@@ -12,5 +12,6 @@ amdkfd-y := kfd_module.o kfd_device.o kfd_chardev.o kfd_topology.o \
kfd_kernel_queue_vi.o kfd_packet_manager.o \
kfd_process_queue_manager.o kfd_device_queue_manager.o \
kfd_device_queue_manager_cik.o kfd_device_queue_manager_vi.o \
+ kfd_interrupt.o
obj-$(CONFIG_HSA_AMD) += amdkfd.o
@@ -235,6 +235,13 @@ bool kgd2kfd_device_init(struct kfd_dev *kfd,
goto kfd_topology_add_device_error;
}
+ if (kfd_interrupt_init(kfd)) {
+ dev_err(kfd_device,
+ "Error initializing interrupts for device (%x:%x)\n",
+ kfd->pdev->vendor, kfd->pdev->device);
+ goto kfd_interrupt_error;
+ }
+
if (!device_iommu_pasid_init(kfd)) {
dev_err(kfd_device,
"Error initializing iommuv2 for device (%x:%x)\n",
@@ -273,6 +280,8 @@ dqm_start_error:
device_queue_manager_error:
amd_iommu_free_device(kfd->pdev);
device_iommu_pasid_error:
+ kfd_interrupt_exit(kfd);
+kfd_interrupt_error:
kfd_topology_remove_device(kfd);
kfd_topology_add_device_error:
kfd_gtt_sa_fini(kfd);
@@ -290,6 +299,7 @@ void kgd2kfd_device_exit(struct kfd_dev *kfd)
if (kfd->init_complete) {
device_queue_manager_uninit(kfd->dqm);
amd_iommu_free_device(kfd->pdev);
+ kfd_interrupt_exit(kfd);
kfd_topology_remove_device(kfd);
kfd_gtt_sa_fini(kfd);
kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
@@ -333,7 +343,17 @@ int kgd2kfd_resume(struct kfd_dev *kfd)
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
- /* Process interrupts / schedule work as necessary */
+ if (!kfd->init_complete)
+ return;
+
+ spin_lock(&kfd->interrupt_lock);
+
+ if (kfd->interrupts_active
+ && interrupt_is_wanted(kfd, ih_ring_entry)
+ && enqueue_ih_ring_entry(kfd, ih_ring_entry))
+ schedule_work(&kfd->interrupt_work);
+
+ spin_unlock(&kfd->interrupt_lock);
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
@@ -522,6 +522,17 @@ int init_pipelines(struct device_queue_manager *dqm,
return 0;
}
+static void init_interrupts(struct device_queue_manager *dqm)
+{
+ unsigned int i;
+
+ BUG_ON(dqm == NULL);
+
+ for (i = 0 ; i < get_pipes_num(dqm) ; i++)
+ dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
+ i + get_first_pipe(dqm));
+}
+
static int init_scheduler(struct device_queue_manager *dqm)
{
int retval;
@@ -581,6 +592,7 @@ static void uninitialize_nocpsch(struct device_queue_manager *dqm)
static int start_nocpsch(struct device_queue_manager *dqm)
{
+ init_interrupts(dqm);
return 0;
}
@@ -750,6 +762,9 @@ static int start_cpsch(struct device_queue_manager *dqm)
dqm->fence_addr = dqm->fence_mem->cpu_ptr;
dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
+
+ init_interrupts(dqm);
+
list_for_each_entry(node, &dqm->queues, list)
if (node->qpd->pqm->process && dqm->dev)
kfd_bind_process_to_device(dqm->dev,
new file mode 100644
@@ -0,0 +1,181 @@
+/*
+ * Copyright 2014 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * KFD Interrupts.
+ *
+ * AMD GPUs deliver interrupts by pushing an interrupt description onto the
+ * interrupt ring and then sending an interrupt. KGD receives the interrupt
+ * in ISR and sends us a pointer to each new entry on the interrupt ring.
+ *
+ * We generally can't process interrupt-signaled events from ISR, so we call
+ * out to each interrupt client module (currently only the scheduler) to ask if
+ * each interrupt is interesting. If they return true, then it requires further
+ * processing so we copy it to an internal interrupt ring and call each
+ * interrupt client again from a work-queue.
+ *
+ * There's no acknowledgment for the interrupts we use. The hardware simply
+ * queues a new interrupt each time without waiting.
+ *
+ * The fixed-size internal queue means that it's possible for us to lose
+ * interrupts because we have no back-pressure to the hardware.
+ */
+
+#include <linux/slab.h>
+#include <linux/device.h>
+#include "kfd_priv.h"
+
+#define KFD_INTERRUPT_RING_SIZE 1024
+
+static void interrupt_wq(struct work_struct *);
+
+int kfd_interrupt_init(struct kfd_dev *kfd)
+{
+ void *interrupt_ring = kmalloc_array(KFD_INTERRUPT_RING_SIZE,
+ kfd->device_info->ih_ring_entry_size,
+ GFP_KERNEL);
+ if (!interrupt_ring)
+ return -ENOMEM;
+
+ kfd->interrupt_ring = interrupt_ring;
+ kfd->interrupt_ring_size =
+ KFD_INTERRUPT_RING_SIZE * kfd->device_info->ih_ring_entry_size;
+ atomic_set(&kfd->interrupt_ring_wptr, 0);
+ atomic_set(&kfd->interrupt_ring_rptr, 0);
+
+ spin_lock_init(&kfd->interrupt_lock);
+
+ INIT_WORK(&kfd->interrupt_work, interrupt_wq);
+
+ kfd->interrupts_active = true;
+
+ /*
+ * After this function returns, the interrupt will be enabled. This
+ * barrier ensures that the interrupt running on a different processor
+ * sees all the above writes.
+ */
+ smp_wmb();
+
+ return 0;
+}
+
+void kfd_interrupt_exit(struct kfd_dev *kfd)
+{
+ /*
+ * Stop the interrupt handler from writing to the ring and scheduling
+ * workqueue items. The spinlock ensures that any interrupt running
+ * after we have unlocked sees interrupts_active = false.
+ */
+ unsigned long flags;
+
+ spin_lock_irqsave(&kfd->interrupt_lock, flags);
+ kfd->interrupts_active = false;
+ spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
+
+ /*
+ * Flush_scheduled_work ensures that there are no outstanding
+ * work-queue items that will access interrupt_ring. New work items
+ * can't be created because we stopped interrupt handling above.
+ */
+ flush_scheduled_work();
+
+ kfree(kfd->interrupt_ring);
+}
+
+/*
+ * This assumes that it can't be called concurrently with itself
+ * but only with dequeue_ih_ring_entry.
+ */
+bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry)
+{
+ unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
+ unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
+
+ if ((rptr - wptr) % kfd->interrupt_ring_size ==
+ kfd->device_info->ih_ring_entry_size) {
+ /* This is very bad, the system is likely to hang. */
+ dev_err_ratelimited(kfd_chardev(),
+ "Interrupt ring overflow, dropping interrupt.\n");
+ return false;
+ }
+
+ memcpy(kfd->interrupt_ring + wptr, ih_ring_entry,
+ kfd->device_info->ih_ring_entry_size);
+
+ wptr = (wptr + kfd->device_info->ih_ring_entry_size) %
+ kfd->interrupt_ring_size;
+ smp_wmb(); /* Ensure memcpy'd data is visible before wptr update. */
+ atomic_set(&kfd->interrupt_ring_wptr, wptr);
+
+ return true;
+}
+
+/*
+ * This assumes that it can't be called concurrently with itself
+ * but only with enqueue_ih_ring_entry.
+ */
+static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry)
+{
+ /*
+ * Assume that wait queues have an implicit barrier, i.e. anything that
+ * happened in the ISR before it queued work is visible.
+ */
+
+ unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
+ unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
+
+ if (rptr == wptr)
+ return false;
+
+ memcpy(ih_ring_entry, kfd->interrupt_ring + rptr,
+ kfd->device_info->ih_ring_entry_size);
+
+ rptr = (rptr + kfd->device_info->ih_ring_entry_size) %
+ kfd->interrupt_ring_size;
+
+ /*
+ * Ensure the rptr write update is not visible until
+ * memcpy has finished reading.
+ */
+ smp_mb();
+ atomic_set(&kfd->interrupt_ring_rptr, rptr);
+
+ return true;
+}
+
+static void interrupt_wq(struct work_struct *work)
+{
+ struct kfd_dev *dev = container_of(work, struct kfd_dev,
+ interrupt_work);
+
+ uint32_t ih_ring_entry[DIV_ROUND_UP(
+ dev->device_info->ih_ring_entry_size,
+ sizeof(uint32_t))];
+
+ while (dequeue_ih_ring_entry(dev, ih_ring_entry))
+ ;
+}
+
+bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry)
+{
+ return false;
+}
@@ -161,10 +161,23 @@ struct kfd_dev {
unsigned int gtt_sa_chunk_size;
unsigned int gtt_sa_num_of_chunks;
+ /* Interrupts */
+ void *interrupt_ring;
+ size_t interrupt_ring_size;
+ atomic_t interrupt_ring_rptr;
+ atomic_t interrupt_ring_wptr;
+ struct work_struct interrupt_work;
+ spinlock_t interrupt_lock;
+
/* QCM Device instance */
struct device_queue_manager *dqm;
bool init_complete;
+ /*
+ * Interrupts of interest to KFD are copied
+ * from the HW ring into a SW ring.
+ */
+ bool interrupts_active;
};
/* KGD2KFD callbacks */
@@ -555,7 +568,11 @@ struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
/* Interrupts */
+int kfd_interrupt_init(struct kfd_dev *dev);
+void kfd_interrupt_exit(struct kfd_dev *dev);
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
+bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
+bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
/* Power Management */
void kgd2kfd_suspend(struct kfd_dev *kfd);