[v19,06/15] mm/damon: Implement callbacks for the virtual memory address spaces
diff mbox series

Message ID 20200804091416.31039-7-sjpark@amazon.com
State New
Headers show
Series
  • Introduce Data Access MONitor (DAMON)
Related show

Commit Message

SeongJae Park Aug. 4, 2020, 9:14 a.m. UTC
From: SeongJae Park <sjpark@amazon.de>

This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that
users of DAMON can easily monitor the data accesses on virtual address
spaces of specific processes by simply configuring the implementation to
be used by DAMON.

The low level primitives for the fundamental access monitoring are
defined in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.

The reference implementation for the virtual address space provided by
this commit is designed as below.

PTE Accessed-bit Based Access Check
-----------------------------------

The implementation uses PTE Accessed-bit for basic access checks.  That
is, it clears the bit for next sampling target page and checks whether
it set again after one sampling period.  This could disturb other kernel
subsystems using the Accessed bits, namely Idle page tracking and the
reclaim logic.  To avoid such disturbances, DAMON makes it mutually
exclusive with Idle page tracking and uses ``PG_idle`` and ``PG_young``
page flags to solve the conflict with the reclaim logics, as Idle page
tracking does.

VMA-based Target Address Range Construction
-------------------------------------------

Only small parts in the super-huge virtual address space of the
processes are mapped to physical memory and accessed.  Thus, tracking
the unmapped address regions is just wasteful.  However, because DAMON
can deal with some level of noise using the adaptive regions adjustment
mechanism, tracking every mapping is not strictly required but could
even incur a high overhead in some cases.  That said, too huge unmapped
areas inside the monitoring target should be removed to not take the
time for the adaptive mechanism.

For the reason, this implementation converts the complex mappings to
three distinct regions that cover every mapped area of the address
space.  Also, the two gaps between the three regions are the two biggest
unmapped areas in the given address space.  The two biggest unmapped
areas would be the gap between the heap and the uppermost mmap()-ed
region, and the gap between the lowermost mmap()-ed region and the stack
in most of the cases.  Because these gaps are exceptionally huge in
usual address spacees, excluding these will be sufficient to make a
reasonable trade-off.  Below shows this in detail::

    <heap>
    <BIG UNMAPPED REGION 1>
    <uppermost mmap()-ed region>
    (small mmap()-ed regions and munmap()-ed regions)
    <lowermost mmap()-ed region>
    <BIG UNMAPPED REGION 2>
    <stack>

Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
---
 include/linux/damon.h |   7 +
 mm/Kconfig            |   3 +
 mm/damon.c            | 542 ++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 552 insertions(+)

Patch
diff mbox series

diff --git a/include/linux/damon.h b/include/linux/damon.h
index 6bd86bc47a74..f79112c56bbc 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -155,6 +155,13 @@  struct damon_ctx {
 	void (*aggregate_cb)(struct damon_ctx *context);
 };
 
+/* Reference callback implementations for virtual memory */
+void kdamond_init_vm_regions(struct damon_ctx *ctx);
+void kdamond_update_vm_regions(struct damon_ctx *ctx);
+void kdamond_prepare_vm_access_checks(struct damon_ctx *ctx);
+unsigned int kdamond_check_vm_accesses(struct damon_ctx *ctx);
+bool kdamond_vm_target_valid(struct damon_target *t);
+
 int damon_set_targets(struct damon_ctx *ctx,
 		unsigned long *ids, ssize_t nr_ids);
 int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
diff --git a/mm/Kconfig b/mm/Kconfig
index 8b1dacc60a8e..21cbd394bc78 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -882,6 +882,9 @@  config MAPPING_DIRTY_HELPERS
 
 config DAMON
 	bool "Data Access Monitor"
+	depends on MMU && !IDLE_PAGE_TRACKING
+	select PAGE_EXTENSION if !64BIT
+	select PAGE_IDLE_FLAG
 	help
 	  This feature allows to monitor access frequency of each memory
 	  region. The information can be useful for performance-centric DRAM
diff --git a/mm/damon.c b/mm/damon.c
index 9183b22ab4c9..fa908dc39270 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -9,6 +9,10 @@ 
  * This file is constructed in below parts.
  *
  * - Functions and macros for DAMON data structures
+ * - Functions for the initial monitoring target regions construction
+ * - Functions for the dynamic monitoring target regions update
+ * - Functions for the access checking of the regions
+ * - Functions for the target validity check
  * - Functions for DAMON core logics and features
  * - Functions for the DAMON programming interface
  * - Functions for the initialization
@@ -20,6 +24,7 @@ 
 #include <linux/delay.h>
 #include <linux/kthread.h>
 #include <linux/mm.h>
+#include <linux/mmu_notifier.h>
 #include <linux/module.h>
 #include <linux/page_idle.h>
 #include <linux/random.h>
@@ -193,6 +198,543 @@  static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
 	return sz;
 }
 
+/*
+ * Functions for the initial monitoring target regions construction
+ */
+
+/*
+ * 't->id' should be the pointer to the relevant 'struct pid' having reference
+ * count.  Caller must put the returned task, unless it is NULL.
+ */
+#define damon_get_task_struct(t) \
+	(get_pid_task((struct pid *)t->id, PIDTYPE_PID))
+
+/*
+ * Get the mm_struct of the given target
+ *
+ * Caller _must_ put the mm_struct after use, unless it is NULL.
+ *
+ * Returns the mm_struct of the target on success, NULL on failure
+ */
+static struct mm_struct *damon_get_mm(struct damon_target *t)
+{
+	struct task_struct *task;
+	struct mm_struct *mm;
+
+	task = damon_get_task_struct(t);
+	if (!task)
+		return NULL;
+
+	mm = get_task_mm(task);
+	put_task_struct(task);
+	return mm;
+}
+
+/*
+ * Size-evenly split a region into 'nr_pieces' small regions
+ *
+ * Returns 0 on success, or negative error code otherwise.
+ */
+static int damon_split_region_evenly(struct damon_ctx *ctx,
+		struct damon_region *r, unsigned int nr_pieces)
+{
+	unsigned long sz_orig, sz_piece, orig_end;
+	struct damon_region *n = NULL, *next;
+	unsigned long start;
+
+	if (!r || !nr_pieces)
+		return -EINVAL;
+
+	orig_end = r->ar.end;
+	sz_orig = r->ar.end - r->ar.start;
+	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, MIN_REGION);
+
+	if (!sz_piece)
+		return -EINVAL;
+
+	r->ar.end = r->ar.start + sz_piece;
+	next = damon_next_region(r);
+	for (start = r->ar.end; start + sz_piece <= orig_end;
+			start += sz_piece) {
+		n = damon_new_region(start, start + sz_piece);
+		if (!n)
+			return -ENOMEM;
+		damon_insert_region(n, r, next);
+		r = n;
+	}
+	/* complement last region for possible rounding error */
+	if (n)
+		n->ar.end = orig_end;
+
+	return 0;
+}
+
+static unsigned long sz_range(struct damon_addr_range *r)
+{
+	return r->end - r->start;
+}
+
+static void swap_ranges(struct damon_addr_range *r1,
+			struct damon_addr_range *r2)
+{
+	struct damon_addr_range tmp;
+
+	tmp = *r1;
+	*r1 = *r2;
+	*r2 = tmp;
+}
+
+/*
+ * Find three regions separated by two biggest unmapped regions
+ *
+ * vma		the head vma of the target address space
+ * regions	an array of three address ranges that results will be saved
+ *
+ * This function receives an address space and finds three regions in it which
+ * separated by the two biggest unmapped regions in the space.  Please refer to
+ * below comments of 'damon_init_vm_regions_of()' function to know why this is
+ * necessary.
+ *
+ * Returns 0 if success, or negative error code otherwise.
+ */
+static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
+				       struct damon_addr_range regions[3])
+{
+	struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
+	struct vm_area_struct *last_vma = NULL;
+	unsigned long start = 0;
+	struct rb_root rbroot;
+
+	/* Find two biggest gaps so that first_gap > second_gap > others */
+	for (; vma; vma = vma->vm_next) {
+		if (!last_vma) {
+			start = vma->vm_start;
+			goto next;
+		}
+
+		if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
+			rbroot.rb_node = &vma->vm_rb;
+			vma = rb_entry(rb_last(&rbroot),
+					struct vm_area_struct, vm_rb);
+			goto next;
+		}
+
+		gap.start = last_vma->vm_end;
+		gap.end = vma->vm_start;
+		if (sz_range(&gap) > sz_range(&second_gap)) {
+			swap_ranges(&gap, &second_gap);
+			if (sz_range(&second_gap) > sz_range(&first_gap))
+				swap_ranges(&second_gap, &first_gap);
+		}
+next:
+		last_vma = vma;
+	}
+
+	if (!sz_range(&second_gap) || !sz_range(&first_gap))
+		return -EINVAL;
+
+	/* Sort the two biggest gaps by address */
+	if (first_gap.start > second_gap.start)
+		swap_ranges(&first_gap, &second_gap);
+
+	/* Store the result */
+	regions[0].start = ALIGN(start, MIN_REGION);
+	regions[0].end = ALIGN(first_gap.start, MIN_REGION);
+	regions[1].start = ALIGN(first_gap.end, MIN_REGION);
+	regions[1].end = ALIGN(second_gap.start, MIN_REGION);
+	regions[2].start = ALIGN(second_gap.end, MIN_REGION);
+	regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION);
+
+	return 0;
+}
+
+/*
+ * Get the three regions in the given target (task)
+ *
+ * Returns 0 on success, negative error code otherwise.
+ */
+static int damon_three_regions_of(struct damon_target *t,
+				struct damon_addr_range regions[3])
+{
+	struct mm_struct *mm;
+	int rc;
+
+	mm = damon_get_mm(t);
+	if (!mm)
+		return -EINVAL;
+
+	mmap_read_lock(mm);
+	rc = damon_three_regions_in_vmas(mm->mmap, regions);
+	mmap_read_unlock(mm);
+
+	mmput(mm);
+	return rc;
+}
+
+/*
+ * Initialize the monitoring target regions for the given target (task)
+ *
+ * t	the given target
+ *
+ * Because only a number of small portions of the entire address space
+ * is actually mapped to the memory and accessed, monitoring the unmapped
+ * regions is wasteful.  That said, because we can deal with small noises,
+ * tracking every mapping is not strictly required but could even incur a high
+ * overhead if the mapping frequently changes or the number of mappings is
+ * high.  The adaptive regions adjustment mechanism will further help to deal
+ * with the noise by simply identifying the unmapped areas as a region that
+ * has no access.  Moreover, applying the real mappings that would have many
+ * unmapped areas inside will make the adaptive mechanism quite complex.  That
+ * said, too huge unmapped areas inside the monitoring target should be removed
+ * to not take the time for the adaptive mechanism.
+ *
+ * For the reason, we convert the complex mappings to three distinct regions
+ * that cover every mapped area of the address space.  Also the two gaps
+ * between the three regions are the two biggest unmapped areas in the given
+ * address space.  In detail, this function first identifies the start and the
+ * end of the mappings and the two biggest unmapped areas of the address space.
+ * Then, it constructs the three regions as below:
+ *
+ *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
+ *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
+ *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
+ *
+ * As usual memory map of processes is as below, the gap between the heap and
+ * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
+ * region and the stack will be two biggest unmapped regions.  Because these
+ * gaps are exceptionally huge areas in usual address space, excluding these
+ * two biggest unmapped regions will be sufficient to make a trade-off.
+ *
+ *   <heap>
+ *   <BIG UNMAPPED REGION 1>
+ *   <uppermost mmap()-ed region>
+ *   (other mmap()-ed regions and small unmapped regions)
+ *   <lowermost mmap()-ed region>
+ *   <BIG UNMAPPED REGION 2>
+ *   <stack>
+ */
+static void damon_init_vm_regions_of(struct damon_ctx *c,
+				     struct damon_target *t)
+{
+	struct damon_region *r;
+	struct damon_addr_range regions[3];
+	unsigned long sz = 0, nr_pieces;
+	int i;
+
+	if (damon_three_regions_of(t, regions)) {
+		pr_err("Failed to get three regions of target %lu\n", t->id);
+		return;
+	}
+
+	for (i = 0; i < 3; i++)
+		sz += regions[i].end - regions[i].start;
+	if (c->min_nr_regions)
+		sz /= c->min_nr_regions;
+	if (sz < MIN_REGION)
+		sz = MIN_REGION;
+
+	/* Set the initial three regions of the target */
+	for (i = 0; i < 3; i++) {
+		r = damon_new_region(regions[i].start, regions[i].end);
+		if (!r) {
+			pr_err("%d'th init region creation failed\n", i);
+			return;
+		}
+		damon_add_region(r, t);
+
+		nr_pieces = (regions[i].end - regions[i].start) / sz;
+		damon_split_region_evenly(c, r, nr_pieces);
+	}
+}
+
+/* Initialize '->regions_list' of every target (task) */
+void kdamond_init_vm_regions(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+
+	damon_for_each_target(t, ctx) {
+		/* the user may set the target regions as they want */
+		if (!nr_damon_regions(t))
+			damon_init_vm_regions_of(ctx, t);
+	}
+}
+
+/*
+ * Functions for the dynamic monitoring target regions update
+ */
+
+/*
+ * Check whether a region is intersecting an address range
+ *
+ * Returns true if it is.
+ */
+static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re)
+{
+	return !(r->ar.end <= re->start || re->end <= r->ar.start);
+}
+
+/*
+ * Update damon regions for the three big regions of the given target
+ *
+ * t		the given target
+ * bregions	the three big regions of the target
+ */
+static void damon_apply_three_regions(struct damon_ctx *ctx,
+		struct damon_target *t, struct damon_addr_range bregions[3])
+{
+	struct damon_region *r, *next;
+	unsigned int i = 0;
+
+	/* Remove regions which are not in the three big regions now */
+	damon_for_each_region_safe(r, next, t) {
+		for (i = 0; i < 3; i++) {
+			if (damon_intersect(r, &bregions[i]))
+				break;
+		}
+		if (i == 3)
+			damon_destroy_region(r);
+	}
+
+	/* Adjust intersecting regions to fit with the three big regions */
+	for (i = 0; i < 3; i++) {
+		struct damon_region *first = NULL, *last;
+		struct damon_region *newr;
+		struct damon_addr_range *br;
+
+		br = &bregions[i];
+		/* Get the first and last regions which intersects with br */
+		damon_for_each_region(r, t) {
+			if (damon_intersect(r, br)) {
+				if (!first)
+					first = r;
+				last = r;
+			}
+			if (r->ar.start >= br->end)
+				break;
+		}
+		if (!first) {
+			/* no damon_region intersects with this big region */
+			newr = damon_new_region(
+					ALIGN_DOWN(br->start, MIN_REGION),
+					ALIGN(br->end, MIN_REGION));
+			if (!newr)
+				continue;
+			damon_insert_region(newr, damon_prev_region(r), r);
+		} else {
+			first->ar.start = ALIGN_DOWN(br->start, MIN_REGION);
+			last->ar.end = ALIGN(br->end, MIN_REGION);
+		}
+	}
+}
+
+/*
+ * Update regions for current memory mappings
+ */
+void kdamond_update_vm_regions(struct damon_ctx *ctx)
+{
+	struct damon_addr_range three_regions[3];
+	struct damon_target *t;
+
+	damon_for_each_target(t, ctx) {
+		if (damon_three_regions_of(t, three_regions))
+			continue;
+		damon_apply_three_regions(ctx, t, three_regions);
+	}
+}
+
+/*
+ * Functions for the access checking of the regions
+ */
+
+static void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm,
+			     unsigned long addr)
+{
+	bool referenced = false;
+	struct page *page = pte_page(*pte);
+
+	if (pte_young(*pte)) {
+		referenced = true;
+		*pte = pte_mkold(*pte);
+	}
+
+#ifdef CONFIG_MMU_NOTIFIER
+	if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE))
+		referenced = true;
+#endif /* CONFIG_MMU_NOTIFIER */
+
+	if (referenced)
+		set_page_young(page);
+
+	set_page_idle(page);
+}
+
+static void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm,
+			     unsigned long addr)
+{
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	bool referenced = false;
+	struct page *page = pmd_page(*pmd);
+
+	if (pmd_young(*pmd)) {
+		referenced = true;
+		*pmd = pmd_mkold(*pmd);
+	}
+
+#ifdef CONFIG_MMU_NOTIFIER
+	if (mmu_notifier_clear_young(mm, addr,
+				addr + ((1UL) << HPAGE_PMD_SHIFT)))
+		referenced = true;
+#endif /* CONFIG_MMU_NOTIFIER */
+
+	if (referenced)
+		set_page_young(page);
+
+	set_page_idle(page);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+}
+
+static void damon_mkold(struct mm_struct *mm, unsigned long addr)
+{
+	pte_t *pte = NULL;
+	pmd_t *pmd = NULL;
+	spinlock_t *ptl;
+
+	if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
+		return;
+
+	if (pte) {
+		damon_ptep_mkold(pte, mm, addr);
+		pte_unmap_unlock(pte, ptl);
+	} else {
+		damon_pmdp_mkold(pmd, mm, addr);
+		spin_unlock(ptl);
+	}
+}
+
+static void damon_prepare_vm_access_check(struct damon_ctx *ctx,
+			struct mm_struct *mm, struct damon_region *r)
+{
+	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
+
+	damon_mkold(mm, r->sampling_addr);
+}
+
+void kdamond_prepare_vm_access_checks(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	struct mm_struct *mm;
+	struct damon_region *r;
+
+	damon_for_each_target(t, ctx) {
+		mm = damon_get_mm(t);
+		if (!mm)
+			continue;
+		damon_for_each_region(r, t)
+			damon_prepare_vm_access_check(ctx, mm, r);
+		mmput(mm);
+	}
+}
+
+static bool damon_young(struct mm_struct *mm, unsigned long addr,
+			unsigned long *page_sz)
+{
+	pte_t *pte = NULL;
+	pmd_t *pmd = NULL;
+	spinlock_t *ptl;
+	bool young = false;
+
+	if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
+		return false;
+
+	*page_sz = PAGE_SIZE;
+	if (pte) {
+		young = pte_young(*pte);
+		if (!young)
+			young = !page_is_idle(pte_page(*pte));
+		pte_unmap_unlock(pte, ptl);
+		return young;
+	}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	young = pmd_young(*pmd);
+	if (!young)
+		young = !page_is_idle(pmd_page(*pmd));
+	spin_unlock(ptl);
+	*page_sz = ((1UL) << HPAGE_PMD_SHIFT);
+#endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
+
+	return young;
+}
+
+/*
+ * Check whether the region was accessed after the last preparation
+ *
+ * mm	'mm_struct' for the given virtual address space
+ * r	the region to be checked
+ */
+static void damon_check_vm_access(struct damon_ctx *ctx,
+			       struct mm_struct *mm, struct damon_region *r)
+{
+	static struct mm_struct *last_mm;
+	static unsigned long last_addr;
+	static unsigned long last_page_sz = PAGE_SIZE;
+	static bool last_accessed;
+
+	/* If the region is in the last checked page, reuse the result */
+	if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
+				ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
+		if (last_accessed)
+			r->nr_accesses++;
+		return;
+	}
+
+	last_accessed = damon_young(mm, r->sampling_addr, &last_page_sz);
+	if (last_accessed)
+		r->nr_accesses++;
+
+	last_mm = mm;
+	last_addr = r->sampling_addr;
+}
+
+unsigned int kdamond_check_vm_accesses(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	struct mm_struct *mm;
+	struct damon_region *r;
+	unsigned int max_nr_accesses = 0;
+
+	damon_for_each_target(t, ctx) {
+		mm = damon_get_mm(t);
+		if (!mm)
+			continue;
+		damon_for_each_region(r, t) {
+			damon_check_vm_access(ctx, mm, r);
+			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
+		}
+		mmput(mm);
+	}
+
+	return max_nr_accesses;
+}
+
+
+/*
+ * Functions for the target validity check
+ */
+
+bool kdamond_vm_target_valid(struct damon_target *t)
+{
+	struct task_struct *task;
+
+	task = damon_get_task_struct(t);
+	if (task) {
+		put_task_struct(task);
+		return true;
+	}
+
+	return false;
+}
+
 /*
  * Functions for DAMON core logics and features
  */