@@ -361,13 +361,6 @@ int sun4i_backend_update_layer_buffer(struct sun4i_backend *backend,
paddr = drm_fb_cma_get_gem_addr(fb, state, 0);
DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr);
- /*
- * backend DMA accesses DRAM directly, bypassing the system
- * bus. As such, the address range is different and the buffer
- * address needs to be corrected.
- */
- paddr -= PHYS_OFFSET;
-
if (fb->format->is_yuv)
return sun4i_backend_update_yuv_buffer(backend, fb, paddr);
@@ -803,6 +796,27 @@ static int sun4i_backend_bind(struct device *dev, struct device *master,
dev_set_drvdata(dev, backend);
spin_lock_init(&backend->frontend_lock);
+ if (of_find_property(dev->of_node, "interconnects", NULL)) {
+ /*
+ * This assume we have the same DMA constraints for all our the
+ * devices in our pipeline (all the backends, but also the
+ * frontends). This sounds bad, but it has always been the case
+ * for us, and DRM doesn't do per-device allocation either, so
+ * we would need to fix DRM first...
+ */
+ ret = of_dma_configure(drm->dev, dev->of_node, true);
+ if (ret)
+ return ret;
+ } else {
+ /*
+ * If we don't have the interconnect property, most likely
+ * because of an old DT, we need to set the DMA offset by hand
+ * on our device since the RAM mapping is at 0 for the DMA bus,
+ * unlike the CPU.
+ */
+ drm->dev->dma_pfn_offset = PHYS_PFN_OFFSET;
+ }
+
backend->engine.node = dev->of_node;
backend->engine.ops = &sun4i_backend_engine_ops;
backend->engine.id = sun4i_backend_of_get_id(dev->of_node);