -0,0 +1,424 @@
> +/*
> + * Measure workload productivity impact from overcommitting CPU, memory, IO
> + *
> + * Copyright (c) 2017 Facebook, Inc.
> + * Author: Johannes Weiner <hannes@cmpxchg.org>
> + *
> + * Implementation
> + *
> + * Task states -- running, iowait, memstall -- are tracked through the
> + * scheduler and aggregated into a system-wide productivity state. The
> + * ratio between the times spent in productive states and delays tells
> + * us the overall productivity of the workload.
> + *
> + * The ratio is tracked in decaying time averages over 10s, 1m, 5m
> + * windows. Cumluative stall times are tracked and exported as well to

               Cumulative

> + * allow detection of latency spikes and custom time averaging.
> + *
> + * Multiple CPUs
> + *
> + * To avoid cache contention, times are tracked local to the CPUs. To
> + * get a comprehensive view of a system or cgroup, we have to consider
> + * the fact that CPUs could be unevenly loaded or even entirely idle
> + * if the workload doesn't have enough threads. To avoid artifacts
> + * caused by that, when adding up the global pressure ratio, the
> + * CPU-local ratios are weighed according to their non-idle time:
> + *
> + *   Time the CPU had stalled tasks    Time the CPU was non-idle
> + *   ------------------------------ * ---------------------------
> + *                Walltime            Time all CPUs were non-idle
> + */


> +
> +/**
> + * psi_memstall_leave - mark the end of an memory stall section

                                    end of a memory

> + * @flags: flags to handle nested memdelay sections
> + *
> + * Marks the calling task as no longer stalled due to lack of memory.
> + */
> +void psi_memstall_leave(unsigned long *flags)
> +{
kbuild test robot - May 8, 2018, 1:35 a.m.
Hi Johannes,

I love your patch! Yet something to improve:

[auto build test ERROR on linus/master]
[also build test ERROR on v4.17-rc4]
[cannot apply to next-20180507]
[if your patch is applied to the wrong git tree, please drop us a note to help improve the system]

url:    https://github.com/0day-ci/linux/commits/Johannes-Weiner/mm-workingset-don-t-drop-refault-information-prematurely/20180508-081214
config: i386-randconfig-x073-201818 (attached as .config)
compiler: gcc-7 (Debian 7.3.0-16) 7.3.0
reproduce:
        # save the attached .config to linux build tree
        make ARCH=i386 

All errors (new ones prefixed by >>):

   In file included from kernel/sched/sched.h:1317:0,
                    from kernel/sched/core.c:8:
>> kernel/sched/stats.h:126:1: error: expected identifier or '(' before '{' token
    {
    ^

vim +126 kernel/sched/stats.h

    57	
    58	#ifdef CONFIG_PSI
    59	/*
    60	 * PSI tracks state that persists across sleeps, such as iowaits and
    61	 * memory stalls. As a result, it has to distinguish between sleeps,
    62	 * where a task's runnable state changes, and requeues, where a task
    63	 * and its state are being moved between CPUs and runqueues.
    64	 */
    65	static inline void psi_enqueue(struct task_struct *p, u64 now)
    66	{
    67		int clear = 0, set = TSK_RUNNING;
    68	
    69		if (p->state == TASK_RUNNING || p->sched_psi_wake_requeue) {
    70			if (p->flags & PF_MEMSTALL)
    71				set |= TSK_MEMSTALL;
    72			p->sched_psi_wake_requeue = 0;
    73		} else {
    74			if (p->in_iowait)
    75				clear |= TSK_IOWAIT;
    76		}
    77	
    78		psi_task_change(p, now, clear, set);
    79	}
    80	static inline void psi_dequeue(struct task_struct *p, u64 now)
    81	{
    82		int clear = TSK_RUNNING, set = 0;
    83	
    84		if (p->state == TASK_RUNNING) {
    85			if (p->flags & PF_MEMSTALL)
    86				clear |= TSK_MEMSTALL;
    87		} else {
    88			if (p->in_iowait)
    89				set |= TSK_IOWAIT;
    90		}
    91	
    92		psi_task_change(p, now, clear, set);
    93	}
    94	static inline void psi_ttwu_dequeue(struct task_struct *p)
    95	{
    96		/*
    97		 * Is the task being migrated during a wakeup? Make sure to
    98		 * deregister its sleep-persistent psi states from the old
    99		 * queue, and let psi_enqueue() know it has to requeue.
   100		 */
   101		if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
   102			struct rq_flags rf;
   103			struct rq *rq;
   104			int clear = 0;
   105	
   106			if (p->in_iowait)
   107				clear |= TSK_IOWAIT;
   108			if (p->flags & PF_MEMSTALL)
   109				clear |= TSK_MEMSTALL;
   110	
   111			rq = __task_rq_lock(p, &rf);
   112			update_rq_clock(rq);
   113			psi_task_change(p, rq_clock(rq), clear, 0);
   114			p->sched_psi_wake_requeue = 1;
   115			__task_rq_unlock(rq, &rf);
   116		}
   117	}
   118	#else /* CONFIG_PSI */
   119	static inline void psi_enqueue(struct task_struct *p, u64 now)
   120	{
   121	}
   122	static inline void psi_dequeue(struct task_struct *p, u64 now)
   123	{
   124	}
   125	static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 > 126	{
   127	}
   128	#endif /* CONFIG_PSI */
   129	

---
0-DAY kernel test infrastructure                Open Source Technology Center
https://lists.01.org/pipermail/kbuild-all                   Intel Corporation
kbuild test robot - May 8, 2018, 3:04 a.m.
Hi Johannes,

I love your patch! Yet something to improve:

[auto build test ERROR on linus/master]
[also build test ERROR on v4.17-rc4]
[cannot apply to next-20180507]
[if your patch is applied to the wrong git tree, please drop us a note to help improve the system]

url:    https://github.com/0day-ci/linux/commits/Johannes-Weiner/mm-workingset-don-t-drop-refault-information-prematurely/20180508-081214
config: x86_64-randconfig-x012-201818 (attached as .config)
compiler: gcc-7 (Debian 7.3.0-16) 7.3.0
reproduce:
        # save the attached .config to linux build tree
        make ARCH=x86_64 

All errors (new ones prefixed by >>):

   In file included from kernel/livepatch/../sched/sched.h:1317:0,
                    from kernel/livepatch/transition.c:27:
>> kernel/livepatch/../sched/stats.h:126:1: error: expected identifier or '(' before '{' token
    {
    ^

vim +126 kernel/livepatch/../sched/stats.h

    57	
    58	#ifdef CONFIG_PSI
    59	/*
    60	 * PSI tracks state that persists across sleeps, such as iowaits and
    61	 * memory stalls. As a result, it has to distinguish between sleeps,
    62	 * where a task's runnable state changes, and requeues, where a task
    63	 * and its state are being moved between CPUs and runqueues.
    64	 */
    65	static inline void psi_enqueue(struct task_struct *p, u64 now)
    66	{
    67		int clear = 0, set = TSK_RUNNING;
    68	
    69		if (p->state == TASK_RUNNING || p->sched_psi_wake_requeue) {
    70			if (p->flags & PF_MEMSTALL)
    71				set |= TSK_MEMSTALL;
    72			p->sched_psi_wake_requeue = 0;
    73		} else {
    74			if (p->in_iowait)
    75				clear |= TSK_IOWAIT;
    76		}
    77	
    78		psi_task_change(p, now, clear, set);
    79	}
    80	static inline void psi_dequeue(struct task_struct *p, u64 now)
    81	{
    82		int clear = TSK_RUNNING, set = 0;
    83	
    84		if (p->state == TASK_RUNNING) {
    85			if (p->flags & PF_MEMSTALL)
    86				clear |= TSK_MEMSTALL;
    87		} else {
    88			if (p->in_iowait)
    89				set |= TSK_IOWAIT;
    90		}
    91	
    92		psi_task_change(p, now, clear, set);
    93	}
    94	static inline void psi_ttwu_dequeue(struct task_struct *p)
    95	{
    96		/*
    97		 * Is the task being migrated during a wakeup? Make sure to
    98		 * deregister its sleep-persistent psi states from the old
    99		 * queue, and let psi_enqueue() know it has to requeue.
   100		 */
   101		if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
   102			struct rq_flags rf;
   103			struct rq *rq;
   104			int clear = 0;
   105	
   106			if (p->in_iowait)
   107				clear |= TSK_IOWAIT;
   108			if (p->flags & PF_MEMSTALL)
   109				clear |= TSK_MEMSTALL;
   110	
   111			rq = __task_rq_lock(p, &rf);
   112			update_rq_clock(rq);
   113			psi_task_change(p, rq_clock(rq), clear, 0);
   114			p->sched_psi_wake_requeue = 1;
   115			__task_rq_unlock(rq, &rf);
   116		}
   117	}
   118	#else /* CONFIG_PSI */
   119	static inline void psi_enqueue(struct task_struct *p, u64 now)
   120	{
   121	}
   122	static inline void psi_dequeue(struct task_struct *p, u64 now)
   123	{
   124	}
   125	static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 > 126	{
   127	}
   128	#endif /* CONFIG_PSI */
   129	

---
0-DAY kernel test infrastructure                Open Source Technology Center
https://lists.01.org/pipermail/kbuild-all                   Intel Corporation
Johannes Weiner - May 8, 2018, 2:06 p.m.
On Mon, May 07, 2018 at 05:42:36PM -0700, Randy Dunlap wrote:
> On 05/07/2018 02:01 PM, Johannes Weiner wrote:
> > + * The ratio is tracked in decaying time averages over 10s, 1m, 5m
> > + * windows. Cumluative stall times are tracked and exported as well to
> 
>                Cumulative
> 

> > +/**
> > + * psi_memstall_leave - mark the end of an memory stall section
> 
>                                     end of a memory

Thanks Randy, I'll get those fixed.
Peter Zijlstra - May 9, 2018, 9:59 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h
> new file mode 100644
> index 000000000000..b22b0ffc729d
> --- /dev/null
> +++ b/include/linux/psi_types.h
> @@ -0,0 +1,84 @@
> +#ifndef _LINUX_PSI_TYPES_H
> +#define _LINUX_PSI_TYPES_H
> +
> +#include <linux/types.h>
> +
> +#ifdef CONFIG_PSI
> +
> +/* Tracked task states */
> +enum psi_task_count {
> +	NR_RUNNING,
> +	NR_IOWAIT,
> +	NR_MEMSTALL,
> +	NR_PSI_TASK_COUNTS,
> +};
> +
> +/* Task state bitmasks */
> +#define TSK_RUNNING	(1 << NR_RUNNING)
> +#define TSK_IOWAIT	(1 << NR_IOWAIT)
> +#define TSK_MEMSTALL	(1 << NR_MEMSTALL)
> +
> +/* Resources that workloads could be stalled on */
> +enum psi_res {
> +	PSI_CPU,
> +	PSI_MEM,
> +	PSI_IO,
> +	NR_PSI_RESOURCES,
> +};
> +
> +/* Pressure states for a group of tasks */
> +enum psi_state {
> +	PSI_NONE,		/* No stalled tasks */
> +	PSI_SOME,		/* Stalled tasks & working tasks */
> +	PSI_FULL,		/* Stalled tasks & no working tasks */
> +	NR_PSI_STATES,
> +};
> +
> +struct psi_resource {
> +	/* Current pressure state for this resource */
> +	enum psi_state state;
> +
> +	/* Start of current state (cpu_clock) */
> +	u64 state_start;
> +
> +	/* Time sampling buckets for pressure states (ns) */
> +	u64 times[NR_PSI_STATES - 1];

Fails to explain why no FULL.

> +};
> +
> +struct psi_group_cpu {
> +	/* States of the tasks belonging to this group */
> +	unsigned int tasks[NR_PSI_TASK_COUNTS];
> +

AFAICT there's a hole here, that would fit the @nonidle member. Which
also avoids the later hole generated by it.

> +	/* Per-resource pressure tracking in this group */
> +	struct psi_resource res[NR_PSI_RESOURCES];
> +
> +	/* There are runnable or D-state tasks */
> +	bool nonidle;

Mandatory complaint about using _Bool in composites goes here.

> +	/* Start of current non-idle state (cpu_clock) */
> +	u64 nonidle_start;
> +
> +	/* Time sampling bucket for non-idle state (ns) */
> +	u64 nonidle_time;
> +};
> +
> +struct psi_group {
> +	struct psi_group_cpu *cpus;
> +
> +	struct delayed_work clock_work;
> +	unsigned long period_expires;
> +
> +	u64 some[NR_PSI_RESOURCES];
> +	u64 full[NR_PSI_RESOURCES];
> +
> +	unsigned long avg_some[NR_PSI_RESOURCES][3];
> +	unsigned long avg_full[NR_PSI_RESOURCES][3];
> +};
Peter Zijlstra - May 9, 2018, 10:04 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> +static void psi_clock(struct work_struct *work)
> +{
> +	u64 some[NR_PSI_RESOURCES] = { 0, };
> +	u64 full[NR_PSI_RESOURCES] = { 0, };
> +	unsigned long nonidle_total = 0;
> +	unsigned long missed_periods;
> +	struct delayed_work *dwork;
> +	struct psi_group *group;
> +	unsigned long expires;
> +	int cpu;
> +	int r;
> +
> +	dwork = to_delayed_work(work);
> +	group = container_of(dwork, struct psi_group, clock_work);
> +
> +	/*
> +	 * Calculate the sampling period. The clock might have been
> +	 * stopped for a while.
> +	 */
> +	expires = group->period_expires;
> +	missed_periods = (jiffies - expires) / MY_LOAD_FREQ;
> +	group->period_expires = expires + ((1 + missed_periods) * MY_LOAD_FREQ);
> +
> +	/*
> +	 * Aggregate the per-cpu state into a global state. Each CPU
> +	 * is weighted by its non-idle time in the sampling period.
> +	 */
> +	for_each_online_cpu(cpu) {

Typically when using online CPU state, you also need hotplug notifiers
to deal with changes in the online set.

You also typically need something like cpus_read_lock() around an
iteration of online CPUs, to avoid the set changing while you're poking
at them.

The lack for neither is evident or explained.

> +		struct psi_group_cpu *groupc = per_cpu_ptr(group->cpus, cpu);
> +		unsigned long nonidle;
> +
> +		nonidle = nsecs_to_jiffies(groupc->nonidle_time);
> +		groupc->nonidle_time = 0;
> +		nonidle_total += nonidle;
> +
> +		for (r = 0; r < NR_PSI_RESOURCES; r++) {
> +			struct psi_resource *res = &groupc->res[r];
> +
> +			some[r] += (res->times[0] + res->times[1]) * nonidle;
> +			full[r] += res->times[1] * nonidle;
> +
> +			/* It's racy, but we can tolerate some error */
> +			res->times[0] = 0;
> +			res->times[1] = 0;
> +		}
> +	}
> +
> +	for (r = 0; r < NR_PSI_RESOURCES; r++) {
> +		/* Finish the weighted aggregation */
> +		some[r] /= max(nonidle_total, 1UL);
> +		full[r] /= max(nonidle_total, 1UL);
> +
> +		/* Accumulate stall time */
> +		group->some[r] += some[r];
> +		group->full[r] += full[r];
> +
> +		/* Calculate recent pressure averages */
> +		calc_avgs(group->avg_some[r], some[r], missed_periods);
> +		calc_avgs(group->avg_full[r], full[r], missed_periods);
> +	}
> +
> +	/* Keep the clock ticking only when there is action */
> +	if (nonidle_total)
> +		schedule_delayed_work(dwork, MY_LOAD_FREQ);
> +}
Peter Zijlstra - May 9, 2018, 10:05 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> +	u64 some[NR_PSI_RESOURCES] = { 0, };
> +	u64 full[NR_PSI_RESOURCES] = { 0, };

> +		some[r] /= max(nonidle_total, 1UL);
> +		full[r] /= max(nonidle_total, 1UL);

That's a bare 64bit divide.. that typically failed to build on 32bit
archs.
Peter Zijlstra - May 9, 2018, 10:14 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> index 15750c222ca2..1658477466d5 100644
> --- a/kernel/sched/sched.h
> +++ b/kernel/sched/sched.h

> @@ -919,6 +921,8 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
>  #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
>  #define raw_rq()		raw_cpu_ptr(&runqueues)
>  
> +extern void update_rq_clock(struct rq *rq);
> +
>  static inline u64 __rq_clock_broken(struct rq *rq)
>  {
>  	return READ_ONCE(rq->clock);
> @@ -1037,6 +1041,86 @@ static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
>  #endif
>  }
>  
> +struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
> +	__acquires(rq->lock);
> +
> +struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
> +	__acquires(p->pi_lock)
> +	__acquires(rq->lock);
> +
> +static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
> +	__releases(rq->lock)
> +{
> +	rq_unpin_lock(rq, rf);
> +	raw_spin_unlock(&rq->lock);
> +}
> +
> +static inline void
> +task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
> +	__releases(rq->lock)
> +	__releases(p->pi_lock)
> +{
> +	rq_unpin_lock(rq, rf);
> +	raw_spin_unlock(&rq->lock);
> +	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
> +}
> +
> +static inline void
> +rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
> +	__acquires(rq->lock)
> +{
> +	raw_spin_lock_irqsave(&rq->lock, rf->flags);
> +	rq_pin_lock(rq, rf);
> +}
> +
> +static inline void
> +rq_lock_irq(struct rq *rq, struct rq_flags *rf)
> +	__acquires(rq->lock)
> +{
> +	raw_spin_lock_irq(&rq->lock);
> +	rq_pin_lock(rq, rf);
> +}
> +
> +static inline void
> +rq_lock(struct rq *rq, struct rq_flags *rf)
> +	__acquires(rq->lock)
> +{
> +	raw_spin_lock(&rq->lock);
> +	rq_pin_lock(rq, rf);
> +}
> +
> +static inline void
> +rq_relock(struct rq *rq, struct rq_flags *rf)
> +	__acquires(rq->lock)
> +{
> +	raw_spin_lock(&rq->lock);
> +	rq_repin_lock(rq, rf);
> +}
> +
> +static inline void
> +rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
> +	__releases(rq->lock)
> +{
> +	rq_unpin_lock(rq, rf);
> +	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
> +}
> +
> +static inline void
> +rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
> +	__releases(rq->lock)
> +{
> +	rq_unpin_lock(rq, rf);
> +	raw_spin_unlock_irq(&rq->lock);
> +}
> +
> +static inline void
> +rq_unlock(struct rq *rq, struct rq_flags *rf)
> +	__releases(rq->lock)
> +{
> +	rq_unpin_lock(rq, rf);
> +	raw_spin_unlock(&rq->lock);
> +}
> +
>  #ifdef CONFIG_NUMA
>  enum numa_topology_type {
>  	NUMA_DIRECT,
> @@ -1670,8 +1754,6 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
>  	sched_update_tick_dependency(rq);
>  }
>  
> -extern void update_rq_clock(struct rq *rq);
> -
>  extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
>  extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
>  
> @@ -1752,86 +1834,6 @@ static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
>  static inline void sched_avg_update(struct rq *rq) { }
>  #endif
>  
> -struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
> -	__acquires(rq->lock);
> -
> -struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
> -	__acquires(p->pi_lock)
> -	__acquires(rq->lock);
> -
> -static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
> -	__releases(rq->lock)
> -{
> -	rq_unpin_lock(rq, rf);
> -	raw_spin_unlock(&rq->lock);
> -}
> -
> -static inline void
> -task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
> -	__releases(rq->lock)
> -	__releases(p->pi_lock)
> -{
> -	rq_unpin_lock(rq, rf);
> -	raw_spin_unlock(&rq->lock);
> -	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
> -}
> -
> -static inline void
> -rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
> -	__acquires(rq->lock)
> -{
> -	raw_spin_lock_irqsave(&rq->lock, rf->flags);
> -	rq_pin_lock(rq, rf);
> -}
> -
> -static inline void
> -rq_lock_irq(struct rq *rq, struct rq_flags *rf)
> -	__acquires(rq->lock)
> -{
> -	raw_spin_lock_irq(&rq->lock);
> -	rq_pin_lock(rq, rf);
> -}
> -
> -static inline void
> -rq_lock(struct rq *rq, struct rq_flags *rf)
> -	__acquires(rq->lock)
> -{
> -	raw_spin_lock(&rq->lock);
> -	rq_pin_lock(rq, rf);
> -}
> -
> -static inline void
> -rq_relock(struct rq *rq, struct rq_flags *rf)
> -	__acquires(rq->lock)
> -{
> -	raw_spin_lock(&rq->lock);
> -	rq_repin_lock(rq, rf);
> -}
> -
> -static inline void
> -rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
> -	__releases(rq->lock)
> -{
> -	rq_unpin_lock(rq, rf);
> -	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
> -}
> -
> -static inline void
> -rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
> -	__releases(rq->lock)
> -{
> -	rq_unpin_lock(rq, rf);
> -	raw_spin_unlock_irq(&rq->lock);
> -}
> -
> -static inline void
> -rq_unlock(struct rq *rq, struct rq_flags *rf)
> -	__releases(rq->lock)
> -{
> -	rq_unpin_lock(rq, rf);
> -	raw_spin_unlock(&rq->lock);
> -}
> -
>  #ifdef CONFIG_SMP
>  #ifdef CONFIG_PREEMPT
>  


What's all this churn about?
Peter Zijlstra - May 9, 2018, 10:21 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> +/**
> + * psi_memstall_enter - mark the beginning of a memory stall section
> + * @flags: flags to handle nested sections
> + *
> + * Marks the calling task as being stalled due to a lack of memory,
> + * such as waiting for a refault or performing reclaim.
> + */
> +void psi_memstall_enter(unsigned long *flags)
> +{
> +	struct rq_flags rf;
> +	struct rq *rq;
> +
> +	*flags = current->flags & PF_MEMSTALL;
> +	if (*flags)
> +		return;
> +	/*
> +	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
> +	 * changes to the task's scheduling state, otherwise we can
> +	 * race with CPU migration.
> +	 */
> +	local_irq_disable();
> +	rq = this_rq();
> +	raw_spin_lock(&rq->lock);
> +	rq_pin_lock(rq, &rf);

Given that churn in sched.h, you seen rq_lock() and friends.

Either write this like:

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);

Or instroduce "rq = this_rq_lock_irq()", which we could also use in
do_sched_yield().

> +	update_rq_clock(rq);
> +
> +	current->flags |= PF_MEMSTALL;
> +	psi_task_change(current, rq_clock(rq), 0, TSK_MEMSTALL);
> +
> +	rq_unpin_lock(rq, &rf);
> +	raw_spin_unlock(&rq->lock);
> +	local_irq_enable();

That's called rq_unlock_irq().

> +}
> +
> +/**
> + * psi_memstall_leave - mark the end of an memory stall section
> + * @flags: flags to handle nested memdelay sections
> + *
> + * Marks the calling task as no longer stalled due to lack of memory.
> + */
> +void psi_memstall_leave(unsigned long *flags)
> +{
> +	struct rq_flags rf;
> +	struct rq *rq;
> +
> +	if (*flags)
> +		return;
> +	/*
> +	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
> +	 * changes to the task's scheduling state, otherwise we could
> +	 * race with CPU migration.
> +	 */
> +	local_irq_disable();
> +	rq = this_rq();
> +	raw_spin_lock(&rq->lock);
> +	rq_pin_lock(rq, &rf);
> +
> +	update_rq_clock(rq);
> +
> +	current->flags &= ~PF_MEMSTALL;
> +	psi_task_change(current, rq_clock(rq), TSK_MEMSTALL, 0);
> +
> +	rq_unpin_lock(rq, &rf);
> +	raw_spin_unlock(&rq->lock);
> +	local_irq_enable();
> +}

Idem.
Peter Zijlstra - May 9, 2018, 10:26 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> +static void psi_clock(struct work_struct *work)
> +{

> +	dwork = to_delayed_work(work);
> +	group = container_of(dwork, struct psi_group, clock_work);
> +

> +
> +	/* Keep the clock ticking only when there is action */
> +	if (nonidle_total)
> +		schedule_delayed_work(dwork, MY_LOAD_FREQ);
> +}

Note that this doesn't generate a stable frequency for the callback.
The (nondeterministic) time spend doing the actual work is added to each
period, this gives an unconditional downward bias to the frequency, but
also makes it very unstable.

You want explicit management of timer->expires, and add MY_LOAD_FREQ
(which is a misnomer) to it and not reset it based on jiffies.
Peter Zijlstra - May 9, 2018, 10:46 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:

> @@ -2038,6 +2038,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
>  	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
>  	if (task_cpu(p) != cpu) {
>  		wake_flags |= WF_MIGRATED;
> +		psi_ttwu_dequeue(p);
>  		set_task_cpu(p, cpu);
>  	}
>  

> +static inline void psi_ttwu_dequeue(struct task_struct *p)
> +{
> +	/*
> +	 * Is the task being migrated during a wakeup? Make sure to
> +	 * deregister its sleep-persistent psi states from the old
> +	 * queue, and let psi_enqueue() know it has to requeue.
> +	 */
> +	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
> +		struct rq_flags rf;
> +		struct rq *rq;
> +		int clear = 0;
> +
> +		if (p->in_iowait)
> +			clear |= TSK_IOWAIT;
> +		if (p->flags & PF_MEMSTALL)
> +			clear |= TSK_MEMSTALL;
> +
> +		rq = __task_rq_lock(p, &rf);
> +		update_rq_clock(rq);
> +		psi_task_change(p, rq_clock(rq), clear, 0);
> +		p->sched_psi_wake_requeue = 1;
> +		__task_rq_unlock(rq, &rf);
> +	}
> +}

Yeah, no... not happening.

We spend a lot of time to never touch the old rq->lock on wakeups. Mason
was the one pushing for that, so he should very well know this.

The one cross-cpu atomic (iowait) is already a problem (the whole iowait
accounting being useless makes it even worse), adding significant remote
prodding is just really bad.
Peter Zijlstra - May 9, 2018, 10:55 a.m.
On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:

> @@ -28,10 +28,14 @@ static inline int sched_info_on(void)
>  	return 1;
>  #elif defined(CONFIG_TASK_DELAY_ACCT)
>  	extern int delayacct_on;
> -	return delayacct_on;
> -#else
> -	return 0;
> +	if (delayacct_on)
> +		return 1;
> +#elif defined(CONFIG_PSI)
> +	extern int psi_disabled;
> +	if (!psi_disabled)
> +		return 1;
>  #endif
> +	return 0;
>  }

> diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
> index 8aea199a39b4..cb4a68bcf37a 100644
> --- a/kernel/sched/stats.h
> +++ b/kernel/sched/stats.h
> @@ -55,12 +55,90 @@ static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delt
>  # define   schedstat_val_or_zero(var)	0
>  #endif /* CONFIG_SCHEDSTATS */
>  
> +#ifdef CONFIG_PSI
> +/*
> + * PSI tracks state that persists across sleeps, such as iowaits and
> + * memory stalls. As a result, it has to distinguish between sleeps,
> + * where a task's runnable state changes, and requeues, where a task
> + * and its state are being moved between CPUs and runqueues.
> + */
> +static inline void psi_enqueue(struct task_struct *p, u64 now)
> +{
> +	int clear = 0, set = TSK_RUNNING;
> +
> +	if (p->state == TASK_RUNNING || p->sched_psi_wake_requeue) {
> +		if (p->flags & PF_MEMSTALL)
> +			set |= TSK_MEMSTALL;
> +		p->sched_psi_wake_requeue = 0;
> +	} else {
> +		if (p->in_iowait)
> +			clear |= TSK_IOWAIT;
> +	}
> +
> +	psi_task_change(p, now, clear, set);
> +}
> +static inline void psi_dequeue(struct task_struct *p, u64 now)
> +{
> +	int clear = TSK_RUNNING, set = 0;
> +
> +	if (p->state == TASK_RUNNING) {
> +		if (p->flags & PF_MEMSTALL)
> +			clear |= TSK_MEMSTALL;
> +	} else {
> +		if (p->in_iowait)
> +			set |= TSK_IOWAIT;
> +	}
> +
> +	psi_task_change(p, now, clear, set);
> +}
> +static inline void psi_ttwu_dequeue(struct task_struct *p)
> +{
> +	/*
> +	 * Is the task being migrated during a wakeup? Make sure to
> +	 * deregister its sleep-persistent psi states from the old
> +	 * queue, and let psi_enqueue() know it has to requeue.
> +	 */
> +	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
> +		struct rq_flags rf;
> +		struct rq *rq;
> +		int clear = 0;
> +
> +		if (p->in_iowait)
> +			clear |= TSK_IOWAIT;
> +		if (p->flags & PF_MEMSTALL)
> +			clear |= TSK_MEMSTALL;
> +
> +		rq = __task_rq_lock(p, &rf);
> +		update_rq_clock(rq);
> +		psi_task_change(p, rq_clock(rq), clear, 0);
> +		p->sched_psi_wake_requeue = 1;
> +		__task_rq_unlock(rq, &rf);
> +	}
> +}

That all seems to be missing psi_disabled tests.. Yes I know it's
burried down in psi_task_change() somewhere, but that's really (too)
late.

(also, you seem to be conserving whitespace; typically we have an empty
lines between functions)
Vinayak Menon - May 9, 2018, 11:03 a.m.
On 5/8/2018 2:31 AM, Johannes Weiner wrote:
> +static void psi_group_update(struct psi_group *group, int cpu, u64 now,
> +			     unsigned int clear, unsigned int set)
> +{
> +	enum psi_state state = PSI_NONE;
> +	struct psi_group_cpu *groupc;
> +	unsigned int *tasks;
> +	unsigned int to, bo;
> +
> +	groupc = per_cpu_ptr(group->cpus, cpu);
> +	tasks = groupc->tasks;
> +
> +	/* Update task counts according to the set/clear bitmasks */
> +	for (to = 0; (bo = ffs(clear)); to += bo, clear >>= bo) {
> +		int idx = to + (bo - 1);
> +
> +		if (tasks[idx] == 0 && !psi_bug) {
> +			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d idx=%d tasks=[%u %u %u %u]\n",
> +					cpu, idx, tasks[0], tasks[1],
> +					tasks[2], tasks[3]);
> +			psi_bug = 1;
> +		}
> +		tasks[idx]--;
> +	}
> +	for (to = 0; (bo = ffs(set)); to += bo, set >>= bo)
> +		tasks[to + (bo - 1)]++;
> +
> +	/* Time in which tasks wait for the CPU */
> +	state = PSI_NONE;
> +	if (tasks[NR_RUNNING] > 1)
> +		state = PSI_SOME;
> +	time_state(&groupc->res[PSI_CPU], state, now);
> +
> +	/* Time in which tasks wait for memory */
> +	state = PSI_NONE;
> +	if (tasks[NR_MEMSTALL]) {
> +		if (!tasks[NR_RUNNING] ||
> +		    (cpu_curr(cpu)->flags & PF_MEMSTALL))
> +			state = PSI_FULL;
> +		else
> +			state = PSI_SOME;
> +	}
> +	time_state(&groupc->res[PSI_MEM], state, now);
> +
> +	/* Time in which tasks wait for IO */
> +	state = PSI_NONE;
> +	if (tasks[NR_IOWAIT]) {
> +		if (!tasks[NR_RUNNING])
> +			state = PSI_FULL;
> +		else
> +			state = PSI_SOME;
> +	}
> +	time_state(&groupc->res[PSI_IO], state, now);
> +
> +	/* Time in which tasks are non-idle, to weigh the CPU in summaries */
> +	if (groupc->nonidle)
> +		groupc->nonidle_time += now - groupc->nonidle_start;
> +	groupc->nonidle = tasks[NR_RUNNING] ||
> +		tasks[NR_IOWAIT] || tasks[NR_MEMSTALL];
> +	if (groupc->nonidle)
> +		groupc->nonidle_start = now;
> +
> +	/* Kick the stats aggregation worker if it's gone to sleep */
> +	if (!delayed_work_pending(&group->clock_work))

This causes a crash when the work is scheduled before system_wq is up. In my case when the first
schedule was called from kthreadd. And I had to do this to make it work.
if (keventd_up() && !delayed_work_pending(&group->clock_work))

> +		schedule_delayed_work(&group->clock_work, MY_LOAD_FREQ);
> +}
> +
> +void psi_task_change(struct task_struct *task, u64 now, int clear, int set)
> +{
> +	struct cgroup *cgroup, *parent;

unused variables

Thanks,
Vinayak
Peter Zijlstra - May 9, 2018, 11:38 a.m.
On Wed, May 09, 2018 at 12:46:18PM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> 
> > @@ -2038,6 +2038,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
> >  	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
> >  	if (task_cpu(p) != cpu) {
> >  		wake_flags |= WF_MIGRATED;
> > +		psi_ttwu_dequeue(p);
> >  		set_task_cpu(p, cpu);
> >  	}
> >  
> 
> > +static inline void psi_ttwu_dequeue(struct task_struct *p)
> > +{
> > +	/*
> > +	 * Is the task being migrated during a wakeup? Make sure to
> > +	 * deregister its sleep-persistent psi states from the old
> > +	 * queue, and let psi_enqueue() know it has to requeue.
> > +	 */
> > +	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
> > +		struct rq_flags rf;
> > +		struct rq *rq;
> > +		int clear = 0;
> > +
> > +		if (p->in_iowait)
> > +			clear |= TSK_IOWAIT;
> > +		if (p->flags & PF_MEMSTALL)
> > +			clear |= TSK_MEMSTALL;
> > +
> > +		rq = __task_rq_lock(p, &rf);
> > +		update_rq_clock(rq);
> > +		psi_task_change(p, rq_clock(rq), clear, 0);
> > +		p->sched_psi_wake_requeue = 1;
> > +		__task_rq_unlock(rq, &rf);
> > +	}
> > +}
> 
> Yeah, no... not happening.
> 
> We spend a lot of time to never touch the old rq->lock on wakeups. Mason
> was the one pushing for that, so he should very well know this.
> 
> The one cross-cpu atomic (iowait) is already a problem (the whole iowait
> accounting being useless makes it even worse), adding significant remote
> prodding is just really bad.

Also, since all you need is the global number, I don't think you
actually need any of this. See what we do for nr_uninterruptible.

In general I think you want to (re)read loadavg.c some more, and maybe
reuse a bit more of that.
Johannes Weiner - May 10, 2018, 1:41 p.m.
On Wed, May 09, 2018 at 01:38:49PM +0200, Peter Zijlstra wrote:
> On Wed, May 09, 2018 at 12:46:18PM +0200, Peter Zijlstra wrote:
> > On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > 
> > > @@ -2038,6 +2038,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
> > >  	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
> > >  	if (task_cpu(p) != cpu) {
> > >  		wake_flags |= WF_MIGRATED;
> > > +		psi_ttwu_dequeue(p);
> > >  		set_task_cpu(p, cpu);
> > >  	}
> > >  
> > 
> > > +static inline void psi_ttwu_dequeue(struct task_struct *p)
> > > +{
> > > +	/*
> > > +	 * Is the task being migrated during a wakeup? Make sure to
> > > +	 * deregister its sleep-persistent psi states from the old
> > > +	 * queue, and let psi_enqueue() know it has to requeue.
> > > +	 */
> > > +	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
> > > +		struct rq_flags rf;
> > > +		struct rq *rq;
> > > +		int clear = 0;
> > > +
> > > +		if (p->in_iowait)
> > > +			clear |= TSK_IOWAIT;
> > > +		if (p->flags & PF_MEMSTALL)
> > > +			clear |= TSK_MEMSTALL;
> > > +
> > > +		rq = __task_rq_lock(p, &rf);
> > > +		update_rq_clock(rq);
> > > +		psi_task_change(p, rq_clock(rq), clear, 0);
> > > +		p->sched_psi_wake_requeue = 1;
> > > +		__task_rq_unlock(rq, &rf);
> > > +	}
> > > +}
> > 
> > Yeah, no... not happening.
> > 
> > We spend a lot of time to never touch the old rq->lock on wakeups. Mason
> > was the one pushing for that, so he should very well know this.
> > 
> > The one cross-cpu atomic (iowait) is already a problem (the whole iowait
> > accounting being useless makes it even worse), adding significant remote
> > prodding is just really bad.
> 
> Also, since all you need is the global number, I don't think you
> actually need any of this. See what we do for nr_uninterruptible.
> 
> In general I think you want to (re)read loadavg.c some more, and maybe
> reuse a bit more of that.

So there is a reason I'm tracking productivity states per-cpu and not
globally. Consider the following example periods on two CPUs:

    CPU 0
Task 1: | EXECUTING  | memstalled |
Task 2: | runqueued  | EXECUTING  |

    CPU 1
Task 3: | memstalled | EXECUTING  |

If we tracked only the global number of stalled tasks, similarly to
nr_uninterruptible, the number would be elevated throughout the whole
sampling period, giving a pressure value of 100% for "some stalled".
And, since there is always something executing, a "full stall" of 0%.

Now consider what happens when the Task 3 sequence is the other way
around:

    CPU 0
Task 1: | EXECUTING  | memstalled |
Task 2: | runqueued  | EXECUTING  |

    CPU 1
Task 3: | EXECUTING  | memstalled |

Here the number of stalled tasks is elevated only during half of the
sampling period, this time giving a pressure reading of 50% for "some"
(and again 0% for "full").

That's a different measurement, but in terms of workload progress, the
sequences are functionally equivalent. In both scenarios the same
amount of productive CPU cycles is spent advancing tasks 1, 2 and 3,
and the same amount of potentially productive CPU time is lost due to
the contention of memory. We really ought to read the same pressure.

So what I'm doing is calculating the productivity loss on each CPU in
a sampling period as if they were independent time slices. It doesn't
matter how you slice and dice the sequences within each one - if used
CPU time and lost CPU time have the same proportion, we have the same
pressure.

In both scenarios above, this method will give a pressure reading of
some=50% and full=25% of "normalized walltime", which is the time loss
the work would experience on a single CPU executing it serially.

To illustrate:

    CPU X
        1            2            3            4
Task 1: | EXECUTING  | memstalled | sleeping   | sleeping   |
Task 2: | runqueued  | EXECUTING  | sleeping   | sleeping   |
Task 3: | sleeping   | sleeping   | EXECUTING  | memstalled |

You can clearly see the 50% of walltime in which *somebody* isn't
advancing (2 and 4), and the 25% of walltime in which *no* tasks are
(3). Same amount of work, same memory stalls, same pressure numbers.

Globalized state tracking would produce those numbers on the single
CPU (obviously), but once concurrency gets into the mix, it's
questionable what its results mean. It certainly isn't able to
reliably detect equivalent slowdowns of individual tasks ("some" is
all over the place), and in this example wasn't able to capture the
impact of contention on overall work completion ("full" is 0%).

* CPU 0: some = 50%, full =  0%
  CPU 1: some = 50%, full = 50%
    avg: some = 50%, full = 25%
Johannes Weiner - May 10, 2018, 1:49 p.m.
On Wed, May 09, 2018 at 11:59:38AM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h
> > new file mode 100644
> > index 000000000000..b22b0ffc729d
> > --- /dev/null
> > +++ b/include/linux/psi_types.h
> > @@ -0,0 +1,84 @@
> > +#ifndef _LINUX_PSI_TYPES_H
> > +#define _LINUX_PSI_TYPES_H
> > +
> > +#include <linux/types.h>
> > +
> > +#ifdef CONFIG_PSI
> > +
> > +/* Tracked task states */
> > +enum psi_task_count {
> > +	NR_RUNNING,
> > +	NR_IOWAIT,
> > +	NR_MEMSTALL,
> > +	NR_PSI_TASK_COUNTS,
> > +};
> > +
> > +/* Task state bitmasks */
> > +#define TSK_RUNNING	(1 << NR_RUNNING)
> > +#define TSK_IOWAIT	(1 << NR_IOWAIT)
> > +#define TSK_MEMSTALL	(1 << NR_MEMSTALL)
> > +
> > +/* Resources that workloads could be stalled on */
> > +enum psi_res {
> > +	PSI_CPU,
> > +	PSI_MEM,
> > +	PSI_IO,
> > +	NR_PSI_RESOURCES,
> > +};
> > +
> > +/* Pressure states for a group of tasks */
> > +enum psi_state {
> > +	PSI_NONE,		/* No stalled tasks */
> > +	PSI_SOME,		/* Stalled tasks & working tasks */
> > +	PSI_FULL,		/* Stalled tasks & no working tasks */
> > +	NR_PSI_STATES,
> > +};
> > +
> > +struct psi_resource {
> > +	/* Current pressure state for this resource */
> > +	enum psi_state state;
> > +
> > +	/* Start of current state (cpu_clock) */
> > +	u64 state_start;
> > +
> > +	/* Time sampling buckets for pressure states (ns) */
> > +	u64 times[NR_PSI_STATES - 1];
> 
> Fails to explain why no FULL.

It's NONE that's excluded. I'll add a comment.

> > +struct psi_group_cpu {
> > +	/* States of the tasks belonging to this group */
> > +	unsigned int tasks[NR_PSI_TASK_COUNTS];
> > +
> 
> AFAICT there's a hole here, that would fit the @nonidle member. Which
> also avoids the later hole generated by it.

Good spot, I'll reshuffle this accordingly.

> > +	/* Per-resource pressure tracking in this group */
> > +	struct psi_resource res[NR_PSI_RESOURCES];
> > +
> > +	/* There are runnable or D-state tasks */
> > +	bool nonidle;
> 
> Mandatory complaint about using _Bool in composites goes here.

int it is.

Thanks
Johannes Weiner - May 10, 2018, 2:10 p.m.
On Wed, May 09, 2018 at 12:04:55PM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > +static void psi_clock(struct work_struct *work)
> > +{
> > +	u64 some[NR_PSI_RESOURCES] = { 0, };
> > +	u64 full[NR_PSI_RESOURCES] = { 0, };
> > +	unsigned long nonidle_total = 0;
> > +	unsigned long missed_periods;
> > +	struct delayed_work *dwork;
> > +	struct psi_group *group;
> > +	unsigned long expires;
> > +	int cpu;
> > +	int r;
> > +
> > +	dwork = to_delayed_work(work);
> > +	group = container_of(dwork, struct psi_group, clock_work);
> > +
> > +	/*
> > +	 * Calculate the sampling period. The clock might have been
> > +	 * stopped for a while.
> > +	 */
> > +	expires = group->period_expires;
> > +	missed_periods = (jiffies - expires) / MY_LOAD_FREQ;
> > +	group->period_expires = expires + ((1 + missed_periods) * MY_LOAD_FREQ);
> > +
> > +	/*
> > +	 * Aggregate the per-cpu state into a global state. Each CPU
> > +	 * is weighted by its non-idle time in the sampling period.
> > +	 */
> > +	for_each_online_cpu(cpu) {
> 
> Typically when using online CPU state, you also need hotplug notifiers
> to deal with changes in the online set.
> 
> You also typically need something like cpus_read_lock() around an
> iteration of online CPUs, to avoid the set changing while you're poking
> at them.
> 
> The lack for neither is evident or explained.

The per-cpu state we access is allocated for each possible CPU, so
that is safe (and state being all 0 is semantically sound, too). In a
race with onlining, we might miss some per-cpu samples, but would
catch them the next time. In a race with offlining, we may never
consider the final up to 2s state history of the disappearing CPU; we
could have an offlining callback to flush the state, but I'm not sure
this would be an actual problem in the real world since the error is
small (smallest averaging window is 5 sampling periods) and then would
age out quickly.

I can certainly add a comment explaining this at least.

> > +		struct psi_group_cpu *groupc = per_cpu_ptr(group->cpus, cpu);
> > +		unsigned long nonidle;
> > +
> > +		nonidle = nsecs_to_jiffies(groupc->nonidle_time);
> > +		groupc->nonidle_time = 0;
> > +		nonidle_total += nonidle;
> > +
> > +		for (r = 0; r < NR_PSI_RESOURCES; r++) {
> > +			struct psi_resource *res = &groupc->res[r];
> > +
> > +			some[r] += (res->times[0] + res->times[1]) * nonidle;
> > +			full[r] += res->times[1] * nonidle;
> > +
> > +			/* It's racy, but we can tolerate some error */
> > +			res->times[0] = 0;
> > +			res->times[1] = 0;
> > +		}
> > +	}
Johannes Weiner - May 10, 2018, 2:13 p.m.
On Wed, May 09, 2018 at 12:05:51PM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > +	u64 some[NR_PSI_RESOURCES] = { 0, };
> > +	u64 full[NR_PSI_RESOURCES] = { 0, };
> 
> > +		some[r] /= max(nonidle_total, 1UL);
> > +		full[r] /= max(nonidle_total, 1UL);
> 
> That's a bare 64bit divide.. that typically failed to build on 32bit
> archs.

Ah yes, I'll switch that to do_div(). Thanks
Johannes Weiner - May 10, 2018, 2:18 p.m.
On Wed, May 09, 2018 at 12:14:54PM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> > index 15750c222ca2..1658477466d5 100644
> > --- a/kernel/sched/sched.h
> > +++ b/kernel/sched/sched.h
[...]
> What's all this churn about?

The psi callbacks in kernel/sched/stat.h use these rq lock functions
from this file, but sched.h includes stat.h before those definitions.

I'll move this into a separate patch with a proper explanation.
Johannes Weiner - May 10, 2018, 2:24 p.m.
On Wed, May 09, 2018 at 12:21:00PM +0200, Peter Zijlstra wrote:
> On Mon, May 07, 2018 at 05:01:34PM -0400, Johannes Weiner wrote:
> > +	local_irq_disable();
> > +	rq = this_rq();
> > +	raw_spin_lock(&rq->lock);
> > +	rq_pin_lock(rq, &rf);
> 
> Given that churn in sched.h, you seen rq_lock() and friends.
> 
> Either write this like:
> 
> 	local_irq_disable();
> 	rq = this_rq();
> 	rq_lock(rq, &rf);
> 
> Or instroduce "rq = this_rq_lock_irq()", which we could also use in
> do_sched_yield().

Sounds good, I'll add that.

> > +	update_rq_clock(rq);
> > +
> > +	current->flags |= PF_MEMSTALL;
> > +	psi_task_change(current, rq_clock(rq), 0, TSK_MEMSTALL);
> > +
> > +	rq_unpin_lock(rq, &rf);
> > +	raw_spin_unlock(&rq->lock);
> > +	local_irq_enable();
> 
> That's called rq_unlock_irq().

I'll use that. This code was first written against a kernel that
didn't have 8a8c69c32778 ("sched/core: Add rq->lock wrappers.") yet ;)
Peter Zijlstra - May 14, 2018, 8:33 a.m.
On Thu, May 10, 2018 at 09:41:32AM -0400, Johannes Weiner wrote:
> So there is a reason I'm tracking productivity states per-cpu and not
> globally. Consider the following example periods on two CPUs:
> 
>     CPU 0
> Task 1: | EXECUTING  | memstalled |
> Task 2: | runqueued  | EXECUTING  |
> 
>     CPU 1
> Task 3: | memstalled | EXECUTING  |
> 
> If we tracked only the global number of stalled tasks, similarly to
> nr_uninterruptible, the number would be elevated throughout the whole
> sampling period, giving a pressure value of 100% for "some stalled".
> And, since there is always something executing, a "full stall" of 0%.

But if you read the comment about SMP IO-wait; see commit:

  e33a9bba85a8 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler")

you'll see that per-cpu accounting has issues too.

Also, note that in your example above you have 1 memstalled task (at any
one time), but _2_ CPUs. So at most you should end up with a 50% value.
There is no way 1 task could consume 2 CPUs worth of time.

Furthermore, associating a blocked task to any particular CPU is
fundamentally broken and I'll hard NAK anything that relies on it.

> Now consider what happens when the Task 3 sequence is the other way
> around:
> 
>     CPU 0
> Task 1: | EXECUTING  | memstalled |
> Task 2: | runqueued  | EXECUTING  |
> 
>     CPU 1
> Task 3: | EXECUTING  | memstalled |
> 
> Here the number of stalled tasks is elevated only during half of the
> sampling period, this time giving a pressure reading of 50% for "some"
> (and again 0% for "full").

That entirely depends on your averaging; an exponentially decaying
average would not typically result in 50% for the above case. But I
think we can agree that this results in one 0% and one 100% sample -- we
have two stalled tasks and two CPUs.

> That's a different measurement, but in terms of workload progress, the
> sequences are functionally equivalent. In both scenarios the same
> amount of productive CPU cycles is spent advancing tasks 1, 2 and 3,
> and the same amount of potentially productive CPU time is lost due to
> the contention of memory. We really ought to read the same pressure.

And you do -- subject to the averaging used, as per the above.

The first gives two 50% samples, the second gives 0%, 100%.

> So what I'm doing is calculating the productivity loss on each CPU in
> a sampling period as if they were independent time slices. It doesn't
> matter how you slice and dice the sequences within each one - if used
> CPU time and lost CPU time have the same proportion, we have the same
> pressure.

I'm still thinking you can do basically the same without the stong CPU
relation.

> To illustrate:
> 
>     CPU X
>         1            2            3            4
> Task 1: | EXECUTING  | memstalled | sleeping   | sleeping   |
> Task 2: | runqueued  | EXECUTING  | sleeping   | sleeping   |
> Task 3: | sleeping   | sleeping   | EXECUTING  | memstalled |
> 
> You can clearly see the 50% of walltime in which *somebody* isn't
> advancing (2 and 4), and the 25% of walltime in which *no* tasks are
> (3). Same amount of work, same memory stalls, same pressure numbers.
> 
> Globalized state tracking would produce those numbers on the single
> CPU (obviously), but once concurrency gets into the mix, it's
> questionable what its results mean. It certainly isn't able to
> reliably detect equivalent slowdowns of individual tasks ("some" is
> all over the place), and in this example wasn't able to capture the
> impact of contention on overall work completion ("full" is 0%).
> 
> * CPU 0: some = 50%, full =  0%
>   CPU 1: some = 50%, full = 50%
>     avg: some = 50%, full = 25%

I'm not entirely sure I get your point here; but note that a task
doesn't sleep on a CPU. When it sleeps it is not strictly associated
with a CPU, only when it runs does it have an association.

What is the value of accounting a sleep state to a particular CPU if the
task when wakes up on another? Where did the sleep take place?

All we really can say is that a task slept, and if we can reduce the
reason for its sleeping (IO, reclaim, whatever) then it could've ran
sooner. And then you can make predictions based on the number of CPUs
and global idle time, how much that could improve things.

Patch

diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.txt
new file mode 100644
index 000000000000..e051810d5127
--- /dev/null
+++ b/Documentation/accounting/psi.txt
@@ -0,0 +1,73 @@ 
+================================
+PSI - Pressure Stall Information
+================================
+
+:Date: April, 2018
+:Author: Johannes Weiner <hannes@cmpxchg.org>
+
+When CPU, memory or IO devices are contended, workloads experience
+latency spikes, throughput losses, and run the risk of OOM kills.
+
+Without an accurate measure of such contention, users are forced to
+either play it safe and under-utilize their hardware resources, or
+roll the dice and frequently suffer the disruptions resulting from
+excessive overcommit.
+
+The psi feature identifies and quantifies the disruptions caused by
+such resource crunches and the time impact it has on complex workloads
+or even entire systems.
+
+Having an accurate measure of productivity losses caused by resource
+scarcity aids users in sizing workloads to hardware--or provisioning
+hardware according to workload demand.
+
+As psi aggregates this information in realtime, systems can be managed
+dynamically using techniques such as load shedding, migrating jobs to
+other systems or data centers, or strategically pausing or killing low
+priority or restartable batch jobs.
+
+This allows maximizing hardware utilization without sacrificing
+workload health or risking major disruptions such as OOM kills.
+
+Pressure interface
+==================
+
+Pressure information for each resource is exported through the
+respective file in /proc/pressure/ -- cpu, memory, and io.
+
+In both cases, the format for CPU is as such:
+
+some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+
+and for memory and IO:
+
+some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+full avg10=0.00 avg60=0.00 avg300=0.00 total=0
+
+The "some" line indicates the share of time in which at least some
+tasks are stalled on a given resource.
+
+The "full" line indicates the share of time in which all non-idle
+tasks are stalled on a given resource simultaneously. In this state
+actual CPU cycles are going to waste, and a workload that spends
+extended time in this state is considered to be thrashing. This has
+severe impact on performance, and it's useful to distinguish this
+situation from a state where some tasks are stalled but the CPU is
+still doing productive work. As such, time spent in this subset of the
+stall state is tracked separately and exported in the "full" averages.
+
+The ratios are tracked as recent trends over ten, sixty, and three
+hundred second windows, which gives insight into short term events as
+well as medium and long term trends. The total absolute stall time is
+tracked and exported as well, to allow detection of latency spikes
+which wouldn't necessarily make a dent in the time averages, or to
+average trends over custom time frames.
+
+Cgroup2 interface
+=================
+
+In a system with a CONFIG_CGROUP=y kernel and the cgroup2 filesystem
+mounted, pressure stall information is also tracked for tasks grouped
+into cgroups. Each subdirectory in the cgroupfs mountpoint contains
+cpu.pressure, memory.pressure, and io.pressure files; the format is
+the same as the /proc/pressure/ files.
diff --git a/include/linux/psi.h b/include/linux/psi.h
new file mode 100644
index 000000000000..371af1479699
--- /dev/null
+++ b/include/linux/psi.h
@@ -0,0 +1,27 @@ 
+#ifndef _LINUX_PSI_H
+#define _LINUX_PSI_H
+
+#include <linux/psi_types.h>
+#include <linux/sched.h>
+
+#ifdef CONFIG_PSI
+
+extern bool psi_disabled;
+
+void psi_init(void);
+
+void psi_task_change(struct task_struct *task, u64 now, int clear, int set);
+
+void psi_memstall_enter(unsigned long *flags);
+void psi_memstall_leave(unsigned long *flags);
+
+#else /* CONFIG_PSI */
+
+static inline void psi_init(void) {}
+
+static inline void psi_memstall_enter(unsigned long *flags) {}
+static inline void psi_memstall_leave(unsigned long *flags) {}
+
+#endif /* CONFIG_PSI */
+
+#endif /* _LINUX_PSI_H */
diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h
new file mode 100644
index 000000000000..b22b0ffc729d
--- /dev/null
+++ b/include/linux/psi_types.h
@@ -0,0 +1,84 @@ 
+#ifndef _LINUX_PSI_TYPES_H
+#define _LINUX_PSI_TYPES_H
+
+#include <linux/types.h>
+
+#ifdef CONFIG_PSI
+
+/* Tracked task states */
+enum psi_task_count {
+	NR_RUNNING,
+	NR_IOWAIT,
+	NR_MEMSTALL,
+	NR_PSI_TASK_COUNTS,
+};
+
+/* Task state bitmasks */
+#define TSK_RUNNING	(1 << NR_RUNNING)
+#define TSK_IOWAIT	(1 << NR_IOWAIT)
+#define TSK_MEMSTALL	(1 << NR_MEMSTALL)
+
+/* Resources that workloads could be stalled on */
+enum psi_res {
+	PSI_CPU,
+	PSI_MEM,
+	PSI_IO,
+	NR_PSI_RESOURCES,
+};
+
+/* Pressure states for a group of tasks */
+enum psi_state {
+	PSI_NONE,		/* No stalled tasks */
+	PSI_SOME,		/* Stalled tasks & working tasks */
+	PSI_FULL,		/* Stalled tasks & no working tasks */
+	NR_PSI_STATES,
+};
+
+struct psi_resource {
+	/* Current pressure state for this resource */
+	enum psi_state state;
+
+	/* Start of current state (cpu_clock) */
+	u64 state_start;
+
+	/* Time sampling buckets for pressure states (ns) */
+	u64 times[NR_PSI_STATES - 1];
+};
+
+struct psi_group_cpu {
+	/* States of the tasks belonging to this group */
+	unsigned int tasks[NR_PSI_TASK_COUNTS];
+
+	/* Per-resource pressure tracking in this group */
+	struct psi_resource res[NR_PSI_RESOURCES];
+
+	/* There are runnable or D-state tasks */
+	bool nonidle;
+
+	/* Start of current non-idle state (cpu_clock) */
+	u64 nonidle_start;
+
+	/* Time sampling bucket for non-idle state (ns) */
+	u64 nonidle_time;
+};
+
+struct psi_group {
+	struct psi_group_cpu *cpus;
+
+	struct delayed_work clock_work;
+	unsigned long period_expires;
+
+	u64 some[NR_PSI_RESOURCES];
+	u64 full[NR_PSI_RESOURCES];
+
+	unsigned long avg_some[NR_PSI_RESOURCES][3];
+	unsigned long avg_full[NR_PSI_RESOURCES][3];
+};
+
+#else /* CONFIG_PSI */
+
+struct psi_group { };
+
+#endif /* CONFIG_PSI */
+
+#endif /* _LINUX_PSI_TYPES_H */
diff --git a/include/linux/sched.h b/include/linux/sched.h
index b3d697f3b573..d854652f9603 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -25,6 +25,7 @@ 
 #include <linux/latencytop.h>
 #include <linux/sched/prio.h>
 #include <linux/signal_types.h>
+#include <linux/psi_types.h>
 #include <linux/mm_types_task.h>
 #include <linux/task_io_accounting.h>
 
@@ -669,6 +670,10 @@  struct task_struct {
 	unsigned			sched_contributes_to_load:1;
 	unsigned			sched_migrated:1;
 	unsigned			sched_remote_wakeup:1;
+#ifdef CONFIG_PSI
+	unsigned			sched_psi_wake_requeue:1;
+#endif
+
 	/* Force alignment to the next boundary: */
 	unsigned			:0;
 
@@ -916,6 +921,10 @@  struct task_struct {
 	siginfo_t			*last_siginfo;
 
 	struct task_io_accounting	ioac;
+#ifdef CONFIG_PSI
+	/* Pressure stall state */
+	unsigned int			psi_flags;
+#endif
 #ifdef CONFIG_TASK_XACCT
 	/* Accumulated RSS usage: */
 	u64				acct_rss_mem1;
@@ -1345,6 +1354,7 @@  extern struct pid *cad_pid;
 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
+#define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
diff --git a/include/linux/sched/stat.h b/include/linux/sched/stat.h
index 04f1321d14c4..ac39435d1521 100644
--- a/include/linux/sched/stat.h
+++ b/include/linux/sched/stat.h
@@ -28,10 +28,14 @@  static inline int sched_info_on(void)
 	return 1;
 #elif defined(CONFIG_TASK_DELAY_ACCT)
 	extern int delayacct_on;
-	return delayacct_on;
-#else
-	return 0;
+	if (delayacct_on)
+		return 1;
+#elif defined(CONFIG_PSI)
+	extern int psi_disabled;
+	if (!psi_disabled)
+		return 1;
 #endif
+	return 0;
 }
 
 #ifdef CONFIG_SCHEDSTATS
diff --git a/init/Kconfig b/init/Kconfig
index f013afc74b11..36208c2a386c 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -457,6 +457,22 @@  config TASK_IO_ACCOUNTING
 
 	  Say N if unsure.
 
+config PSI
+	bool "Pressure stall information tracking"
+	select SCHED_INFO
+	help
+	  Collect metrics that indicate how overcommitted the CPU, memory,
+	  and IO capacity are in the system.
+
+	  If you say Y here, the kernel will create /proc/pressure/ with the
+	  pressure statistics files cpu, memory, and io. These will indicate
+	  the share of walltime in which some or all tasks in the system are
+	  delayed due to contention of the respective resource.
+
+	  For more details see Documentation/accounting/psi.txt.
+
+	  Say N if unsure.
+
 endmenu # "CPU/Task time and stats accounting"
 
 config CPU_ISOLATION
diff --git a/kernel/fork.c b/kernel/fork.c
index a5d21c42acfc..067aa5c28526 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1704,6 +1704,10 @@  static __latent_entropy struct task_struct *copy_process(
 
 	p->default_timer_slack_ns = current->timer_slack_ns;
 
+#ifdef CONFIG_PSI
+	p->psi_flags = 0;
+#endif
+
 	task_io_accounting_init(&p->ioac);
 	acct_clear_integrals(p);
 
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index d9a02b318108..b29bc18f2704 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -29,3 +29,4 @@  obj-$(CONFIG_CPU_FREQ) += cpufreq.o
 obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
 obj-$(CONFIG_MEMBARRIER) += membarrier.o
 obj-$(CONFIG_CPU_ISOLATION) += isolation.o
+obj-$(CONFIG_PSI) += psi.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 5e10aaeebfcc..e663333ec6fb 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2038,6 +2038,7 @@  try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
 	if (task_cpu(p) != cpu) {
 		wake_flags |= WF_MIGRATED;
+		psi_ttwu_dequeue(p);
 		set_task_cpu(p, cpu);
 	}
 
@@ -6113,6 +6114,8 @@  void __init sched_init(void)
 
 	init_schedstats();
 
+	psi_init();
+
 	scheduler_running = 1;
 }
 
diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c
new file mode 100644
index 000000000000..052c529a053b
--- /dev/null
+++ b/kernel/sched/psi.c
@@ -0,0 +1,424 @@ 
+/*
+ * Measure workload productivity impact from overcommitting CPU, memory, IO
+ *
+ * Copyright (c) 2017 Facebook, Inc.
+ * Author: Johannes Weiner <hannes@cmpxchg.org>
+ *
+ * Implementation
+ *
+ * Task states -- running, iowait, memstall -- are tracked through the
+ * scheduler and aggregated into a system-wide productivity state. The
+ * ratio between the times spent in productive states and delays tells
+ * us the overall productivity of the workload.
+ *
+ * The ratio is tracked in decaying time averages over 10s, 1m, 5m
+ * windows. Cumluative stall times are tracked and exported as well to
+ * allow detection of latency spikes and custom time averaging.
+ *
+ * Multiple CPUs
+ *
+ * To avoid cache contention, times are tracked local to the CPUs. To
+ * get a comprehensive view of a system or cgroup, we have to consider
+ * the fact that CPUs could be unevenly loaded or even entirely idle
+ * if the workload doesn't have enough threads. To avoid artifacts
+ * caused by that, when adding up the global pressure ratio, the
+ * CPU-local ratios are weighed according to their non-idle time:
+ *
+ *   Time the CPU had stalled tasks    Time the CPU was non-idle
+ *   ------------------------------ * ---------------------------
+ *                Walltime            Time all CPUs were non-idle
+ */
+
+#include <linux/sched/loadavg.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+#include <linux/cgroup.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/psi.h>
+#include "sched.h"
+
+static int psi_bug __read_mostly;
+
+bool psi_disabled __read_mostly;
+core_param(psi_disabled, psi_disabled, bool, 0644);
+
+/* Running averages - we need to be higher-res than loadavg */
+#define MY_LOAD_FREQ	(2*HZ+1)	/* 2 sec intervals */
+#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
+#define EXP_60s		1981		/* 1/exp(2s/60s) */
+#define EXP_300s	2034		/* 1/exp(2s/300s) */
+
+/* Load frequency in nanoseconds */
+static u64 load_period __read_mostly;
+
+/* System-level pressure tracking */
+static DEFINE_PER_CPU(struct psi_group_cpu, system_group_cpus);
+static struct psi_group psi_system = {
+	.cpus = &system_group_cpus,
+};
+
+static void psi_clock(struct work_struct *work);
+
+static void psi_group_init(struct psi_group *group)
+{
+	group->period_expires = jiffies + MY_LOAD_FREQ;
+	INIT_DELAYED_WORK(&group->clock_work, psi_clock);
+}
+
+void __init psi_init(void)
+{
+	load_period = jiffies_to_nsecs(MY_LOAD_FREQ);
+	psi_group_init(&psi_system);
+}
+
+static void calc_avgs(unsigned long avg[3], u64 time, int missed_periods)
+{
+	unsigned long pct;
+
+	/* Sample the most recent active period */
+	pct = time * 100 / load_period;
+	pct *= FIXED_1;
+	avg[0] = calc_load(avg[0], EXP_10s, pct);
+	avg[1] = calc_load(avg[1], EXP_60s, pct);
+	avg[2] = calc_load(avg[2], EXP_300s, pct);
+
+	/* Fill in zeroes for periods of no activity */
+	if (missed_periods) {
+		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
+		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
+		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
+	}
+}
+
+static void psi_clock(struct work_struct *work)
+{
+	u64 some[NR_PSI_RESOURCES] = { 0, };
+	u64 full[NR_PSI_RESOURCES] = { 0, };
+	unsigned long nonidle_total = 0;
+	unsigned long missed_periods;
+	struct delayed_work *dwork;
+	struct psi_group *group;
+	unsigned long expires;
+	int cpu;
+	int r;
+
+	dwork = to_delayed_work(work);
+	group = container_of(dwork, struct psi_group, clock_work);
+
+	/*
+	 * Calculate the sampling period. The clock might have been
+	 * stopped for a while.
+	 */
+	expires = group->period_expires;
+	missed_periods = (jiffies - expires) / MY_LOAD_FREQ;
+	group->period_expires = expires + ((1 + missed_periods) * MY_LOAD_FREQ);
+
+	/*
+	 * Aggregate the per-cpu state into a global state. Each CPU
+	 * is weighted by its non-idle time in the sampling period.
+	 */
+	for_each_online_cpu(cpu) {
+		struct psi_group_cpu *groupc = per_cpu_ptr(group->cpus, cpu);
+		unsigned long nonidle;
+
+		nonidle = nsecs_to_jiffies(groupc->nonidle_time);
+		groupc->nonidle_time = 0;
+		nonidle_total += nonidle;
+
+		for (r = 0; r < NR_PSI_RESOURCES; r++) {
+			struct psi_resource *res = &groupc->res[r];
+
+			some[r] += (res->times[0] + res->times[1]) * nonidle;
+			full[r] += res->times[1] * nonidle;
+
+			/* It's racy, but we can tolerate some error */
+			res->times[0] = 0;
+			res->times[1] = 0;
+		}
+	}
+
+	for (r = 0; r < NR_PSI_RESOURCES; r++) {
+		/* Finish the weighted aggregation */
+		some[r] /= max(nonidle_total, 1UL);
+		full[r] /= max(nonidle_total, 1UL);
+
+		/* Accumulate stall time */
+		group->some[r] += some[r];
+		group->full[r] += full[r];
+
+		/* Calculate recent pressure averages */
+		calc_avgs(group->avg_some[r], some[r], missed_periods);
+		calc_avgs(group->avg_full[r], full[r], missed_periods);
+	}
+
+	/* Keep the clock ticking only when there is action */
+	if (nonidle_total)
+		schedule_delayed_work(dwork, MY_LOAD_FREQ);
+}
+
+static void time_state(struct psi_resource *res, int state, u64 now)
+{
+	if (res->state != PSI_NONE) {
+		bool was_full = res->state == PSI_FULL;
+
+		res->times[was_full] += now - res->state_start;
+	}
+	if (res->state != state)
+		res->state = state;
+	if (res->state != PSI_NONE)
+		res->state_start = now;
+}
+
+static void psi_group_update(struct psi_group *group, int cpu, u64 now,
+			     unsigned int clear, unsigned int set)
+{
+	enum psi_state state = PSI_NONE;
+	struct psi_group_cpu *groupc;
+	unsigned int *tasks;
+	unsigned int to, bo;
+
+	groupc = per_cpu_ptr(group->cpus, cpu);
+	tasks = groupc->tasks;
+
+	/* Update task counts according to the set/clear bitmasks */
+	for (to = 0; (bo = ffs(clear)); to += bo, clear >>= bo) {
+		int idx = to + (bo - 1);
+
+		if (tasks[idx] == 0 && !psi_bug) {
+			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d idx=%d tasks=[%u %u %u %u]\n",
+					cpu, idx, tasks[0], tasks[1],
+					tasks[2], tasks[3]);
+			psi_bug = 1;
+		}
+		tasks[idx]--;
+	}
+	for (to = 0; (bo = ffs(set)); to += bo, set >>= bo)
+		tasks[to + (bo - 1)]++;
+
+	/* Time in which tasks wait for the CPU */
+	state = PSI_NONE;
+	if (tasks[NR_RUNNING] > 1)
+		state = PSI_SOME;
+	time_state(&groupc->res[PSI_CPU], state, now);
+
+	/* Time in which tasks wait for memory */
+	state = PSI_NONE;
+	if (tasks[NR_MEMSTALL]) {
+		if (!tasks[NR_RUNNING] ||
+		    (cpu_curr(cpu)->flags & PF_MEMSTALL))
+			state = PSI_FULL;
+		else
+			state = PSI_SOME;
+	}
+	time_state(&groupc->res[PSI_MEM], state, now);
+
+	/* Time in which tasks wait for IO */
+	state = PSI_NONE;
+	if (tasks[NR_IOWAIT]) {
+		if (!tasks[NR_RUNNING])
+			state = PSI_FULL;
+		else
+			state = PSI_SOME;
+	}
+	time_state(&groupc->res[PSI_IO], state, now);
+
+	/* Time in which tasks are non-idle, to weigh the CPU in summaries */
+	if (groupc->nonidle)
+		groupc->nonidle_time += now - groupc->nonidle_start;
+	groupc->nonidle = tasks[NR_RUNNING] ||
+		tasks[NR_IOWAIT] || tasks[NR_MEMSTALL];
+	if (groupc->nonidle)
+		groupc->nonidle_start = now;
+
+	/* Kick the stats aggregation worker if it's gone to sleep */
+	if (!delayed_work_pending(&group->clock_work))
+		schedule_delayed_work(&group->clock_work, MY_LOAD_FREQ);
+}
+
+void psi_task_change(struct task_struct *task, u64 now, int clear, int set)
+{
+	struct cgroup *cgroup, *parent;
+	int cpu = task_cpu(task);
+
+	if (psi_disabled)
+		return;
+
+	if (!task->pid)
+		return;
+
+	if (((task->psi_flags & set) ||
+	     (task->psi_flags & clear) != clear) &&
+	    !psi_bug) {
+		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
+				task->pid, task->comm, cpu,
+				task->psi_flags, clear, set);
+		psi_bug = 1;
+	}
+
+	task->psi_flags &= ~clear;
+	task->psi_flags |= set;
+
+	psi_group_update(&psi_system, cpu, now, clear, set);
+}
+
+/**
+ * psi_memstall_enter - mark the beginning of a memory stall section
+ * @flags: flags to handle nested sections
+ *
+ * Marks the calling task as being stalled due to a lack of memory,
+ * such as waiting for a refault or performing reclaim.
+ */
+void psi_memstall_enter(unsigned long *flags)
+{
+	struct rq_flags rf;
+	struct rq *rq;
+
+	*flags = current->flags & PF_MEMSTALL;
+	if (*flags)
+		return;
+	/*
+	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
+	 * changes to the task's scheduling state, otherwise we can
+	 * race with CPU migration.
+	 */
+	local_irq_disable();
+	rq = this_rq();
+	raw_spin_lock(&rq->lock);
+	rq_pin_lock(rq, &rf);
+
+	update_rq_clock(rq);
+
+	current->flags |= PF_MEMSTALL;
+	psi_task_change(current, rq_clock(rq), 0, TSK_MEMSTALL);
+
+	rq_unpin_lock(rq, &rf);
+	raw_spin_unlock(&rq->lock);
+	local_irq_enable();
+}
+
+/**
+ * psi_memstall_leave - mark the end of an memory stall section
+ * @flags: flags to handle nested memdelay sections
+ *
+ * Marks the calling task as no longer stalled due to lack of memory.
+ */
+void psi_memstall_leave(unsigned long *flags)
+{
+	struct rq_flags rf;
+	struct rq *rq;
+
+	if (*flags)
+		return;
+	/*
+	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
+	 * changes to the task's scheduling state, otherwise we could
+	 * race with CPU migration.
+	 */
+	local_irq_disable();
+	rq = this_rq();
+	raw_spin_lock(&rq->lock);
+	rq_pin_lock(rq, &rf);
+
+	update_rq_clock(rq);
+
+	current->flags &= ~PF_MEMSTALL;
+	psi_task_change(current, rq_clock(rq), TSK_MEMSTALL, 0);
+
+	rq_unpin_lock(rq, &rf);
+	raw_spin_unlock(&rq->lock);
+	local_irq_enable();
+}
+
+static int psi_show(struct seq_file *m, struct psi_group *group,
+		    enum psi_res res)
+{
+	unsigned long avg[2][3];
+	int w;
+
+	if (psi_disabled)
+		return -EOPNOTSUPP;
+
+	for (w = 0; w < 3; w++) {
+		avg[0][w] = group->avg_some[res][w];
+		avg[1][w] = group->avg_full[res][w];
+	}
+
+	seq_printf(m, "some avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
+		   LOAD_INT(avg[0][0]), LOAD_FRAC(avg[0][0]),
+		   LOAD_INT(avg[0][1]), LOAD_FRAC(avg[0][1]),
+		   LOAD_INT(avg[0][2]), LOAD_FRAC(avg[0][2]),
+		   group->some[res] / NSEC_PER_USEC);
+
+	if (res == PSI_CPU)
+                return 0;
+
+	seq_printf(m, "full avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
+		   LOAD_INT(avg[1][0]), LOAD_FRAC(avg[1][0]),
+		   LOAD_INT(avg[1][1]), LOAD_FRAC(avg[1][1]),
+		   LOAD_INT(avg[1][2]), LOAD_FRAC(avg[1][2]),
+		   group->full[res] / NSEC_PER_USEC);
+
+	return 0;
+}
+
+static int psi_cpu_show(struct seq_file *m, void *v)
+{
+	return psi_show(m, &psi_system, PSI_CPU);
+}
+
+static int psi_memory_show(struct seq_file *m, void *v)
+{
+	return psi_show(m, &psi_system, PSI_MEM);
+}
+
+static int psi_io_show(struct seq_file *m, void *v)
+{
+	return psi_show(m, &psi_system, PSI_IO);
+}
+
+static int psi_cpu_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, psi_cpu_show, NULL);
+}
+
+static int psi_memory_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, psi_memory_show, NULL);
+}
+
+static int psi_io_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, psi_io_show, NULL);
+}
+
+static const struct file_operations psi_cpu_fops = {
+	.open           = psi_cpu_open,
+	.read           = seq_read,
+	.llseek         = seq_lseek,
+	.release        = single_release,
+};
+
+static const struct file_operations psi_memory_fops = {
+	.open           = psi_memory_open,
+	.read           = seq_read,
+	.llseek         = seq_lseek,
+	.release        = single_release,
+};
+
+static const struct file_operations psi_io_fops = {
+	.open           = psi_io_open,
+	.read           = seq_read,
+	.llseek         = seq_lseek,
+	.release        = single_release,
+};
+
+static int __init psi_proc_init(void)
+{
+	proc_mkdir("pressure", NULL);
+	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
+	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
+	proc_create("pressure/io", 0, NULL, &psi_io_fops);
+	return 0;
+}
+module_init(psi_proc_init);
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 15750c222ca2..1658477466d5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -54,6 +54,7 @@ 
 #include <linux/proc_fs.h>
 #include <linux/prefetch.h>
 #include <linux/profile.h>
+#include <linux/psi.h>
 #include <linux/rcupdate_wait.h>
 #include <linux/security.h>
 #include <linux/stackprotector.h>
@@ -320,6 +321,7 @@  extern bool dl_cpu_busy(unsigned int cpu);
 #ifdef CONFIG_CGROUP_SCHED
 
 #include <linux/cgroup.h>
+#include <linux/psi.h>
 
 struct cfs_rq;
 struct rt_rq;
@@ -919,6 +921,8 @@  DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 #define raw_rq()		raw_cpu_ptr(&runqueues)
 
+extern void update_rq_clock(struct rq *rq);
+
 static inline u64 __rq_clock_broken(struct rq *rq)
 {
 	return READ_ONCE(rq->clock);
@@ -1037,6 +1041,86 @@  static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
 #endif
 }
 
+struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+	__acquires(rq->lock);
+
+struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+	__acquires(p->pi_lock)
+	__acquires(rq->lock);
+
+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+}
+
+static inline void
+task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+	__releases(rq->lock)
+	__releases(p->pi_lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
+}
+
+static inline void
+rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock_irqsave(&rq->lock, rf->flags);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock_irq(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock_irq(&rq->lock);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock(&rq->lock);
+	rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_relock(struct rq *rq, struct rq_flags *rf)
+	__acquires(rq->lock)
+{
+	raw_spin_lock(&rq->lock);
+	rq_repin_lock(rq, rf);
+}
+
+static inline void
+rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
+}
+
+static inline void
+rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock_irq(&rq->lock);
+}
+
+static inline void
+rq_unlock(struct rq *rq, struct rq_flags *rf)
+	__releases(rq->lock)
+{
+	rq_unpin_lock(rq, rf);
+	raw_spin_unlock(&rq->lock);
+}
+
 #ifdef CONFIG_NUMA
 enum numa_topology_type {
 	NUMA_DIRECT,
@@ -1670,8 +1754,6 @@  static inline void sub_nr_running(struct rq *rq, unsigned count)
 	sched_update_tick_dependency(rq);
 }
 
-extern void update_rq_clock(struct rq *rq);
-
 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
 
@@ -1752,86 +1834,6 @@  static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
 static inline void sched_avg_update(struct rq *rq) { }
 #endif
 
-struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-	__acquires(rq->lock);
-
-struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
-	__acquires(p->pi_lock)
-	__acquires(rq->lock);
-
-static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
-	__releases(rq->lock)
-{
-	rq_unpin_lock(rq, rf);
-	raw_spin_unlock(&rq->lock);
-}
-
-static inline void
-task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
-	__releases(rq->lock)
-	__releases(p->pi_lock)
-{
-	rq_unpin_lock(rq, rf);
-	raw_spin_unlock(&rq->lock);
-	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
-}
-
-static inline void
-rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
-	__acquires(rq->lock)
-{
-	raw_spin_lock_irqsave(&rq->lock, rf->flags);
-	rq_pin_lock(rq, rf);
-}
-
-static inline void
-rq_lock_irq(struct rq *rq, struct rq_flags *rf)
-	__acquires(rq->lock)
-{
-	raw_spin_lock_irq(&rq->lock);
-	rq_pin_lock(rq, rf);
-}
-
-static inline void
-rq_lock(struct rq *rq, struct rq_flags *rf)
-	__acquires(rq->lock)
-{
-	raw_spin_lock(&rq->lock);
-	rq_pin_lock(rq, rf);
-}
-
-static inline void
-rq_relock(struct rq *rq, struct rq_flags *rf)
-	__acquires(rq->lock)
-{
-	raw_spin_lock(&rq->lock);
-	rq_repin_lock(rq, rf);
-}
-
-static inline void
-rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
-	__releases(rq->lock)
-{
-	rq_unpin_lock(rq, rf);
-	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
-}
-
-static inline void
-rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
-	__releases(rq->lock)
-{
-	rq_unpin_lock(rq, rf);
-	raw_spin_unlock_irq(&rq->lock);
-}
-
-static inline void
-rq_unlock(struct rq *rq, struct rq_flags *rf)
-	__releases(rq->lock)
-{
-	rq_unpin_lock(rq, rf);
-	raw_spin_unlock(&rq->lock);
-}
-
 #ifdef CONFIG_SMP
 #ifdef CONFIG_PREEMPT
 
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 8aea199a39b4..cb4a68bcf37a 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -55,12 +55,90 @@  static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delt
 # define   schedstat_val_or_zero(var)	0
 #endif /* CONFIG_SCHEDSTATS */
 
+#ifdef CONFIG_PSI
+/*
+ * PSI tracks state that persists across sleeps, such as iowaits and
+ * memory stalls. As a result, it has to distinguish between sleeps,
+ * where a task's runnable state changes, and requeues, where a task
+ * and its state are being moved between CPUs and runqueues.
+ */
+static inline void psi_enqueue(struct task_struct *p, u64 now)
+{
+	int clear = 0, set = TSK_RUNNING;
+
+	if (p->state == TASK_RUNNING || p->sched_psi_wake_requeue) {
+		if (p->flags & PF_MEMSTALL)
+			set |= TSK_MEMSTALL;
+		p->sched_psi_wake_requeue = 0;
+	} else {
+		if (p->in_iowait)
+			clear |= TSK_IOWAIT;
+	}
+
+	psi_task_change(p, now, clear, set);
+}
+static inline void psi_dequeue(struct task_struct *p, u64 now)
+{
+	int clear = TSK_RUNNING, set = 0;
+
+	if (p->state == TASK_RUNNING) {
+		if (p->flags & PF_MEMSTALL)
+			clear |= TSK_MEMSTALL;
+	} else {
+		if (p->in_iowait)
+			set |= TSK_IOWAIT;
+	}
+
+	psi_task_change(p, now, clear, set);
+}
+static inline void psi_ttwu_dequeue(struct task_struct *p)
+{
+	/*
+	 * Is the task being migrated during a wakeup? Make sure to
+	 * deregister its sleep-persistent psi states from the old
+	 * queue, and let psi_enqueue() know it has to requeue.
+	 */
+	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
+		struct rq_flags rf;
+		struct rq *rq;
+		int clear = 0;
+
+		if (p->in_iowait)
+			clear |= TSK_IOWAIT;
+		if (p->flags & PF_MEMSTALL)
+			clear |= TSK_MEMSTALL;
+
+		rq = __task_rq_lock(p, &rf);
+		update_rq_clock(rq);
+		psi_task_change(p, rq_clock(rq), clear, 0);
+		p->sched_psi_wake_requeue = 1;
+		__task_rq_unlock(rq, &rf);
+	}
+}
+#else /* CONFIG_PSI */
+static inline void psi_enqueue(struct task_struct *p, u64 now)
+{
+}
+static inline void psi_dequeue(struct task_struct *p, u64 now)
+{
+}
+static inline void psi_ttwu_dequeue(struct task_struct *p) {}
+{
+}
+#endif /* CONFIG_PSI */
+
 #ifdef CONFIG_SCHED_INFO
 static inline void sched_info_reset_dequeued(struct task_struct *t)
 {
 	t->sched_info.last_queued = 0;
 }
 
+static inline void sched_info_reset_queued(struct task_struct *t, u64 now)
+{
+	if (!t->sched_info.last_queued)
+		t->sched_info.last_queued = now;
+}
+
 /*
  * We are interested in knowing how long it was from the *first* time a
  * task was queued to the time that it finally hit a CPU, we call this routine
@@ -71,9 +149,11 @@  static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 {
 	unsigned long long now = rq_clock(rq), delta = 0;
 
-	if (unlikely(sched_info_on()))
+	if (unlikely(sched_info_on())) {
 		if (t->sched_info.last_queued)
 			delta = now - t->sched_info.last_queued;
+		psi_dequeue(t, now);
+	}
 	sched_info_reset_dequeued(t);
 	t->sched_info.run_delay += delta;
 
@@ -107,8 +187,10 @@  static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
 {
 	if (unlikely(sched_info_on())) {
-		if (!t->sched_info.last_queued)
-			t->sched_info.last_queued = rq_clock(rq);
+		unsigned long long now = rq_clock(rq);
+
+		sched_info_reset_queued(t, now);
+		psi_enqueue(t, now);
 	}
 }
 
@@ -127,7 +209,8 @@  static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 	rq_sched_info_depart(rq, delta);
 
 	if (t->state == TASK_RUNNING)
-		sched_info_queued(rq, t);
+		if (unlikely(sched_info_on()))
+			sched_info_reset_queued(t, rq_clock(rq));
 }
 
 /*
diff --git a/mm/compaction.c b/mm/compaction.c
index 028b7210a669..7f51685d493b 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -22,6 +22,7 @@ 
 #include <linux/kthread.h>
 #include <linux/freezer.h>
 #include <linux/page_owner.h>
+#include <linux/psi.h>
 #include "internal.h"
 
 #ifdef CONFIG_COMPACTION
@@ -2066,11 +2067,15 @@  static int kcompactd(void *p)
 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
 
 	while (!kthread_should_stop()) {
+		unsigned long pflags;
+
 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
 		wait_event_freezable(pgdat->kcompactd_wait,
 				kcompactd_work_requested(pgdat));
 
+		psi_memstall_enter(&pflags);
 		kcompactd_do_work(pgdat);
+		psi_memstall_leave(&pflags);
 	}
 
 	return 0;
diff --git a/mm/filemap.c b/mm/filemap.c
index e49961e13dd9..eee06145b997 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -37,6 +37,7 @@ 
 #include <linux/shmem_fs.h>
 #include <linux/rmap.h>
 #include <linux/delayacct.h>
+#include <linux/psi.h>
 #include "internal.h"
 
 #define CREATE_TRACE_POINTS
@@ -1075,11 +1076,14 @@  static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 	struct wait_page_queue wait_page;
 	wait_queue_entry_t *wait = &wait_page.wait;
 	bool thrashing = false;
+	unsigned long pflags;
 	int ret = 0;
 
-	if (bit_nr == PG_locked && !PageSwapBacked(page) &&
+	if (bit_nr == PG_locked &&
 	    !PageUptodate(page) && PageWorkingset(page)) {
-		delayacct_thrashing_start();
+		if (!PageSwapBacked(page))
+			delayacct_thrashing_start();
+		psi_memstall_enter(&pflags);
 		thrashing = true;
 	}
 
@@ -1121,8 +1125,11 @@  static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 
 	finish_wait(q, wait);
 
-	if (thrashing)
-		delayacct_thrashing_end();
+	if (thrashing) {
+		if (!PageSwapBacked(page))
+			delayacct_thrashing_end();
+		psi_memstall_leave(&pflags);
+	}
 
 	/*
 	 * A signal could leave PageWaiters set. Clearing it here if
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 905db9d7962f..a4b5673166a2 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -67,6 +67,7 @@ 
 #include <linux/ftrace.h>
 #include <linux/lockdep.h>
 #include <linux/nmi.h>
+#include <linux/psi.h>
 
 #include <asm/sections.h>
 #include <asm/tlbflush.h>
@@ -3559,15 +3560,20 @@  __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 		enum compact_priority prio, enum compact_result *compact_result)
 {
 	struct page *page;
+	unsigned long pflags;
 	unsigned int noreclaim_flag;
 
 	if (!order)
 		return NULL;
 
+	psi_memstall_enter(&pflags);
 	noreclaim_flag = memalloc_noreclaim_save();
+
 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
 									prio);
+
 	memalloc_noreclaim_restore(noreclaim_flag);
+	psi_memstall_leave(&pflags);
 
 	if (*compact_result <= COMPACT_INACTIVE)
 		return NULL;
@@ -3756,11 +3762,14 @@  __perform_reclaim(gfp_t gfp_mask, unsigned int order,
 	struct reclaim_state reclaim_state;
 	int progress;
 	unsigned int noreclaim_flag;
+	unsigned long pflags;
 
 	cond_resched();
 
 	/* We now go into synchronous reclaim */
 	cpuset_memory_pressure_bump();
+
+	psi_memstall_enter(&pflags);
 	noreclaim_flag = memalloc_noreclaim_save();
 	fs_reclaim_acquire(gfp_mask);
 	reclaim_state.reclaimed_slab = 0;
@@ -3772,6 +3781,7 @@  __perform_reclaim(gfp_t gfp_mask, unsigned int order,
 	current->reclaim_state = NULL;
 	fs_reclaim_release(gfp_mask);
 	memalloc_noreclaim_restore(noreclaim_flag);
+	psi_memstall_leave(&pflags);
 
 	cond_resched();
 
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 4ae5d0eb9489..f05a8ef1db15 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -49,6 +49,7 @@ 
 #include <linux/prefetch.h>
 #include <linux/printk.h>
 #include <linux/dax.h>
+#include <linux/psi.h>
 
 #include <asm/tlbflush.h>
 #include <asm/div64.h>
@@ -3115,6 +3116,7 @@  unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 {
 	struct zonelist *zonelist;
 	unsigned long nr_reclaimed;
+	unsigned long pflags;
 	int nid;
 	unsigned int noreclaim_flag;
 	struct scan_control sc = {
@@ -3143,9 +3145,13 @@  unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 					    sc.gfp_mask,
 					    sc.reclaim_idx);
 
+	psi_memstall_enter(&pflags);
 	noreclaim_flag = memalloc_noreclaim_save();
+
 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
+
 	memalloc_noreclaim_restore(noreclaim_flag);
+	psi_memstall_leave(&pflags);
 
 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
@@ -3565,6 +3571,7 @@  static int kswapd(void *p)
 	pgdat->kswapd_order = 0;
 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 	for ( ; ; ) {
+		unsigned long pflags;
 		bool ret;
 
 		alloc_order = reclaim_order = pgdat->kswapd_order;
@@ -3601,9 +3608,15 @@  static int kswapd(void *p)
 		 */
 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
 						alloc_order);
+
+		psi_memstall_enter(&pflags);
 		fs_reclaim_acquire(GFP_KERNEL);
+
 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
+
 		fs_reclaim_release(GFP_KERNEL);
+		psi_memstall_leave(&pflags);
+
 		if (reclaim_order < alloc_order)
 			goto kswapd_try_sleep;
 	}