diff mbox

[v2,7/7] Documentation/DocBook: remove gpu.tmpl

Message ID 8d673f75fe686371ed9838682c368a4e3b96bf54.1466506505.git.jani.nikula@intel.com (mailing list archive)
State New, archived
Headers show

Commit Message

Jani Nikula June 21, 2016, 11:49 a.m. UTC
The gpu documentation has now been converted to reStructuredText files
under Documentation/gpu. Remove the obsolete DocBook template. Also
remove it from MAINTAINERS.

Good riddance.

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
---
 Documentation/DocBook/Makefile |    2 +-
 Documentation/DocBook/gpu.tmpl | 3528 ----------------------------------------
 MAINTAINERS                    |    1 -
 3 files changed, 1 insertion(+), 3530 deletions(-)
 delete mode 100644 Documentation/DocBook/gpu.tmpl
diff mbox

Patch

diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index e0c7e1e0590b..f4482f9b221f 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -14,7 +14,7 @@  DOCBOOKS := z8530book.xml device-drivers.xml \
 	    genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
 	    80211.xml debugobjects.xml sh.xml regulator.xml \
 	    alsa-driver-api.xml writing-an-alsa-driver.xml \
-	    tracepoint.xml gpu.xml media_api.xml w1.xml \
+	    tracepoint.xml media_api.xml w1.xml \
 	    writing_musb_glue_layer.xml crypto-API.xml iio.xml
 
 include Documentation/DocBook/media/Makefile
diff --git a/Documentation/DocBook/gpu.tmpl b/Documentation/DocBook/gpu.tmpl
deleted file mode 100644
index d09536c91717..000000000000
--- a/Documentation/DocBook/gpu.tmpl
+++ /dev/null
@@ -1,3528 +0,0 @@ 
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
-	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<book id="gpuDevelopersGuide">
-  <bookinfo>
-    <title>Linux GPU Driver Developer's Guide</title>
-
-    <authorgroup>
-      <author>
-	<firstname>Jesse</firstname>
-	<surname>Barnes</surname>
-	<contrib>Initial version</contrib>
-	<affiliation>
-	  <orgname>Intel Corporation</orgname>
-	  <address>
-	    <email>jesse.barnes@intel.com</email>
-	  </address>
-	</affiliation>
-      </author>
-      <author>
-	<firstname>Laurent</firstname>
-	<surname>Pinchart</surname>
-	<contrib>Driver internals</contrib>
-	<affiliation>
-	  <orgname>Ideas on board SPRL</orgname>
-	  <address>
-	    <email>laurent.pinchart@ideasonboard.com</email>
-	  </address>
-	</affiliation>
-      </author>
-      <author>
-	<firstname>Daniel</firstname>
-	<surname>Vetter</surname>
-	<contrib>Contributions all over the place</contrib>
-	<affiliation>
-	  <orgname>Intel Corporation</orgname>
-	  <address>
-	    <email>daniel.vetter@ffwll.ch</email>
-	  </address>
-	</affiliation>
-      </author>
-      <author>
-	<firstname>Lukas</firstname>
-	<surname>Wunner</surname>
-	<contrib>vga_switcheroo documentation</contrib>
-	<affiliation>
-	  <address>
-	    <email>lukas@wunner.de</email>
-	  </address>
-	</affiliation>
-      </author>
-    </authorgroup>
-
-    <copyright>
-      <year>2008-2009</year>
-      <year>2013-2014</year>
-      <holder>Intel Corporation</holder>
-    </copyright>
-    <copyright>
-      <year>2012</year>
-      <holder>Laurent Pinchart</holder>
-    </copyright>
-    <copyright>
-      <year>2015</year>
-      <holder>Lukas Wunner</holder>
-    </copyright>
-
-    <legalnotice>
-      <para>
-	The contents of this file may be used under the terms of the GNU
-	General Public License version 2 (the "GPL") as distributed in
-	the kernel source COPYING file.
-      </para>
-    </legalnotice>
-
-    <revhistory>
-      <!-- Put document revisions here, newest first. -->
-      <revision>
-	<revnumber>1.0</revnumber>
-	<date>2012-07-13</date>
-	<authorinitials>LP</authorinitials>
-	<revremark>Added extensive documentation about driver internals.
-	</revremark>
-      </revision>
-      <revision>
-	<revnumber>1.1</revnumber>
-	<date>2015-10-11</date>
-	<authorinitials>LW</authorinitials>
-	<revremark>Added vga_switcheroo documentation.
-	</revremark>
-      </revision>
-    </revhistory>
-  </bookinfo>
-
-<toc></toc>
-
-<part id="drmCore">
-  <title>DRM Core</title>
-  <partintro>
-    <para>
-      This first part of the GPU Driver Developer's Guide documents core DRM
-      code, helper libraries for writing drivers and generic userspace
-      interfaces exposed by DRM drivers.
-    </para>
-  </partintro>
-
-  <chapter id="drmIntroduction">
-    <title>Introduction</title>
-    <para>
-      The Linux DRM layer contains code intended to support the needs
-      of complex graphics devices, usually containing programmable
-      pipelines well suited to 3D graphics acceleration.  Graphics
-      drivers in the kernel may make use of DRM functions to make
-      tasks like memory management, interrupt handling and DMA easier,
-      and provide a uniform interface to applications.
-    </para>
-    <para>
-      A note on versions: this guide covers features found in the DRM
-      tree, including the TTM memory manager, output configuration and
-      mode setting, and the new vblank internals, in addition to all
-      the regular features found in current kernels.
-    </para>
-    <para>
-      [Insert diagram of typical DRM stack here]
-    </para>
-  <sect1>
-    <title>Style Guidelines</title>
-    <para>
-      For consistency this documentation uses American English. Abbreviations
-      are written as all-uppercase, for example: DRM, KMS, IOCTL, CRTC, and so
-      on. To aid in reading, documentations make full use of the markup
-      characters kerneldoc provides: @parameter for function parameters, @member
-      for structure members, &amp;structure to reference structures and
-      function() for functions. These all get automatically hyperlinked if
-      kerneldoc for the referenced objects exists. When referencing entries in
-      function vtables please use -&gt;vfunc(). Note that kerneldoc does
-      not support referencing struct members directly, so please add a reference
-      to the vtable struct somewhere in the same paragraph or at least section.
-    </para>
-    <para>
-      Except in special situations (to separate locked from unlocked variants)
-      locking requirements for functions aren't documented in the kerneldoc.
-      Instead locking should be check at runtime using e.g.
-      <code>WARN_ON(!mutex_is_locked(...));</code>. Since it's much easier to
-      ignore documentation than runtime noise this provides more value. And on
-      top of that runtime checks do need to be updated when the locking rules
-      change, increasing the chances that they're correct. Within the
-      documentation the locking rules should be explained in the relevant
-      structures: Either in the comment for the lock explaining what it
-      protects, or data fields need a note about which lock protects them, or
-      both.
-    </para>
-    <para>
-      Functions which have a non-<code>void</code> return value should have a
-      section called "Returns" explaining the expected return values in
-      different cases and their meanings. Currently there's no consensus whether
-      that section name should be all upper-case or not, and whether it should
-      end in a colon or not. Go with the file-local style. Other common section
-      names are "Notes" with information for dangerous or tricky corner cases,
-      and "FIXME" where the interface could be cleaned up.
-    </para>
-  </sect1>
-  </chapter>
-
-  <!-- Internals -->
-
-  <chapter id="drmInternals">
-    <title>DRM Internals</title>
-    <para>
-      This chapter documents DRM internals relevant to driver authors
-      and developers working to add support for the latest features to
-      existing drivers.
-    </para>
-    <para>
-      First, we go over some typical driver initialization
-      requirements, like setting up command buffers, creating an
-      initial output configuration, and initializing core services.
-      Subsequent sections cover core internals in more detail,
-      providing implementation notes and examples.
-    </para>
-    <para>
-      The DRM layer provides several services to graphics drivers,
-      many of them driven by the application interfaces it provides
-      through libdrm, the library that wraps most of the DRM ioctls.
-      These include vblank event handling, memory
-      management, output management, framebuffer management, command
-      submission &amp; fencing, suspend/resume support, and DMA
-      services.
-    </para>
-
-  <!-- Internals: driver init -->
-
-  <sect1>
-    <title>Driver Initialization</title>
-    <para>
-      At the core of every DRM driver is a <structname>drm_driver</structname>
-      structure. Drivers typically statically initialize a drm_driver structure,
-      and then pass it to <function>drm_dev_alloc()</function> to allocate a
-      device instance. After the device instance is fully initialized it can be
-      registered (which makes it accessible from userspace) using
-      <function>drm_dev_register()</function>.
-    </para>
-    <para>
-      The <structname>drm_driver</structname> structure contains static
-      information that describes the driver and features it supports, and
-      pointers to methods that the DRM core will call to implement the DRM API.
-      We will first go through the <structname>drm_driver</structname> static
-      information fields, and will then describe individual operations in
-      details as they get used in later sections.
-    </para>
-    <sect2>
-      <title>Driver Information</title>
-      <sect3>
-        <title>Driver Features</title>
-        <para>
-          Drivers inform the DRM core about their requirements and supported
-          features by setting appropriate flags in the
-          <structfield>driver_features</structfield> field. Since those flags
-          influence the DRM core behaviour since registration time, most of them
-          must be set to registering the <structname>drm_driver</structname>
-          instance.
-        </para>
-        <synopsis>u32 driver_features;</synopsis>
-        <variablelist>
-          <title>Driver Feature Flags</title>
-          <varlistentry>
-            <term>DRIVER_USE_AGP</term>
-            <listitem><para>
-              Driver uses AGP interface, the DRM core will manage AGP resources.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_REQUIRE_AGP</term>
-            <listitem><para>
-              Driver needs AGP interface to function. AGP initialization failure
-              will become a fatal error.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_PCI_DMA</term>
-            <listitem><para>
-              Driver is capable of PCI DMA, mapping of PCI DMA buffers to
-              userspace will be enabled. Deprecated.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_SG</term>
-            <listitem><para>
-              Driver can perform scatter/gather DMA, allocation and mapping of
-              scatter/gather buffers will be enabled. Deprecated.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_HAVE_DMA</term>
-            <listitem><para>
-              Driver supports DMA, the userspace DMA API will be supported.
-              Deprecated.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
-            <listitem><para>
-              DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
-              managed by the DRM Core. The core will support simple IRQ handler
-              installation when the flag is set. The installation process is
-              described in <xref linkend="drm-irq-registration"/>.</para>
-              <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
-              support shared IRQs (note that this is required of PCI  drivers).
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_GEM</term>
-            <listitem><para>
-              Driver use the GEM memory manager.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_MODESET</term>
-            <listitem><para>
-              Driver supports mode setting interfaces (KMS).
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_PRIME</term>
-            <listitem><para>
-              Driver implements DRM PRIME buffer sharing.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_RENDER</term>
-            <listitem><para>
-              Driver supports dedicated render nodes.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRIVER_ATOMIC</term>
-            <listitem><para>
-              Driver supports atomic properties.  In this case the driver
-              must implement appropriate obj->atomic_get_property() vfuncs
-              for any modeset objects with driver specific properties.
-            </para></listitem>
-          </varlistentry>
-        </variablelist>
-      </sect3>
-      <sect3>
-        <title>Major, Minor and Patchlevel</title>
-        <synopsis>int major;
-int minor;
-int patchlevel;</synopsis>
-        <para>
-          The DRM core identifies driver versions by a major, minor and patch
-          level triplet. The information is printed to the kernel log at
-          initialization time and passed to userspace through the
-          DRM_IOCTL_VERSION ioctl.
-        </para>
-        <para>
-          The major and minor numbers are also used to verify the requested driver
-          API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
-          between minor versions, applications can call DRM_IOCTL_SET_VERSION to
-          select a specific version of the API. If the requested major isn't equal
-          to the driver major, or the requested minor is larger than the driver
-          minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
-          the driver's set_version() method will be called with the requested
-          version.
-        </para>
-      </sect3>
-      <sect3>
-        <title>Name, Description and Date</title>
-        <synopsis>char *name;
-char *desc;
-char *date;</synopsis>
-        <para>
-          The driver name is printed to the kernel log at initialization time,
-          used for IRQ registration and passed to userspace through
-          DRM_IOCTL_VERSION.
-        </para>
-        <para>
-          The driver description is a purely informative string passed to
-          userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
-          the kernel.
-        </para>
-        <para>
-          The driver date, formatted as YYYYMMDD, is meant to identify the date of
-          the latest modification to the driver. However, as most drivers fail to
-          update it, its value is mostly useless. The DRM core prints it to the
-          kernel log at initialization time and passes it to userspace through the
-          DRM_IOCTL_VERSION ioctl.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Device Instance and Driver Handling</title>
-!Pdrivers/gpu/drm/drm_drv.c driver instance overview
-!Edrivers/gpu/drm/drm_drv.c
-    </sect2>
-    <sect2>
-      <title>Driver Load</title>
-      <sect3 id="drm-irq-registration">
-        <title>IRQ Registration</title>
-        <para>
-          The DRM core tries to facilitate IRQ handler registration and
-          unregistration by providing <function>drm_irq_install</function> and
-          <function>drm_irq_uninstall</function> functions. Those functions only
-          support a single interrupt per device, devices that use more than one
-          IRQs need to be handled manually.
-        </para>
-        <sect4>
-          <title>Managed IRQ Registration</title>
-          <para>
-            <function>drm_irq_install</function> starts by calling the
-            <methodname>irq_preinstall</methodname> driver operation. The operation
-            is optional and must make sure that the interrupt will not get fired by
-            clearing all pending interrupt flags or disabling the interrupt.
-          </para>
-          <para>
-            The passed-in IRQ will then be requested by a call to
-            <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
-            feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
-            requested.
-          </para>
-          <para>
-            The IRQ handler function must be provided as the mandatory irq_handler
-            driver operation. It will get passed directly to
-            <function>request_irq</function> and thus has the same prototype as all
-            IRQ handlers. It will get called with a pointer to the DRM device as the
-            second argument.
-          </para>
-          <para>
-            Finally the function calls the optional
-            <methodname>irq_postinstall</methodname> driver operation. The operation
-            usually enables interrupts (excluding the vblank interrupt, which is
-            enabled separately), but drivers may choose to enable/disable interrupts
-            at a different time.
-          </para>
-          <para>
-            <function>drm_irq_uninstall</function> is similarly used to uninstall an
-            IRQ handler. It starts by waking up all processes waiting on a vblank
-            interrupt to make sure they don't hang, and then calls the optional
-            <methodname>irq_uninstall</methodname> driver operation. The operation
-            must disable all hardware interrupts. Finally the function frees the IRQ
-            by calling <function>free_irq</function>.
-          </para>
-        </sect4>
-        <sect4>
-          <title>Manual IRQ Registration</title>
-          <para>
-            Drivers that require multiple interrupt handlers can't use the managed
-            IRQ registration functions. In that case IRQs must be registered and
-            unregistered manually (usually with the <function>request_irq</function>
-            and <function>free_irq</function> functions, or their devm_* equivalent).
-          </para>
-          <para>
-            When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
-            driver feature flag, and must not provide the
-	    <methodname>irq_handler</methodname> driver operation. They must set the
-	    <structname>drm_device</structname> <structfield>irq_enabled</structfield>
-	    field to 1 upon registration of the IRQs, and clear it to 0 after
-	    unregistering the IRQs.
-          </para>
-        </sect4>
-      </sect3>
-      <sect3>
-        <title>Memory Manager Initialization</title>
-        <para>
-          Every DRM driver requires a memory manager which must be initialized at
-          load time. DRM currently contains two memory managers, the Translation
-          Table Manager (TTM) and the Graphics Execution Manager (GEM).
-          This document describes the use of the GEM memory manager only. See
-          <xref linkend="drm-memory-management"/> for details.
-        </para>
-      </sect3>
-      <sect3>
-        <title>Miscellaneous Device Configuration</title>
-        <para>
-          Another task that may be necessary for PCI devices during configuration
-          is mapping the video BIOS. On many devices, the VBIOS describes device
-          configuration, LCD panel timings (if any), and contains flags indicating
-          device state. Mapping the BIOS can be done using the pci_map_rom() call,
-          a convenience function that takes care of mapping the actual ROM,
-          whether it has been shadowed into memory (typically at address 0xc0000)
-          or exists on the PCI device in the ROM BAR. Note that after the ROM has
-          been mapped and any necessary information has been extracted, it should
-          be unmapped; on many devices, the ROM address decoder is shared with
-          other BARs, so leaving it mapped could cause undesired behaviour like
-          hangs or memory corruption.
-  <!--!Fdrivers/pci/rom.c pci_map_rom-->
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Bus-specific Device Registration and PCI Support</title>
-      <para>
-        A number of functions are provided to help with device registration.
-	The functions deal with PCI and platform devices respectively and are
-	only provided for historical reasons. These are all deprecated and
-	shouldn't be used in new drivers. Besides that there's a few
-	helpers for pci drivers.
-      </para>
-!Edrivers/gpu/drm/drm_pci.c
-!Edrivers/gpu/drm/drm_platform.c
-    </sect2>
-  </sect1>
-
-  <!-- Internals: memory management -->
-
-  <sect1 id="drm-memory-management">
-    <title>Memory management</title>
-    <para>
-      Modern Linux systems require large amount of graphics memory to store
-      frame buffers, textures, vertices and other graphics-related data. Given
-      the very dynamic nature of many of that data, managing graphics memory
-      efficiently is thus crucial for the graphics stack and plays a central
-      role in the DRM infrastructure.
-    </para>
-    <para>
-      The DRM core includes two memory managers, namely Translation Table Maps
-      (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
-      manager to be developed and tried to be a one-size-fits-them all
-      solution. It provides a single userspace API to accommodate the need of
-      all hardware, supporting both Unified Memory Architecture (UMA) devices
-      and devices with dedicated video RAM (i.e. most discrete video cards).
-      This resulted in a large, complex piece of code that turned out to be
-      hard to use for driver development.
-    </para>
-    <para>
-      GEM started as an Intel-sponsored project in reaction to TTM's
-      complexity. Its design philosophy is completely different: instead of
-      providing a solution to every graphics memory-related problems, GEM
-      identified common code between drivers and created a support library to
-      share it. GEM has simpler initialization and execution requirements than
-      TTM, but has no video RAM management capabilities and is thus limited to
-      UMA devices.
-    </para>
-    <sect2>
-      <title>The Translation Table Manager (TTM)</title>
-      <para>
-        TTM design background and information belongs here.
-      </para>
-      <sect3>
-        <title>TTM initialization</title>
-        <warning><para>This section is outdated.</para></warning>
-        <para>
-          Drivers wishing to support TTM must fill out a drm_bo_driver
-          structure. The structure contains several fields with function
-          pointers for initializing the TTM, allocating and freeing memory,
-          waiting for command completion and fence synchronization, and memory
-          migration. See the radeon_ttm.c file for an example of usage.
-        </para>
-        <para>
-          The ttm_global_reference structure is made up of several fields:
-        </para>
-        <programlisting>
-          struct ttm_global_reference {
-                  enum ttm_global_types global_type;
-                  size_t size;
-                  void *object;
-                  int (*init) (struct ttm_global_reference *);
-                  void (*release) (struct ttm_global_reference *);
-          };
-        </programlisting>
-        <para>
-          There should be one global reference structure for your memory
-          manager as a whole, and there will be others for each object
-          created by the memory manager at runtime.  Your global TTM should
-          have a type of TTM_GLOBAL_TTM_MEM.  The size field for the global
-          object should be sizeof(struct ttm_mem_global), and the init and
-          release hooks should point at your driver-specific init and
-          release routines, which probably eventually call
-          ttm_mem_global_init and ttm_mem_global_release, respectively.
-        </para>
-        <para>
-          Once your global TTM accounting structure is set up and initialized
-          by calling ttm_global_item_ref() on it,
-          you need to create a buffer object TTM to
-          provide a pool for buffer object allocation by clients and the
-          kernel itself.  The type of this object should be TTM_GLOBAL_TTM_BO,
-          and its size should be sizeof(struct ttm_bo_global).  Again,
-          driver-specific init and release functions may be provided,
-          likely eventually calling ttm_bo_global_init() and
-          ttm_bo_global_release(), respectively.  Also, like the previous
-          object, ttm_global_item_ref() is used to create an initial reference
-          count for the TTM, which will call your initialization function.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2 id="drm-gem">
-      <title>The Graphics Execution Manager (GEM)</title>
-      <para>
-        The GEM design approach has resulted in a memory manager that doesn't
-        provide full coverage of all (or even all common) use cases in its
-        userspace or kernel API. GEM exposes a set of standard memory-related
-        operations to userspace and a set of helper functions to drivers, and let
-        drivers implement hardware-specific operations with their own private API.
-      </para>
-      <para>
-        The GEM userspace API is described in the
-        <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
-        Execution Manager</citetitle></ulink> article on LWN. While slightly
-        outdated, the document provides a good overview of the GEM API principles.
-        Buffer allocation and read and write operations, described as part of the
-        common GEM API, are currently implemented using driver-specific ioctls.
-      </para>
-      <para>
-        GEM is data-agnostic. It manages abstract buffer objects without knowing
-        what individual buffers contain. APIs that require knowledge of buffer
-        contents or purpose, such as buffer allocation or synchronization
-        primitives, are thus outside of the scope of GEM and must be implemented
-        using driver-specific ioctls.
-      </para>
-      <para>
-        On a fundamental level, GEM involves several operations:
-        <itemizedlist>
-          <listitem>Memory allocation and freeing</listitem>
-          <listitem>Command execution</listitem>
-          <listitem>Aperture management at command execution time</listitem>
-        </itemizedlist>
-        Buffer object allocation is relatively straightforward and largely
-        provided by Linux's shmem layer, which provides memory to back each
-        object.
-      </para>
-      <para>
-        Device-specific operations, such as command execution, pinning, buffer
-        read &amp; write, mapping, and domain ownership transfers are left to
-        driver-specific ioctls.
-      </para>
-      <sect3>
-        <title>GEM Initialization</title>
-        <para>
-          Drivers that use GEM must set the DRIVER_GEM bit in the struct
-          <structname>drm_driver</structname>
-          <structfield>driver_features</structfield> field. The DRM core will
-          then automatically initialize the GEM core before calling the
-          <methodname>load</methodname> operation. Behind the scene, this will
-          create a DRM Memory Manager object which provides an address space
-          pool for object allocation.
-        </para>
-        <para>
-          In a KMS configuration, drivers need to allocate and initialize a
-          command ring buffer following core GEM initialization if required by
-          the hardware. UMA devices usually have what is called a "stolen"
-          memory region, which provides space for the initial framebuffer and
-          large, contiguous memory regions required by the device. This space is
-          typically not managed by GEM, and must be initialized separately into
-          its own DRM MM object.
-        </para>
-      </sect3>
-      <sect3>
-        <title>GEM Objects Creation</title>
-        <para>
-          GEM splits creation of GEM objects and allocation of the memory that
-          backs them in two distinct operations.
-        </para>
-        <para>
-          GEM objects are represented by an instance of struct
-          <structname>drm_gem_object</structname>. Drivers usually need to extend
-          GEM objects with private information and thus create a driver-specific
-          GEM object structure type that embeds an instance of struct
-          <structname>drm_gem_object</structname>.
-        </para>
-        <para>
-          To create a GEM object, a driver allocates memory for an instance of its
-          specific GEM object type and initializes the embedded struct
-          <structname>drm_gem_object</structname> with a call to
-          <function>drm_gem_object_init</function>. The function takes a pointer to
-          the DRM device, a pointer to the GEM object and the buffer object size
-          in bytes.
-        </para>
-        <para>
-          GEM uses shmem to allocate anonymous pageable memory.
-          <function>drm_gem_object_init</function> will create an shmfs file of
-          the requested size and store it into the struct
-          <structname>drm_gem_object</structname> <structfield>filp</structfield>
-          field. The memory is used as either main storage for the object when the
-          graphics hardware uses system memory directly or as a backing store
-          otherwise.
-        </para>
-        <para>
-          Drivers are responsible for the actual physical pages allocation by
-          calling <function>shmem_read_mapping_page_gfp</function> for each page.
-          Note that they can decide to allocate pages when initializing the GEM
-          object, or to delay allocation until the memory is needed (for instance
-          when a page fault occurs as a result of a userspace memory access or
-          when the driver needs to start a DMA transfer involving the memory).
-        </para>
-        <para>
-          Anonymous pageable memory allocation is not always desired, for instance
-          when the hardware requires physically contiguous system memory as is
-          often the case in embedded devices. Drivers can create GEM objects with
-          no shmfs backing (called private GEM objects) by initializing them with
-          a call to <function>drm_gem_private_object_init</function> instead of
-          <function>drm_gem_object_init</function>. Storage for private GEM
-          objects must be managed by drivers.
-        </para>
-      </sect3>
-      <sect3>
-        <title>GEM Objects Lifetime</title>
-        <para>
-          All GEM objects are reference-counted by the GEM core. References can be
-          acquired and release by <function>calling drm_gem_object_reference</function>
-          and <function>drm_gem_object_unreference</function> respectively. The
-          caller must hold the <structname>drm_device</structname>
-	  <structfield>struct_mutex</structfield> lock when calling
-	  <function>drm_gem_object_reference</function>. As a convenience, GEM
-	  provides <function>drm_gem_object_unreference_unlocked</function>
-	  functions that can be called without holding the lock.
-        </para>
-        <para>
-          When the last reference to a GEM object is released the GEM core calls
-          the <structname>drm_driver</structname>
-          <methodname>gem_free_object</methodname> operation. That operation is
-          mandatory for GEM-enabled drivers and must free the GEM object and all
-          associated resources.
-        </para>
-        <para>
-          <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
-          Drivers are responsible for freeing all GEM object resources. This includes
-          the resources created by the GEM core, which need to be released with
-          <function>drm_gem_object_release</function>.
-        </para>
-      </sect3>
-      <sect3>
-        <title>GEM Objects Naming</title>
-        <para>
-          Communication between userspace and the kernel refers to GEM objects
-          using local handles, global names or, more recently, file descriptors.
-          All of those are 32-bit integer values; the usual Linux kernel limits
-          apply to the file descriptors.
-        </para>
-        <para>
-          GEM handles are local to a DRM file. Applications get a handle to a GEM
-          object through a driver-specific ioctl, and can use that handle to refer
-          to the GEM object in other standard or driver-specific ioctls. Closing a
-          DRM file handle frees all its GEM handles and dereferences the
-          associated GEM objects.
-        </para>
-        <para>
-          To create a handle for a GEM object drivers call
-          <function>drm_gem_handle_create</function>. The function takes a pointer
-          to the DRM file and the GEM object and returns a locally unique handle.
-          When the handle is no longer needed drivers delete it with a call to
-          <function>drm_gem_handle_delete</function>. Finally the GEM object
-          associated with a handle can be retrieved by a call to
-          <function>drm_gem_object_lookup</function>.
-        </para>
-        <para>
-          Handles don't take ownership of GEM objects, they only take a reference
-          to the object that will be dropped when the handle is destroyed. To
-          avoid leaking GEM objects, drivers must make sure they drop the
-          reference(s) they own (such as the initial reference taken at object
-          creation time) as appropriate, without any special consideration for the
-          handle. For example, in the particular case of combined GEM object and
-          handle creation in the implementation of the
-          <methodname>dumb_create</methodname> operation, drivers must drop the
-          initial reference to the GEM object before returning the handle.
-        </para>
-        <para>
-          GEM names are similar in purpose to handles but are not local to DRM
-          files. They can be passed between processes to reference a GEM object
-          globally. Names can't be used directly to refer to objects in the DRM
-          API, applications must convert handles to names and names to handles
-          using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
-          respectively. The conversion is handled by the DRM core without any
-          driver-specific support.
-        </para>
-        <para>
-          GEM also supports buffer sharing with dma-buf file descriptors through
-          PRIME. GEM-based drivers must use the provided helpers functions to
-          implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
-          Since sharing file descriptors is inherently more secure than the
-          easily guessable and global GEM names it is the preferred buffer
-          sharing mechanism. Sharing buffers through GEM names is only supported
-          for legacy userspace. Furthermore PRIME also allows cross-device
-          buffer sharing since it is based on dma-bufs.
-        </para>
-      </sect3>
-      <sect3 id="drm-gem-objects-mapping">
-        <title>GEM Objects Mapping</title>
-        <para>
-          Because mapping operations are fairly heavyweight GEM favours
-          read/write-like access to buffers, implemented through driver-specific
-          ioctls, over mapping buffers to userspace. However, when random access
-          to the buffer is needed (to perform software rendering for instance),
-          direct access to the object can be more efficient.
-        </para>
-        <para>
-          The mmap system call can't be used directly to map GEM objects, as they
-          don't have their own file handle. Two alternative methods currently
-          co-exist to map GEM objects to userspace. The first method uses a
-          driver-specific ioctl to perform the mapping operation, calling
-          <function>do_mmap</function> under the hood. This is often considered
-          dubious, seems to be discouraged for new GEM-enabled drivers, and will
-          thus not be described here.
-        </para>
-        <para>
-          The second method uses the mmap system call on the DRM file handle.
-          <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
-             off_t offset);</synopsis>
-          DRM identifies the GEM object to be mapped by a fake offset passed
-          through the mmap offset argument. Prior to being mapped, a GEM object
-          must thus be associated with a fake offset. To do so, drivers must call
-          <function>drm_gem_create_mmap_offset</function> on the object.
-        </para>
-        <para>
-          Once allocated, the fake offset value
-          must be passed to the application in a driver-specific way and can then
-          be used as the mmap offset argument.
-        </para>
-        <para>
-          The GEM core provides a helper method <function>drm_gem_mmap</function>
-          to handle object mapping. The method can be set directly as the mmap
-          file operation handler. It will look up the GEM object based on the
-          offset value and set the VMA operations to the
-          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
-          field. Note that <function>drm_gem_mmap</function> doesn't map memory to
-          userspace, but relies on the driver-provided fault handler to map pages
-          individually.
-        </para>
-        <para>
-          To use <function>drm_gem_mmap</function>, drivers must fill the struct
-          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
-          field with a pointer to VM operations.
-        </para>
-        <para>
-          <synopsis>struct vm_operations_struct *gem_vm_ops
-
-  struct vm_operations_struct {
-          void (*open)(struct vm_area_struct * area);
-          void (*close)(struct vm_area_struct * area);
-          int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
-  };</synopsis>
-        </para>
-        <para>
-          The <methodname>open</methodname> and <methodname>close</methodname>
-          operations must update the GEM object reference count. Drivers can use
-          the <function>drm_gem_vm_open</function> and
-          <function>drm_gem_vm_close</function> helper functions directly as open
-          and close handlers.
-        </para>
-        <para>
-          The fault operation handler is responsible for mapping individual pages
-          to userspace when a page fault occurs. Depending on the memory
-          allocation scheme, drivers can allocate pages at fault time, or can
-          decide to allocate memory for the GEM object at the time the object is
-          created.
-        </para>
-        <para>
-          Drivers that want to map the GEM object upfront instead of handling page
-          faults can implement their own mmap file operation handler.
-        </para>
-      </sect3>
-      <sect3>
-        <title>Memory Coherency</title>
-        <para>
-          When mapped to the device or used in a command buffer, backing pages
-          for an object are flushed to memory and marked write combined so as to
-          be coherent with the GPU. Likewise, if the CPU accesses an object
-          after the GPU has finished rendering to the object, then the object
-          must be made coherent with the CPU's view of memory, usually involving
-          GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
-          coherency management is provided by a device-specific ioctl, which
-          evaluates an object's current domain and performs any necessary
-          flushing or synchronization to put the object into the desired
-          coherency domain (note that the object may be busy, i.e. an active
-          render target; in that case, setting the domain blocks the client and
-          waits for rendering to complete before performing any necessary
-          flushing operations).
-        </para>
-      </sect3>
-      <sect3>
-        <title>Command Execution</title>
-        <para>
-          Perhaps the most important GEM function for GPU devices is providing a
-          command execution interface to clients. Client programs construct
-          command buffers containing references to previously allocated memory
-          objects, and then submit them to GEM. At that point, GEM takes care to
-          bind all the objects into the GTT, execute the buffer, and provide
-          necessary synchronization between clients accessing the same buffers.
-          This often involves evicting some objects from the GTT and re-binding
-          others (a fairly expensive operation), and providing relocation
-          support which hides fixed GTT offsets from clients. Clients must take
-          care not to submit command buffers that reference more objects than
-          can fit in the GTT; otherwise, GEM will reject them and no rendering
-          will occur. Similarly, if several objects in the buffer require fence
-          registers to be allocated for correct rendering (e.g. 2D blits on
-          pre-965 chips), care must be taken not to require more fence registers
-          than are available to the client. Such resource management should be
-          abstracted from the client in libdrm.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>GEM Function Reference</title>
-!Edrivers/gpu/drm/drm_gem.c
-!Iinclude/drm/drm_gem.h
-    </sect2>
-    <sect2>
-      <title>VMA Offset Manager</title>
-!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
-!Edrivers/gpu/drm/drm_vma_manager.c
-!Iinclude/drm/drm_vma_manager.h
-    </sect2>
-    <sect2 id="drm-prime-support">
-      <title>PRIME Buffer Sharing</title>
-      <para>
-        PRIME is the cross device buffer sharing framework in drm, originally
-        created for the OPTIMUS range of multi-gpu platforms. To userspace
-        PRIME buffers are dma-buf based file descriptors.
-      </para>
-      <sect3>
-        <title>Overview and Driver Interface</title>
-        <para>
-          Similar to GEM global names, PRIME file descriptors are
-          also used to share buffer objects across processes. They offer
-          additional security: as file descriptors must be explicitly sent over
-          UNIX domain sockets to be shared between applications, they can't be
-          guessed like the globally unique GEM names.
-        </para>
-        <para>
-          Drivers that support the PRIME
-          API must set the DRIVER_PRIME bit in the struct
-          <structname>drm_driver</structname>
-          <structfield>driver_features</structfield> field, and implement the
-          <methodname>prime_handle_to_fd</methodname> and
-          <methodname>prime_fd_to_handle</methodname> operations.
-        </para>
-        <para>
-          <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
-                          struct drm_file *file_priv, uint32_t handle,
-                          uint32_t flags, int *prime_fd);
-int (*prime_fd_to_handle)(struct drm_device *dev,
-                          struct drm_file *file_priv, int prime_fd,
-                          uint32_t *handle);</synopsis>
-            Those two operations convert a handle to a PRIME file descriptor and
-            vice versa. Drivers must use the kernel dma-buf buffer sharing framework
-            to manage the PRIME file descriptors. Similar to the mode setting
-            API PRIME is agnostic to the underlying buffer object manager, as
-            long as handles are 32bit unsigned integers.
-          </para>
-          <para>
-            While non-GEM drivers must implement the operations themselves, GEM
-            drivers must use the <function>drm_gem_prime_handle_to_fd</function>
-            and <function>drm_gem_prime_fd_to_handle</function> helper functions.
-            Those helpers rely on the driver
-            <methodname>gem_prime_export</methodname> and
-            <methodname>gem_prime_import</methodname> operations to create a dma-buf
-            instance from a GEM object (dma-buf exporter role) and to create a GEM
-            object from a dma-buf instance (dma-buf importer role).
-          </para>
-          <para>
-            <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
-                             struct drm_gem_object *obj,
-                             int flags);
-struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
-                                            struct dma_buf *dma_buf);</synopsis>
-            These two operations are mandatory for GEM drivers that support
-            PRIME.
-          </para>
-        </sect3>
-      <sect3>
-        <title>PRIME Helper Functions</title>
-!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>PRIME Function References</title>
-!Edrivers/gpu/drm/drm_prime.c
-    </sect2>
-    <sect2>
-      <title>DRM MM Range Allocator</title>
-      <sect3>
-        <title>Overview</title>
-!Pdrivers/gpu/drm/drm_mm.c Overview
-      </sect3>
-      <sect3>
-        <title>LRU Scan/Eviction Support</title>
-!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
-      </sect3>
-      </sect2>
-    <sect2>
-      <title>DRM MM Range Allocator Function References</title>
-!Edrivers/gpu/drm/drm_mm.c
-!Iinclude/drm/drm_mm.h
-    </sect2>
-    <sect2>
-      <title>CMA Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
-!Edrivers/gpu/drm/drm_gem_cma_helper.c
-!Iinclude/drm/drm_gem_cma_helper.h
-    </sect2>
-  </sect1>
-
-  <!-- Internals: mode setting -->
-
-  <sect1 id="drm-mode-setting">
-    <title>Mode Setting</title>
-    <para>
-      Drivers must initialize the mode setting core by calling
-      <function>drm_mode_config_init</function> on the DRM device. The function
-      initializes the <structname>drm_device</structname>
-      <structfield>mode_config</structfield> field and never fails. Once done,
-      mode configuration must be setup by initializing the following fields.
-    </para>
-    <itemizedlist>
-      <listitem>
-        <synopsis>int min_width, min_height;
-int max_width, max_height;</synopsis>
-        <para>
-	  Minimum and maximum width and height of the frame buffers in pixel
-	  units.
-	</para>
-      </listitem>
-      <listitem>
-        <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
-	<para>Mode setting functions.</para>
-      </listitem>
-    </itemizedlist>
-    <sect2>
-      <title>Display Modes Function Reference</title>
-!Iinclude/drm/drm_modes.h
-!Edrivers/gpu/drm/drm_modes.c
-    </sect2>
-    <sect2>
-      <title>Atomic Mode Setting Function Reference</title>
-!Edrivers/gpu/drm/drm_atomic.c
-!Idrivers/gpu/drm/drm_atomic.c
-    </sect2>
-    <sect2>
-      <title>Frame Buffer Abstraction</title>
-      <para>
-        Frame buffers are abstract memory objects that provide a source of
-        pixels to scanout to a CRTC. Applications explicitly request the
-        creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
-        receive an opaque handle that can be passed to the KMS CRTC control,
-        plane configuration and page flip functions.
-      </para>
-      <para>
-        Frame buffers rely on the underneath memory manager for low-level memory
-        operations. When creating a frame buffer applications pass a memory
-        handle (or a list of memory handles for multi-planar formats) through
-	the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
-	GEM as their userspace buffer management interface this would be a GEM
-	handle.  Drivers are however free to use their own backing storage object
-	handles, e.g. vmwgfx directly exposes special TTM handles to userspace
-	and so expects TTM handles in the create ioctl and not GEM handles.
-      </para>
-      <para>
-	The lifetime of a drm framebuffer is controlled with a reference count,
-	drivers can grab additional references with
-	<function>drm_framebuffer_reference</function>and drop them
-	again with <function>drm_framebuffer_unreference</function>. For
-	driver-private framebuffers for which the last reference is never
-	dropped (e.g. for the fbdev framebuffer when the struct
-	<structname>drm_framebuffer</structname> is embedded into the fbdev
-	helper struct) drivers can manually clean up a framebuffer at module
-	unload time with
-	<function>drm_framebuffer_unregister_private</function>.
-      </para>
-    </sect2>
-    <sect2>
-      <title>DRM Format Handling</title>
-!Iinclude/drm/drm_fourcc.h
-!Edrivers/gpu/drm/drm_fourcc.c
-    </sect2>
-    <sect2>
-      <title>Dumb Buffer Objects</title>
-      <para>
-	The KMS API doesn't standardize backing storage object creation and
-	leaves it to driver-specific ioctls. Furthermore actually creating a
-	buffer object even for GEM-based drivers is done through a
-	driver-specific ioctl - GEM only has a common userspace interface for
-	sharing and destroying objects. While not an issue for full-fledged
-	graphics stacks that include device-specific userspace components (in
-	libdrm for instance), this limit makes DRM-based early boot graphics
-	unnecessarily complex.
-      </para>
-      <para>
-        Dumb objects partly alleviate the problem by providing a standard
-        API to create dumb buffers suitable for scanout, which can then be used
-        to create KMS frame buffers.
-      </para>
-      <para>
-        To support dumb objects drivers must implement the
-        <methodname>dumb_create</methodname>,
-        <methodname>dumb_destroy</methodname> and
-        <methodname>dumb_map_offset</methodname> operations.
-      </para>
-      <itemizedlist>
-        <listitem>
-          <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
-                   struct drm_mode_create_dumb *args);</synopsis>
-          <para>
-            The <methodname>dumb_create</methodname> operation creates a driver
-	    object (GEM or TTM handle) suitable for scanout based on the
-	    width, height and depth from the struct
-	    <structname>drm_mode_create_dumb</structname> argument. It fills the
-	    argument's <structfield>handle</structfield>,
-	    <structfield>pitch</structfield> and <structfield>size</structfield>
-	    fields with a handle for the newly created object and its line
-            pitch and size in bytes.
-          </para>
-        </listitem>
-        <listitem>
-          <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
-                    uint32_t handle);</synopsis>
-          <para>
-            The <methodname>dumb_destroy</methodname> operation destroys a dumb
-            object created by <methodname>dumb_create</methodname>.
-          </para>
-        </listitem>
-        <listitem>
-          <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
-                       uint32_t handle, uint64_t *offset);</synopsis>
-          <para>
-            The <methodname>dumb_map_offset</methodname> operation associates an
-            mmap fake offset with the object given by the handle and returns
-            it. Drivers must use the
-            <function>drm_gem_create_mmap_offset</function> function to
-            associate the fake offset as described in
-            <xref linkend="drm-gem-objects-mapping"/>.
-          </para>
-        </listitem>
-      </itemizedlist>
-      <para>
-        Note that dumb objects may not be used for gpu acceleration, as has been
-	attempted on some ARM embedded platforms. Such drivers really must have
-	a hardware-specific ioctl to allocate suitable buffer objects.
-      </para>
-    </sect2>
-    <sect2>
-      <title>Output Polling</title>
-      <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
-      <para>
-        This operation notifies the driver that the status of one or more
-        connectors has changed. Drivers that use the fb helper can just call the
-        <function>drm_fb_helper_hotplug_event</function> function to handle this
-        operation.
-      </para>
-    </sect2>
-  </sect1>
-
-  <!-- Internals: kms initialization and cleanup -->
-
-  <sect1 id="drm-kms-init">
-    <title>KMS Initialization and Cleanup</title>
-    <para>
-      A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
-      and connectors. KMS drivers must thus create and initialize all those
-      objects at load time after initializing mode setting.
-    </para>
-    <sect2>
-      <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
-      <para>
-        A CRTC is an abstraction representing a part of the chip that contains a
-	pointer to a scanout buffer. Therefore, the number of CRTCs available
-	determines how many independent scanout buffers can be active at any
-	given time. The CRTC structure contains several fields to support this:
-	a pointer to some video memory (abstracted as a frame buffer object), a
-	display mode, and an (x, y) offset into the video memory to support
-	panning or configurations where one piece of video memory spans multiple
-	CRTCs.
-      </para>
-      <sect3>
-        <title>CRTC Initialization</title>
-        <para>
-          A KMS device must create and register at least one struct
-          <structname>drm_crtc</structname> instance. The instance is allocated
-          and zeroed by the driver, possibly as part of a larger structure, and
-          registered with a call to <function>drm_crtc_init</function> with a
-          pointer to CRTC functions.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Planes (struct <structname>drm_plane</structname>)</title>
-      <para>
-        A plane represents an image source that can be blended with or overlayed
-	on top of a CRTC during the scanout process. Planes are associated with
-	a frame buffer to crop a portion of the image memory (source) and
-	optionally scale it to a destination size. The result is then blended
-	with or overlayed on top of a CRTC.
-      </para>
-      <para>
-      The DRM core recognizes three types of planes:
-      <itemizedlist>
-        <listitem>
-        DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC.  Primary
-        planes are the planes operated upon by CRTC modesetting and flipping
-	operations described in the page_flip hook in <structname>drm_crtc_funcs</structname>.
-        </listitem>
-        <listitem>
-        DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC.  Cursor
-        planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
-        DRM_IOCTL_MODE_CURSOR2 ioctls.
-        </listitem>
-        <listitem>
-        DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
-        Some drivers refer to these types of planes as "sprites" internally.
-        </listitem>
-      </itemizedlist>
-      For compatibility with legacy userspace, only overlay planes are made
-      available to userspace by default.  Userspace clients may set the
-      DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
-      they wish to receive a universal plane list containing all plane types.
-      </para>
-      <sect3>
-        <title>Plane Initialization</title>
-        <para>
-          To create a plane, a KMS drivers allocates and
-          zeroes an instances of struct <structname>drm_plane</structname>
-          (possibly as part of a larger structure) and registers it with a call
-          to <function>drm_universal_plane_init</function>. The function takes a bitmask
-          of the CRTCs that can be associated with the plane, a pointer to the
-          plane functions, a list of format supported formats, and the type of
-          plane (primary, cursor, or overlay) being initialized.
-        </para>
-        <para>
-          Cursor and overlay planes are optional.  All drivers should provide
-          one primary plane per CRTC (although this requirement may change in
-          the future); drivers that do not wish to provide special handling for
-          primary planes may make use of the helper functions described in
-          <xref linkend="drm-kms-planehelpers"/> to create and register a
-          primary plane with standard capabilities.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Encoders (struct <structname>drm_encoder</structname>)</title>
-      <para>
-        An encoder takes pixel data from a CRTC and converts it to a format
-	suitable for any attached connectors. On some devices, it may be
-	possible to have a CRTC send data to more than one encoder. In that
-	case, both encoders would receive data from the same scanout buffer,
-	resulting in a "cloned" display configuration across the connectors
-	attached to each encoder.
-      </para>
-      <sect3>
-        <title>Encoder Initialization</title>
-        <para>
-          As for CRTCs, a KMS driver must create, initialize and register at
-          least one struct <structname>drm_encoder</structname> instance. The
-          instance is allocated and zeroed by the driver, possibly as part of a
-          larger structure.
-        </para>
-        <para>
-          Drivers must initialize the struct <structname>drm_encoder</structname>
-          <structfield>possible_crtcs</structfield> and
-          <structfield>possible_clones</structfield> fields before registering the
-          encoder. Both fields are bitmasks of respectively the CRTCs that the
-          encoder can be connected to, and sibling encoders candidate for cloning.
-        </para>
-        <para>
-          After being initialized, the encoder must be registered with a call to
-          <function>drm_encoder_init</function>. The function takes a pointer to
-          the encoder functions and an encoder type. Supported types are
-          <itemizedlist>
-            <listitem>
-              DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
-              </listitem>
-            <listitem>
-              DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
-            </listitem>
-            <listitem>
-              DRM_MODE_ENCODER_LVDS for display panels
-            </listitem>
-            <listitem>
-              DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
-              SCART)
-            </listitem>
-            <listitem>
-              DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
-            </listitem>
-          </itemizedlist>
-        </para>
-        <para>
-          Encoders must be attached to a CRTC to be used. DRM drivers leave
-          encoders unattached at initialization time. Applications (or the fbdev
-          compatibility layer when implemented) are responsible for attaching the
-          encoders they want to use to a CRTC.
-        </para>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Connectors (struct <structname>drm_connector</structname>)</title>
-      <para>
-        A connector is the final destination for pixel data on a device, and
-	usually connects directly to an external display device like a monitor
-	or laptop panel. A connector can only be attached to one encoder at a
-	time. The connector is also the structure where information about the
-	attached display is kept, so it contains fields for display data, EDID
-	data, DPMS &amp; connection status, and information about modes
-	supported on the attached displays.
-      </para>
-      <sect3>
-        <title>Connector Initialization</title>
-        <para>
-          Finally a KMS driver must create, initialize, register and attach at
-          least one struct <structname>drm_connector</structname> instance. The
-          instance is created as other KMS objects and initialized by setting the
-          following fields.
-        </para>
-        <variablelist>
-          <varlistentry>
-            <term><structfield>interlace_allowed</structfield></term>
-            <listitem><para>
-              Whether the connector can handle interlaced modes.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term><structfield>doublescan_allowed</structfield></term>
-            <listitem><para>
-              Whether the connector can handle doublescan.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term><structfield>display_info
-            </structfield></term>
-            <listitem><para>
-              Display information is filled from EDID information when a display
-              is detected. For non hot-pluggable displays such as flat panels in
-              embedded systems, the driver should initialize the
-              <structfield>display_info</structfield>.<structfield>width_mm</structfield>
-              and
-              <structfield>display_info</structfield>.<structfield>height_mm</structfield>
-              fields with the physical size of the display.
-            </para></listitem>
-          </varlistentry>
-          <varlistentry>
-            <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
-            <listitem><para>
-              Connector polling mode, a combination of
-              <variablelist>
-                <varlistentry>
-                  <term>DRM_CONNECTOR_POLL_HPD</term>
-                  <listitem><para>
-                    The connector generates hotplug events and doesn't need to be
-                    periodically polled. The CONNECT and DISCONNECT flags must not
-                    be set together with the HPD flag.
-                  </para></listitem>
-                </varlistentry>
-                <varlistentry>
-                  <term>DRM_CONNECTOR_POLL_CONNECT</term>
-                  <listitem><para>
-                    Periodically poll the connector for connection.
-                  </para></listitem>
-                </varlistentry>
-                <varlistentry>
-                  <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
-                  <listitem><para>
-                    Periodically poll the connector for disconnection.
-                  </para></listitem>
-                </varlistentry>
-              </variablelist>
-              Set to 0 for connectors that don't support connection status
-              discovery.
-            </para></listitem>
-          </varlistentry>
-        </variablelist>
-        <para>
-          The connector is then registered with a call to
-          <function>drm_connector_init</function> with a pointer to the connector
-          functions and a connector type, and exposed through sysfs with a call to
-          <function>drm_connector_register</function>.
-        </para>
-        <para>
-          Supported connector types are
-          <itemizedlist>
-            <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
-            <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
-            <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
-            <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
-            <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
-            <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
-            <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
-            <listitem>DRM_MODE_CONNECTOR_Component</listitem>
-            <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
-            <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
-            <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
-            <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
-            <listitem>DRM_MODE_CONNECTOR_TV</listitem>
-            <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
-            <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
-          </itemizedlist>
-        </para>
-        <para>
-          Connectors must be attached to an encoder to be used. For devices that
-          map connectors to encoders 1:1, the connector should be attached at
-          initialization time with a call to
-          <function>drm_mode_connector_attach_encoder</function>. The driver must
-          also set the <structname>drm_connector</structname>
-          <structfield>encoder</structfield> field to point to the attached
-          encoder.
-        </para>
-        <para>
-          Finally, drivers must initialize the connectors state change detection
-          with a call to <function>drm_kms_helper_poll_init</function>. If at
-          least one connector is pollable but can't generate hotplug interrupts
-          (indicated by the DRM_CONNECTOR_POLL_CONNECT and
-          DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
-          automatically be queued to periodically poll for changes. Connectors
-          that can generate hotplug interrupts must be marked with the
-          DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
-          call <function>drm_helper_hpd_irq_event</function>. The function will
-          queue a delayed work to check the state of all connectors, but no
-          periodic polling will be done.
-        </para>
-      </sect3>
-      <sect3>
-        <title>Connector Operations</title>
-        <note><para>
-          Unless otherwise state, all operations are mandatory.
-        </para></note>
-        <sect4>
-          <title>DPMS</title>
-          <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
-          <para>
-            The DPMS operation sets the power state of a connector. The mode
-            argument is one of
-            <itemizedlist>
-              <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
-              <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
-              <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
-              <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
-            </itemizedlist>
-          </para>
-          <para>
-            In all but DPMS_ON mode the encoder to which the connector is attached
-            should put the display in low-power mode by driving its signals
-            appropriately. If more than one connector is attached to the encoder
-            care should be taken not to change the power state of other displays as
-            a side effect. Low-power mode should be propagated to the encoders and
-            CRTCs when all related connectors are put in low-power mode.
-          </para>
-        </sect4>
-        <sect4>
-          <title>Modes</title>
-          <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
-                      uint32_t max_height);</synopsis>
-          <para>
-            Fill the mode list with all supported modes for the connector. If the
-            <parameter>max_width</parameter> and <parameter>max_height</parameter>
-            arguments are non-zero, the implementation must ignore all modes wider
-            than <parameter>max_width</parameter> or higher than
-            <parameter>max_height</parameter>.
-          </para>
-          <para>
-            The connector must also fill in this operation its
-            <structfield>display_info</structfield>
-            <structfield>width_mm</structfield> and
-            <structfield>height_mm</structfield> fields with the connected display
-            physical size in millimeters. The fields should be set to 0 if the value
-            isn't known or is not applicable (for instance for projector devices).
-          </para>
-        </sect4>
-        <sect4>
-          <title>Connection Status</title>
-          <para>
-            The connection status is updated through polling or hotplug events when
-            supported (see <xref linkend="drm-kms-connector-polled"/>). The status
-            value is reported to userspace through ioctls and must not be used
-            inside the driver, as it only gets initialized by a call to
-            <function>drm_mode_getconnector</function> from userspace.
-          </para>
-          <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
-                                        bool force);</synopsis>
-          <para>
-            Check to see if anything is attached to the connector. The
-            <parameter>force</parameter> parameter is set to false whilst polling or
-            to true when checking the connector due to user request.
-            <parameter>force</parameter> can be used by the driver to avoid
-            expensive, destructive operations during automated probing.
-          </para>
-          <para>
-            Return connector_status_connected if something is connected to the
-            connector, connector_status_disconnected if nothing is connected and
-            connector_status_unknown if the connection state isn't known.
-          </para>
-          <para>
-            Drivers should only return connector_status_connected if the connection
-            status has really been probed as connected. Connectors that can't detect
-            the connection status, or failed connection status probes, should return
-            connector_status_unknown.
-          </para>
-        </sect4>
-      </sect3>
-    </sect2>
-    <sect2>
-      <title>Cleanup</title>
-      <para>
-        The DRM core manages its objects' lifetime. When an object is not needed
-	anymore the core calls its destroy function, which must clean up and
-	free every resource allocated for the object. Every
-	<function>drm_*_init</function> call must be matched with a
-	corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
-	(<function>drm_crtc_cleanup</function>), planes
-	(<function>drm_plane_cleanup</function>), encoders
-	(<function>drm_encoder_cleanup</function>) and connectors
-	(<function>drm_connector_cleanup</function>). Furthermore, connectors
-	that have been added to sysfs must be removed by a call to
-	<function>drm_connector_unregister</function> before calling
-	<function>drm_connector_cleanup</function>.
-      </para>
-      <para>
-        Connectors state change detection must be cleanup up with a call to
-	<function>drm_kms_helper_poll_fini</function>.
-      </para>
-    </sect2>
-    <sect2>
-      <title>Output discovery and initialization example</title>
-      <programlisting><![CDATA[
-void intel_crt_init(struct drm_device *dev)
-{
-	struct drm_connector *connector;
-	struct intel_output *intel_output;
-
-	intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
-	if (!intel_output)
-		return;
-
-	connector = &intel_output->base;
-	drm_connector_init(dev, &intel_output->base,
-			   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
-
-	drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
-			 DRM_MODE_ENCODER_DAC);
-
-	drm_mode_connector_attach_encoder(&intel_output->base,
-					  &intel_output->enc);
-
-	/* Set up the DDC bus. */
-	intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
-	if (!intel_output->ddc_bus) {
-		dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
-			   "failed.\n");
-		return;
-	}
-
-	intel_output->type = INTEL_OUTPUT_ANALOG;
-	connector->interlace_allowed = 0;
-	connector->doublescan_allowed = 0;
-
-	drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
-	drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
-
-	drm_connector_register(connector);
-}]]></programlisting>
-      <para>
-        In the example above (taken from the i915 driver), a CRTC, connector and
-        encoder combination is created. A device-specific i2c bus is also
-        created for fetching EDID data and performing monitor detection. Once
-        the process is complete, the new connector is registered with sysfs to
-        make its properties available to applications.
-      </para>
-    </sect2>
-    <sect2>
-      <title>KMS API Functions</title>
-!Edrivers/gpu/drm/drm_crtc.c
-    </sect2>
-    <sect2>
-      <title>KMS Data Structures</title>
-!Iinclude/drm/drm_crtc.h
-    </sect2>
-    <sect2>
-      <title>KMS Locking</title>
-!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
-!Iinclude/drm/drm_modeset_lock.h
-!Edrivers/gpu/drm/drm_modeset_lock.c
-    </sect2>
-  </sect1>
-
-  <!-- Internals: kms helper functions -->
-
-  <sect1>
-    <title>Mode Setting Helper Functions</title>
-    <para>
-      The plane, CRTC, encoder and connector functions provided by the drivers
-      implement the DRM API. They're called by the DRM core and ioctl handlers
-      to handle device state changes and configuration request. As implementing
-      those functions often requires logic not specific to drivers, mid-layer
-      helper functions are available to avoid duplicating boilerplate code.
-    </para>
-    <para>
-      The DRM core contains one mid-layer implementation. The mid-layer provides
-      implementations of several plane, CRTC, encoder and connector functions
-      (called from the top of the mid-layer) that pre-process requests and call
-      lower-level functions provided by the driver (at the bottom of the
-      mid-layer). For instance, the
-      <function>drm_crtc_helper_set_config</function> function can be used to
-      fill the struct <structname>drm_crtc_funcs</structname>
-      <structfield>set_config</structfield> field. When called, it will split
-      the <methodname>set_config</methodname> operation in smaller, simpler
-      operations and call the driver to handle them.
-    </para>
-    <para>
-      To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
-      <function>drm_encoder_helper_add</function> and
-      <function>drm_connector_helper_add</function> functions to install their
-      mid-layer bottom operations handlers, and fill the
-      <structname>drm_crtc_funcs</structname>,
-      <structname>drm_encoder_funcs</structname> and
-      <structname>drm_connector_funcs</structname> structures with pointers to
-      the mid-layer top API functions. Installing the mid-layer bottom operation
-      handlers is best done right after registering the corresponding KMS object.
-    </para>
-    <para>
-      The mid-layer is not split between CRTC, encoder and connector operations.
-      To use it, a driver must provide bottom functions for all of the three KMS
-      entities.
-    </para>
-    <sect2>
-      <title>Atomic Modeset Helper Functions Reference</title>
-      <sect3>
-	<title>Overview</title>
-!Pdrivers/gpu/drm/drm_atomic_helper.c overview
-      </sect3>
-      <sect3>
-	<title>Implementing Asynchronous Atomic Commit</title>
-!Pdrivers/gpu/drm/drm_atomic_helper.c implementing nonblocking commit
-      </sect3>
-      <sect3>
-	<title>Atomic State Reset and Initialization</title>
-!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
-      </sect3>
-!Iinclude/drm/drm_atomic_helper.h
-!Edrivers/gpu/drm/drm_atomic_helper.c
-    </sect2>
-    <sect2>
-      <title>Modeset Helper Reference for Common Vtables</title>
-!Iinclude/drm/drm_modeset_helper_vtables.h
-!Pinclude/drm/drm_modeset_helper_vtables.h overview
-    </sect2>
-    <sect2>
-      <title>Legacy CRTC/Modeset Helper Functions Reference</title>
-!Edrivers/gpu/drm/drm_crtc_helper.c
-!Pdrivers/gpu/drm/drm_crtc_helper.c overview
-    </sect2>
-    <sect2>
-      <title>Output Probing Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
-!Edrivers/gpu/drm/drm_probe_helper.c
-    </sect2>
-    <sect2>
-      <title>fbdev Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
-!Edrivers/gpu/drm/drm_fb_helper.c
-!Iinclude/drm/drm_fb_helper.h
-    </sect2>
-    <sect2>
-      <title>Framebuffer CMA Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_fb_cma_helper.c framebuffer cma helper functions
-!Edrivers/gpu/drm/drm_fb_cma_helper.c
-    </sect2>
-    <sect2>
-      <title>Display Port Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
-!Iinclude/drm/drm_dp_helper.h
-!Edrivers/gpu/drm/drm_dp_helper.c
-    </sect2>
-    <sect2>
-      <title>Display Port Dual Mode Adaptor Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_dp_dual_mode_helper.c dp dual mode helpers
-!Iinclude/drm/drm_dp_dual_mode_helper.h
-!Edrivers/gpu/drm/drm_dp_dual_mode_helper.c
-    </sect2>
-    <sect2>
-      <title>Display Port MST Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
-!Iinclude/drm/drm_dp_mst_helper.h
-!Edrivers/gpu/drm/drm_dp_mst_topology.c
-    </sect2>
-    <sect2>
-      <title>MIPI DSI Helper Functions Reference</title>
-!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers
-!Iinclude/drm/drm_mipi_dsi.h
-!Edrivers/gpu/drm/drm_mipi_dsi.c
-    </sect2>
-    <sect2>
-      <title>EDID Helper Functions Reference</title>
-!Edrivers/gpu/drm/drm_edid.c
-    </sect2>
-    <sect2>
-      <title>Rectangle Utilities Reference</title>
-!Pinclude/drm/drm_rect.h rect utils
-!Iinclude/drm/drm_rect.h
-!Edrivers/gpu/drm/drm_rect.c
-    </sect2>
-    <sect2>
-      <title>Flip-work Helper Reference</title>
-!Pinclude/drm/drm_flip_work.h flip utils
-!Iinclude/drm/drm_flip_work.h
-!Edrivers/gpu/drm/drm_flip_work.c
-    </sect2>
-    <sect2>
-      <title>HDMI Infoframes Helper Reference</title>
-      <para>
-	Strictly speaking this is not a DRM helper library but generally useable
-	by any driver interfacing with HDMI outputs like v4l or alsa drivers.
-	But it nicely fits into the overall topic of mode setting helper
-	libraries and hence is also included here.
-      </para>
-!Iinclude/linux/hdmi.h
-!Edrivers/video/hdmi.c
-    </sect2>
-    <sect2>
-      <title id="drm-kms-planehelpers">Plane Helper Reference</title>
-!Edrivers/gpu/drm/drm_plane_helper.c
-!Pdrivers/gpu/drm/drm_plane_helper.c overview
-    </sect2>
-    <sect2>
-	  <title>Tile group</title>
-!Pdrivers/gpu/drm/drm_crtc.c Tile group
-    </sect2>
-    <sect2>
-      <title>Bridges</title>
-      <sect3>
-        <title>Overview</title>
-!Pdrivers/gpu/drm/drm_bridge.c overview
-      </sect3>
-      <sect3>
-        <title>Default bridge callback sequence</title>
-!Pdrivers/gpu/drm/drm_bridge.c bridge callbacks
-      </sect3>
-!Edrivers/gpu/drm/drm_bridge.c
-    </sect2>
-    <sect2>
-      <title>Panel Helper Reference</title>
-!Iinclude/drm/drm_panel.h
-!Edrivers/gpu/drm/drm_panel.c
-!Pdrivers/gpu/drm/drm_panel.c drm panel
-    </sect2>
-    <sect2>
-      <title>Simple KMS Helper Reference</title>
-!Iinclude/drm/drm_simple_kms_helper.h
-!Edrivers/gpu/drm/drm_simple_kms_helper.c
-!Pdrivers/gpu/drm/drm_simple_kms_helper.c overview
-    </sect2>
-  </sect1>
-
-  <!-- Internals: kms properties -->
-
-  <sect1 id="drm-kms-properties">
-    <title>KMS Properties</title>
-    <para>
-      Drivers may need to expose additional parameters to applications than
-      those described in the previous sections. KMS supports attaching
-      properties to CRTCs, connectors and planes and offers a userspace API to
-      list, get and set the property values.
-    </para>
-    <para>
-      Properties are identified by a name that uniquely defines the property
-      purpose, and store an associated value. For all property types except blob
-      properties the value is a 64-bit unsigned integer.
-    </para>
-    <para>
-      KMS differentiates between properties and property instances. Drivers
-      first create properties and then create and associate individual instances
-      of those properties to objects. A property can be instantiated multiple
-      times and associated with different objects. Values are stored in property
-      instances, and all other property information are stored in the property
-      and shared between all instances of the property.
-    </para>
-    <para>
-      Every property is created with a type that influences how the KMS core
-      handles the property. Supported property types are
-      <variablelist>
-        <varlistentry>
-          <term>DRM_MODE_PROP_RANGE</term>
-          <listitem><para>Range properties report their minimum and maximum
-            admissible values. The KMS core verifies that values set by
-            application fit in that range.</para></listitem>
-        </varlistentry>
-        <varlistentry>
-          <term>DRM_MODE_PROP_ENUM</term>
-          <listitem><para>Enumerated properties take a numerical value that
-            ranges from 0 to the number of enumerated values defined by the
-            property minus one, and associate a free-formed string name to each
-            value. Applications can retrieve the list of defined value-name pairs
-            and use the numerical value to get and set property instance values.
-            </para></listitem>
-        </varlistentry>
-        <varlistentry>
-          <term>DRM_MODE_PROP_BITMASK</term>
-          <listitem><para>Bitmask properties are enumeration properties that
-            additionally restrict all enumerated values to the 0..63 range.
-            Bitmask property instance values combine one or more of the
-            enumerated bits defined by the property.</para></listitem>
-        </varlistentry>
-        <varlistentry>
-          <term>DRM_MODE_PROP_BLOB</term>
-          <listitem><para>Blob properties store a binary blob without any format
-            restriction. The binary blobs are created as KMS standalone objects,
-            and blob property instance values store the ID of their associated
-            blob object.</para>
-	    <para>Blob properties are only used for the connector EDID property
-	    and cannot be created by drivers.</para></listitem>
-        </varlistentry>
-      </variablelist>
-    </para>
-    <para>
-      To create a property drivers call one of the following functions depending
-      on the property type. All property creation functions take property flags
-      and name, as well as type-specific arguments.
-      <itemizedlist>
-        <listitem>
-          <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
-                                               const char *name,
-                                               uint64_t min, uint64_t max);</synopsis>
-          <para>Create a range property with the given minimum and maximum
-            values.</para>
-        </listitem>
-        <listitem>
-          <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
-                                              const char *name,
-                                              const struct drm_prop_enum_list *props,
-                                              int num_values);</synopsis>
-          <para>Create an enumerated property. The <parameter>props</parameter>
-            argument points to an array of <parameter>num_values</parameter>
-            value-name pairs.</para>
-        </listitem>
-        <listitem>
-          <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
-                                                 int flags, const char *name,
-                                                 const struct drm_prop_enum_list *props,
-                                                 int num_values);</synopsis>
-          <para>Create a bitmask property. The <parameter>props</parameter>
-            argument points to an array of <parameter>num_values</parameter>
-            value-name pairs.</para>
-        </listitem>
-      </itemizedlist>
-    </para>
-    <para>
-      Properties can additionally be created as immutable, in which case they
-      will be read-only for applications but can be modified by the driver. To
-      create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
-      flag at property creation time.
-    </para>
-    <para>
-      When no array of value-name pairs is readily available at property
-      creation time for enumerated or range properties, drivers can create
-      the property using the <function>drm_property_create</function> function
-      and manually add enumeration value-name pairs by calling the
-      <function>drm_property_add_enum</function> function. Care must be taken to
-      properly specify the property type through the <parameter>flags</parameter>
-      argument.
-    </para>
-    <para>
-      After creating properties drivers can attach property instances to CRTC,
-      connector and plane objects by calling the
-      <function>drm_object_attach_property</function>. The function takes a
-      pointer to the target object, a pointer to the previously created property
-      and an initial instance value.
-    </para>
-    <sect2>
-	<title>Existing KMS Properties</title>
-	<para>
-	The following table gives description of drm properties exposed by various
-	modules/drivers.
-	</para>
-	<table border="1" cellpadding="0" cellspacing="0">
-	<tbody>
-	<tr style="font-weight: bold;">
-	<td valign="top" >Owner Module/Drivers</td>
-	<td valign="top" >Group</td>
-	<td valign="top" >Property Name</td>
-	<td valign="top" >Type</td>
-	<td valign="top" >Property Values</td>
-	<td valign="top" >Object attached</td>
-	<td valign="top" >Description/Restrictions</td>
-	</tr>
-	<tr>
-	<td rowspan="42" valign="top" >DRM</td>
-	<td rowspan="2" valign="top" >Generic</td>
-	<td valign="top" >“rotation”</td>
-	<td valign="top" >BITMASK</td>
-	<td valign="top" >{ 0, "rotate-0" },
-	{ 1, "rotate-90" },
-	{ 2, "rotate-180" },
-	{ 3, "rotate-270" },
-	{ 4, "reflect-x" },
-	{ 5, "reflect-y" }</td>
-	<td valign="top" >CRTC, Plane</td>
-	<td valign="top" >rotate-(degrees) rotates the image by the specified amount in degrees
-	in counter clockwise direction. reflect-x and reflect-y reflects the
-	image along the specified axis prior to rotation</td>
-	</tr>
-	<tr>
-	<td valign="top" >“scaling mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >Supported by: amdgpu, gma500, i915, nouveau and radeon.</td>
-	</tr>
-	<tr>
-	<td rowspan="5" valign="top" >Connector</td>
-	<td valign="top" >“EDID”</td>
-	<td valign="top" >BLOB | IMMUTABLE</td>
-	<td valign="top" >0</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >Contains id of edid blob ptr object.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“DPMS”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >Contains DPMS operation mode value.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“PATH”</td>
-	<td valign="top" >BLOB | IMMUTABLE</td>
-	<td valign="top" >0</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >Contains topology path to a connector.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“TILE”</td>
-	<td valign="top" >BLOB | IMMUTABLE</td>
-	<td valign="top" >0</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >Contains tiling information for a connector.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_ID”</td>
-	<td valign="top" >OBJECT</td>
-	<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >CRTC that connector is attached to (atomic)</td>
-	</tr>
-	<tr>
-	<td rowspan="11" valign="top" >Plane</td>
-	<td valign="top" >“type”</td>
-	<td valign="top" >ENUM | IMMUTABLE</td>
-	<td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Plane type</td>
-	</tr>
-	<tr>
-	<td valign="top" >“SRC_X”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“SRC_Y”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“SRC_W”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“SRC_H”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_X”</td>
-	<td valign="top" >SIGNED_RANGE</td>
-	<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_Y”</td>
-	<td valign="top" >SIGNED_RANGE</td>
-	<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_W”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout CRTC (destination) width (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_H”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout CRTC (destination) height (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“FB_ID”</td>
-	<td valign="top" >OBJECT</td>
-	<td valign="top" >DRM_MODE_OBJECT_FB</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >Scanout framebuffer (atomic)</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CRTC_ID”</td>
-	<td valign="top" >OBJECT</td>
-	<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >CRTC that plane is attached to (atomic)</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >DVI-I</td>
-	<td valign="top" >“subconnector”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“select subconnector”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="13" valign="top" >TV</td>
-	<td valign="top" >“subconnector”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“select subconnector”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“left margin”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“right margin”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“top margin”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“bottom margin”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“brightness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“contrast”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker reduction”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“overscan”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“saturation”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hue”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >Virtual GPU</td>
-	<td valign="top" >“suggested X”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffffff</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >property to suggest an X offset for a connector</td>
-	</tr>
-	<tr>
-	<td valign="top" >“suggested Y”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffffff</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >property to suggest an Y offset for a connector</td>
-	</tr>
-	<tr>
-	<td rowspan="7" valign="top" >Optional</td>
-	<td valign="top" >"aspect ratio"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "None", "4:3", "16:9" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TDB</td>
-	</tr>
-	<tr>
-	<td valign="top" >“dirty”</td>
-	<td valign="top" >ENUM | IMMUTABLE</td>
-	<td valign="top" >{ "Off", "On", "Annotate" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“DEGAMMA_LUT”</td>
-	<td valign="top" >BLOB</td>
-	<td valign="top" >0</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >DRM property to set the degamma lookup table
-		(LUT) mapping pixel data from the framebuffer before it is
-		given to the transformation matrix. The data is an interpreted
-		as an array of struct drm_color_lut elements. Hardware might
-		choose not to use the full precision of the LUT elements nor
-		use all the elements of the LUT (for example the hardware
-		might choose to interpolate between LUT[0] and LUT[4]). </td>
-	</tr>
-	<tr>
-	<td valign="top" >“DEGAMMA_LUT_SIZE”</td>
-	<td valign="top" >RANGE | IMMUTABLE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >DRM property to gives the size of the lookup
-		table to be set on the DEGAMMA_LUT property (the size depends
-		on the underlying hardware).</td>
-	</tr>
-	<tr>
-	<td valign="top" >“CTM”</td>
-	<td valign="top" >BLOB</td>
-	<td valign="top" >0</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >DRM property to set the current
-		transformation matrix (CTM) apply to pixel data after the
-		lookup through the degamma LUT and before the lookup through
-		the gamma LUT. The data is an interpreted as a struct
-		drm_color_ctm.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“GAMMA_LUT”</td>
-	<td valign="top" >BLOB</td>
-	<td valign="top" >0</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >DRM property to set the gamma lookup table
-		(LUT) mapping pixel data after to the transformation matrix to
-		data sent to the connector. The data is an interpreted as an
-		array of struct drm_color_lut elements. Hardware might choose
-		not to use the full precision of the LUT elements nor use all
-		the elements of the LUT (for example the hardware might choose
-		to interpolate between LUT[0] and LUT[4]).</td>
-	</tr>
-	<tr>
-	<td valign="top" >“GAMMA_LUT_SIZE”</td>
-	<td valign="top" >RANGE | IMMUTABLE</td>
-	<td valign="top" >Min=0, Max=UINT_MAX</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >DRM property to gives the size of the lookup
-		table to be set on the GAMMA_LUT property (the size depends on
-		the underlying hardware).</td>
-	</tr>
-	<tr>
-	<td rowspan="20" valign="top" >i915</td>
-	<td rowspan="2" valign="top" >Generic</td>
-	<td valign="top" >"Broadcast RGB"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >When this property is set to Limited 16:235
-		and CTM is set, the hardware will be programmed with the
-		result of the multiplication of CTM by the limited range
-		matrix to ensure the pixels normaly in the range 0..1.0 are
-		remapped to the range 16/255..235/255.</td>
-	</tr>
-	<tr>
-	<td valign="top" >“audio”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="17" valign="top" >SDVO-TV</td>
-	<td valign="top" >“mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"left_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"right_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"top_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"bottom_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hpos”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“vpos”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“contrast”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“saturation”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hue”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“sharpness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter_adaptive”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter_2d”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“tv_chroma_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“tv_luma_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“dot_crawl”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >SDVO-TV/LVDS</td>
-	<td valign="top" >“brightness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >CDV gma-500</td>
-	<td rowspan="2" valign="top" >Generic</td>
-	<td valign="top" >"Broadcast RGB"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ “Full”, “Limited 16:235” }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"Broadcast RGB"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ “off”, “auto”, “on” }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="19" valign="top" >Poulsbo</td>
-	<td rowspan="1" valign="top" >Generic</td>
-	<td valign="top" >“backlight”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=100</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="17" valign="top" >SDVO-TV</td>
-	<td valign="top" >“mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"left_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"right_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"top_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"bottom_margin"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hpos”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“vpos”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“contrast”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“saturation”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hue”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“sharpness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter_adaptive”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“flicker_filter_2d”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“tv_chroma_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“tv_luma_filter”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“dot_crawl”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >SDVO-TV/LVDS</td>
-	<td valign="top" >“brightness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max= SDVO dependent</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="11" valign="top" >armada</td>
-	<td rowspan="2" valign="top" >CRTC</td>
-	<td valign="top" >"CSC_YUV"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"CSC_RGB"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="9" valign="top" >Overlay</td>
-	<td valign="top" >"colorkey"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey_min"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey_max"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey_val"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey_alpha"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0xffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey_mode"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "disabled", "Y component", "U component"
-	, "V component", "RGB", “R component", "G component", "B component" }</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"brightness"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=256 + 255</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"contrast"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0x7fff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"saturation"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0x7fff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >exynos</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >“mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "normal", "blank" }</td>
-	<td valign="top" >CRTC</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >Overlay</td>
-	<td valign="top" >“zpos”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=MAX_PLANE-1</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >i2c/ch7006_drv</td>
-	<td valign="top" >Generic</td>
-	<td valign="top" >“scale”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=2</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="1" valign="top" >TV</td>
-	<td valign="top" >“mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
-	, "PAL-60", "NTSC-M", "NTSC-J" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="15" valign="top" >nouveau</td>
-	<td rowspan="6" valign="top" >NV10 Overlay</td>
-	<td valign="top" >"colorkey"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0x01ffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“contrast”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=8192-1</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“brightness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1024</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“hue”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=359</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“saturation”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=8192-1</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“iturbt_709”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="2" valign="top" >Nv04 Overlay</td>
-	<td valign="top" >“colorkey”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0x01ffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“brightness”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1024</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="7" valign="top" >Display</td>
-	<td valign="top" >“dithering mode”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "auto", "off", "on" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“dithering depth”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“underscan”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“underscan hborder”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=128</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“underscan vborder”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=128</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“vibrant hue”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=180</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >“color vibrance”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=200</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >omap</td>
-	<td valign="top" >Generic</td>
-	<td valign="top" >“zorder”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=3</td>
-	<td valign="top" >CRTC, Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >qxl</td>
-	<td valign="top" >Generic</td>
-	<td valign="top" >“hotplug_mode_update"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="9" valign="top" >radeon</td>
-	<td valign="top" >DVI-I</td>
-	<td valign="top" >“coherent”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >DAC enable load detect</td>
-	<td valign="top" >“load detection”</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=1</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >TV Standard</td>
-	<td valign="top" >"tv standard"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
-	, "scart-pal", "pal-cn", "secam" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >legacy TMDS PLL detect</td>
-	<td valign="top" >"tmds_pll"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "driver", "bios" }</td>
-	<td valign="top" >-</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="3" valign="top" >Underscan</td>
-	<td valign="top" >"underscan"</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "off", "on", "auto" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"underscan hborder"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=128</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"underscan vborder"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=128</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >Audio</td>
-	<td valign="top" >“audio”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "off", "on", "auto" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >FMT Dithering</td>
-	<td valign="top" >“dither”</td>
-	<td valign="top" >ENUM</td>
-	<td valign="top" >{ "off", "on" }</td>
-	<td valign="top" >Connector</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td rowspan="3" valign="top" >rcar-du</td>
-	<td rowspan="3" valign="top" >Generic</td>
-	<td valign="top" >"alpha"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=255</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"colorkey"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=0, Max=0x01ffffff</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	<tr>
-	<td valign="top" >"zpos"</td>
-	<td valign="top" >RANGE</td>
-	<td valign="top" >Min=1, Max=7</td>
-	<td valign="top" >Plane</td>
-	<td valign="top" >TBD</td>
-	</tr>
-	</tbody>
-	</table>
-    </sect2>
-  </sect1>
-
-  <!-- Internals: vertical blanking -->
-
-  <sect1 id="drm-vertical-blank">
-    <title>Vertical Blanking</title>
-    <para>
-      Vertical blanking plays a major role in graphics rendering. To achieve
-      tear-free display, users must synchronize page flips and/or rendering to
-      vertical blanking. The DRM API offers ioctls to perform page flips
-      synchronized to vertical blanking and wait for vertical blanking.
-    </para>
-    <para>
-      The DRM core handles most of the vertical blanking management logic, which
-      involves filtering out spurious interrupts, keeping race-free blanking
-      counters, coping with counter wrap-around and resets and keeping use
-      counts. It relies on the driver to generate vertical blanking interrupts
-      and optionally provide a hardware vertical blanking counter. Drivers must
-      implement the following operations.
-    </para>
-    <itemizedlist>
-      <listitem>
-        <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
-void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
-        <para>
-	  Enable or disable vertical blanking interrupts for the given CRTC.
-	</para>
-      </listitem>
-      <listitem>
-        <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
-        <para>
-	  Retrieve the value of the vertical blanking counter for the given
-	  CRTC. If the hardware maintains a vertical blanking counter its value
-	  should be returned. Otherwise drivers can use the
-	  <function>drm_vblank_count</function> helper function to handle this
-	  operation.
-	</para>
-      </listitem>
-    </itemizedlist>
-    <para>
-      Drivers must initialize the vertical blanking handling core with a call to
-      <function>drm_vblank_init</function> in their
-      <methodname>load</methodname> operation.
-    </para>
-    <para>
-      Vertical blanking interrupts can be enabled by the DRM core or by drivers
-      themselves (for instance to handle page flipping operations). The DRM core
-      maintains a vertical blanking use count to ensure that the interrupts are
-      not disabled while a user still needs them. To increment the use count,
-      drivers call <function>drm_vblank_get</function>. Upon return vertical
-      blanking interrupts are guaranteed to be enabled.
-    </para>
-    <para>
-      To decrement the use count drivers call
-      <function>drm_vblank_put</function>. Only when the use count drops to zero
-      will the DRM core disable the vertical blanking interrupts after a delay
-      by scheduling a timer. The delay is accessible through the vblankoffdelay
-      module parameter or the <varname>drm_vblank_offdelay</varname> global
-      variable and expressed in milliseconds. Its default value is 5000 ms.
-      Zero means never disable, and a negative value means disable immediately.
-      Drivers may override the behaviour by setting the
-      <structname>drm_device</structname>
-      <structfield>vblank_disable_immediate</structfield> flag, which when set
-      causes vblank interrupts to be disabled immediately regardless of the
-      drm_vblank_offdelay value. The flag should only be set if there's a
-      properly working hardware vblank counter present.
-    </para>
-    <para>
-      When a vertical blanking interrupt occurs drivers only need to call the
-      <function>drm_handle_vblank</function> function to account for the
-      interrupt.
-    </para>
-    <para>
-      Resources allocated by <function>drm_vblank_init</function> must be freed
-      with a call to <function>drm_vblank_cleanup</function> in the driver
-      <methodname>unload</methodname> operation handler.
-    </para>
-    <sect2>
-      <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
-!Edrivers/gpu/drm/drm_irq.c
-!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
-    </sect2>
-  </sect1>
-
-  <!-- Internals: open/close, file operations and ioctls -->
-
-  <sect1>
-    <title>Open/Close, File Operations and IOCTLs</title>
-    <sect2>
-      <title>Open and Close</title>
-      <synopsis>int (*firstopen) (struct drm_device *);
-void (*lastclose) (struct drm_device *);
-int (*open) (struct drm_device *, struct drm_file *);
-void (*preclose) (struct drm_device *, struct drm_file *);
-void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
-      <abstract>Open and close handlers. None of those methods are mandatory.
-      </abstract>
-      <para>
-        The <methodname>firstopen</methodname> method is called by the DRM core
-	for legacy UMS (User Mode Setting) drivers only when an application
-	opens a device that has no other opened file handle. UMS drivers can
-	implement it to acquire device resources. KMS drivers can't use the
-	method and must acquire resources in the <methodname>load</methodname>
-	method instead.
-      </para>
-      <para>
-	Similarly the <methodname>lastclose</methodname> method is called when
-	the last application holding a file handle opened on the device closes
-	it, for both UMS and KMS drivers. Additionally, the method is also
-	called at module unload time or, for hot-pluggable devices, when the
-	device is unplugged. The <methodname>firstopen</methodname> and
-	<methodname>lastclose</methodname> calls can thus be unbalanced.
-      </para>
-      <para>
-        The <methodname>open</methodname> method is called every time the device
-	is opened by an application. Drivers can allocate per-file private data
-	in this method and store them in the struct
-	<structname>drm_file</structname> <structfield>driver_priv</structfield>
-	field. Note that the <methodname>open</methodname> method is called
-	before <methodname>firstopen</methodname>.
-      </para>
-      <para>
-        The close operation is split into <methodname>preclose</methodname> and
-	<methodname>postclose</methodname> methods. Drivers must stop and
-	cleanup all per-file operations in the <methodname>preclose</methodname>
-	method. For instance pending vertical blanking and page flip events must
-	be cancelled. No per-file operation is allowed on the file handle after
-	returning from the <methodname>preclose</methodname> method.
-      </para>
-      <para>
-        Finally the <methodname>postclose</methodname> method is called as the
-	last step of the close operation, right before calling the
-	<methodname>lastclose</methodname> method if no other open file handle
-	exists for the device. Drivers that have allocated per-file private data
-	in the <methodname>open</methodname> method should free it here.
-      </para>
-      <para>
-        The <methodname>lastclose</methodname> method should restore CRTC and
-	plane properties to default value, so that a subsequent open of the
-	device will not inherit state from the previous user. It can also be
-	used to execute delayed power switching state changes, e.g. in
-	conjunction with the vga_switcheroo infrastructure (see
-	<xref linkend="vga_switcheroo"/>). Beyond that KMS drivers should not
-	do any further cleanup. Only legacy UMS drivers might need to clean up
-	device state so that the vga console or an independent fbdev driver
-	could take over.
-      </para>
-    </sect2>
-    <sect2>
-      <title>File Operations</title>
-!Pdrivers/gpu/drm/drm_fops.c file operations
-!Edrivers/gpu/drm/drm_fops.c
-    </sect2>
-    <sect2>
-      <title>IOCTLs</title>
-      <synopsis>struct drm_ioctl_desc *ioctls;
-int num_ioctls;</synopsis>
-      <abstract>Driver-specific ioctls descriptors table.</abstract>
-      <para>
-        Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
-	descriptors table is indexed by the ioctl number offset from the base
-	value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
-	table entries.
-      </para>
-      <para>
-        <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
-	<para>
-	  <parameter>ioctl</parameter> is the ioctl name. Drivers must define
-	  the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
-	  offset from DRM_COMMAND_BASE and the ioctl number respectively. The
-	  first macro is private to the device while the second must be exposed
-	  to userspace in a public header.
-	</para>
-	<para>
-	  <parameter>func</parameter> is a pointer to the ioctl handler function
-	  compatible with the <type>drm_ioctl_t</type> type.
-	  <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
-		struct drm_file *file_priv);</programlisting>
-	</para>
-	<para>
-	  <parameter>flags</parameter> is a bitmask combination of the following
-	  values. It restricts how the ioctl is allowed to be called.
-	  <itemizedlist>
-	    <listitem><para>
-	      DRM_AUTH - Only authenticated callers allowed
-	    </para></listitem>
-	    <listitem><para>
-	      DRM_MASTER - The ioctl can only be called on the master file
-	      handle
-	    </para></listitem>
-            <listitem><para>
-	      DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
-	    </para></listitem>
-            <listitem><para>
-	      DRM_CONTROL_ALLOW - The ioctl can only be called on a control
-	      device
-	    </para></listitem>
-            <listitem><para>
-	      DRM_UNLOCKED - The ioctl handler will be called without locking
-	      the DRM global mutex. This is the enforced default for kms drivers
-	      (i.e. using the DRIVER_MODESET flag) and hence shouldn't be used
-	      any more for new drivers.
-	    </para></listitem>
-	  </itemizedlist>
-	</para>
-      </para>
-!Edrivers/gpu/drm/drm_ioctl.c
-    </sect2>
-  </sect1>
-  <sect1>
-    <title>Legacy Support Code</title>
-    <para>
-      The section very briefly covers some of the old legacy support code which
-      is only used by old DRM drivers which have done a so-called shadow-attach
-      to the underlying device instead of registering as a real driver. This
-      also includes some of the old generic buffer management and command
-      submission code. Do not use any of this in new and modern drivers.
-    </para>
-
-    <sect2>
-      <title>Legacy Suspend/Resume</title>
-      <para>
-	The DRM core provides some suspend/resume code, but drivers wanting full
-	suspend/resume support should provide save() and restore() functions.
-	These are called at suspend, hibernate, or resume time, and should perform
-	any state save or restore required by your device across suspend or
-	hibernate states.
-      </para>
-      <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
-  int (*resume) (struct drm_device *);</synopsis>
-      <para>
-	Those are legacy suspend and resume methods which
-	<emphasis>only</emphasis> work with the legacy shadow-attach driver
-	registration functions. New driver should use the power management
-	interface provided by their bus type (usually through
-	the struct <structname>device_driver</structname> dev_pm_ops) and set
-	these methods to NULL.
-      </para>
-    </sect2>
-
-    <sect2>
-      <title>Legacy DMA Services</title>
-      <para>
-	This should cover how DMA mapping etc. is supported by the core.
-	These functions are deprecated and should not be used.
-      </para>
-    </sect2>
-  </sect1>
-  </chapter>
-
-<!-- TODO
-
-- Add a glossary
-- Document the struct_mutex catch-all lock
-- Document connector properties
-
-- Why is the load method optional?
-- What are drivers supposed to set the initial display state to, and how?
-  Connector's DPMS states are not initialized and are thus equal to
-  DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
-  drm_helper_disable_unused_functions(), which disables unused encoders and
-  CRTCs, but doesn't touch the connectors' DPMS state, and
-  drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
-  that don't implement (or just don't use) fbcon compatibility need to call
-  those functions themselves?
-- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
-  around mode setting. Should this be done in the DRM core?
-- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
-  call and never set back to 0. It seems to be safe to permanently set it to 1
-  in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
-  well. This should be investigated.
-- crtc and connector .save and .restore operations are only used internally in
-  drivers, should they be removed from the core?
-- encoder mid-layer .save and .restore operations are only used internally in
-  drivers, should they be removed from the core?
-- encoder mid-layer .detect operation is only used internally in drivers,
-  should it be removed from the core?
--->
-
-  <!-- External interfaces -->
-
-  <chapter id="drmExternals">
-    <title>Userland interfaces</title>
-    <para>
-      The DRM core exports several interfaces to applications,
-      generally intended to be used through corresponding libdrm
-      wrapper functions.  In addition, drivers export device-specific
-      interfaces for use by userspace drivers &amp; device-aware
-      applications through ioctls and sysfs files.
-    </para>
-    <para>
-      External interfaces include: memory mapping, context management,
-      DMA operations, AGP management, vblank control, fence
-      management, memory management, and output management.
-    </para>
-    <para>
-      Cover generic ioctls and sysfs layout here.  We only need high-level
-      info, since man pages should cover the rest.
-    </para>
-
-  <!-- External: render nodes -->
-
-    <sect1>
-      <title>Render nodes</title>
-      <para>
-        DRM core provides multiple character-devices for user-space to use.
-        Depending on which device is opened, user-space can perform a different
-        set of operations (mainly ioctls). The primary node is always created
-        and called card&lt;num&gt;. Additionally, a currently
-        unused control node, called controlD&lt;num&gt; is also
-        created. The primary node provides all legacy operations and
-        historically was the only interface used by userspace. With KMS, the
-        control node was introduced. However, the planned KMS control interface
-        has never been written and so the control node stays unused to date.
-      </para>
-      <para>
-        With the increased use of offscreen renderers and GPGPU applications,
-        clients no longer require running compositors or graphics servers to
-        make use of a GPU. But the DRM API required unprivileged clients to
-        authenticate to a DRM-Master prior to getting GPU access. To avoid this
-        step and to grant clients GPU access without authenticating, render
-        nodes were introduced. Render nodes solely serve render clients, that
-        is, no modesetting or privileged ioctls can be issued on render nodes.
-        Only non-global rendering commands are allowed. If a driver supports
-        render nodes, it must advertise it via the DRIVER_RENDER
-        DRM driver capability. If not supported, the primary node must be used
-        for render clients together with the legacy drmAuth authentication
-        procedure.
-      </para>
-      <para>
-        If a driver advertises render node support, DRM core will create a
-        separate render node called renderD&lt;num&gt;. There will
-        be one render node per device. No ioctls except  PRIME-related ioctls
-        will be allowed on this node. Especially GEM_OPEN will be
-        explicitly prohibited. Render nodes are designed to avoid the
-        buffer-leaks, which occur if clients guess the flink names or mmap
-        offsets on the legacy interface. Additionally to this basic interface,
-        drivers must mark their driver-dependent render-only ioctls as
-        DRM_RENDER_ALLOW so render clients can use them. Driver
-        authors must be careful not to allow any privileged ioctls on render
-        nodes.
-      </para>
-      <para>
-        With render nodes, user-space can now control access to the render node
-        via basic file-system access-modes. A running graphics server which
-        authenticates clients on the privileged primary/legacy node is no longer
-        required. Instead, a client can open the render node and is immediately
-        granted GPU access. Communication between clients (or servers) is done
-        via PRIME. FLINK from render node to legacy node is not supported. New
-        clients must not use the insecure FLINK interface.
-      </para>
-      <para>
-        Besides dropping all modeset/global ioctls, render nodes also drop the
-        DRM-Master concept. There is no reason to associate render clients with
-        a DRM-Master as they are independent of any graphics server. Besides,
-        they must work without any running master, anyway.
-        Drivers must be able to run without a master object if they support
-        render nodes. If, on the other hand, a driver requires shared state
-        between clients which is visible to user-space and accessible beyond
-        open-file boundaries, they cannot support render nodes.
-      </para>
-    </sect1>
-
-  <!-- External: vblank handling -->
-
-    <sect1>
-      <title>VBlank event handling</title>
-      <para>
-        The DRM core exposes two vertical blank related ioctls:
-        <variablelist>
-          <varlistentry>
-            <term>DRM_IOCTL_WAIT_VBLANK</term>
-            <listitem>
-              <para>
-                This takes a struct drm_wait_vblank structure as its argument,
-                and it is used to block or request a signal when a specified
-                vblank event occurs.
-              </para>
-            </listitem>
-          </varlistentry>
-          <varlistentry>
-            <term>DRM_IOCTL_MODESET_CTL</term>
-            <listitem>
-              <para>
-		This was only used for user-mode-settind drivers around
-		modesetting changes to allow the kernel to update the vblank
-		interrupt after mode setting, since on many devices the vertical
-		blank counter is reset to 0 at some point during modeset. Modern
-		drivers should not call this any more since with kernel mode
-		setting it is a no-op.
-              </para>
-            </listitem>
-          </varlistentry>
-        </variablelist>
-      </para>
-    </sect1>
-
-  </chapter>
-</part>
-<part id="drmDrivers">
-  <title>DRM Drivers</title>
-
-  <partintro>
-    <para>
-      This second part of the GPU Driver Developer's Guide documents driver
-      code, implementation details and also all the driver-specific userspace
-      interfaces. Especially since all hardware-acceleration interfaces to
-      userspace are driver specific for efficiency and other reasons these
-      interfaces can be rather substantial. Hence every driver has its own
-      chapter.
-    </para>
-  </partintro>
-
-  <chapter id="drmI915">
-    <title>drm/i915 Intel GFX Driver</title>
-    <para>
-      The drm/i915 driver supports all (with the exception of some very early
-      models) integrated GFX chipsets with both Intel display and rendering
-      blocks. This excludes a set of SoC platforms with an SGX rendering unit,
-      those have basic support through the gma500 drm driver.
-    </para>
-    <sect1>
-      <title>Core Driver Infrastructure</title>
-      <para>
-	This section covers core driver infrastructure used by both the display
-	and the GEM parts of the driver.
-      </para>
-      <sect2>
-        <title>Runtime Power Management</title>
-!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
-!Idrivers/gpu/drm/i915/intel_runtime_pm.c
-!Idrivers/gpu/drm/i915/intel_uncore.c
-      </sect2>
-      <sect2>
-        <title>Interrupt Handling</title>
-!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
-!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
-!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
-!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
-      </sect2>
-      <sect2>
-        <title>Intel GVT-g Guest Support(vGPU)</title>
-!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support
-!Idrivers/gpu/drm/i915/i915_vgpu.c
-      </sect2>
-    </sect1>
-    <sect1>
-      <title>Display Hardware Handling</title>
-      <para>
-        This section covers everything related to the display hardware including
-        the mode setting infrastructure, plane, sprite and cursor handling and
-        display, output probing and related topics.
-      </para>
-      <sect2>
-        <title>Mode Setting Infrastructure</title>
-        <para>
-          The i915 driver is thus far the only DRM driver which doesn't use the
-          common DRM helper code to implement mode setting sequences. Thus it
-          has its own tailor-made infrastructure for executing a display
-          configuration change.
-        </para>
-      </sect2>
-      <sect2>
-        <title>Frontbuffer Tracking</title>
-!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
-!Idrivers/gpu/drm/i915/intel_frontbuffer.c
-!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
-      </sect2>
-      <sect2>
-        <title>Display FIFO Underrun Reporting</title>
-!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
-!Idrivers/gpu/drm/i915/intel_fifo_underrun.c
-      </sect2>
-      <sect2>
-        <title>Plane Configuration</title>
-        <para>
-	  This section covers plane configuration and composition with the
-	  primary plane, sprites, cursors and overlays. This includes the
-	  infrastructure to do atomic vsync'ed updates of all this state and
-	  also tightly coupled topics like watermark setup and computation,
-	  framebuffer compression and panel self refresh.
-        </para>
-      </sect2>
-      <sect2>
-        <title>Atomic Plane Helpers</title>
-!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
-!Idrivers/gpu/drm/i915/intel_atomic_plane.c
-      </sect2>
-      <sect2>
-        <title>Output Probing</title>
-        <para>
-	  This section covers output probing and related infrastructure like the
-	  hotplug interrupt storm detection and mitigation code. Note that the
-	  i915 driver still uses most of the common DRM helper code for output
-	  probing, so those sections fully apply.
-        </para>
-      </sect2>
-      <sect2>
-        <title>Hotplug</title>
-!Pdrivers/gpu/drm/i915/intel_hotplug.c Hotplug
-!Idrivers/gpu/drm/i915/intel_hotplug.c
-      </sect2>
-      <sect2>
-	<title>High Definition Audio</title>
-!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port
-!Idrivers/gpu/drm/i915/intel_audio.c
-!Iinclude/drm/i915_component.h
-      </sect2>
-      <sect2>
-	<title>Panel Self Refresh PSR (PSR/SRD)</title>
-!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
-!Idrivers/gpu/drm/i915/intel_psr.c
-      </sect2>
-      <sect2>
-	<title>Frame Buffer Compression (FBC)</title>
-!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
-!Idrivers/gpu/drm/i915/intel_fbc.c
-      </sect2>
-      <sect2>
-        <title>Display Refresh Rate Switching (DRRS)</title>
-!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS)
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush
-!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init
-
-      </sect2>
-      <sect2>
-        <title>DPIO</title>
-!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
-      </sect2>
-
-      <sect2>
-       <title>CSR firmware support for DMC</title>
-!Pdrivers/gpu/drm/i915/intel_csr.c csr support for dmc
-!Idrivers/gpu/drm/i915/intel_csr.c
-      </sect2>
-      <sect2>
-	<title>Video BIOS Table (VBT)</title>
-!Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
-!Idrivers/gpu/drm/i915/intel_bios.c
-!Idrivers/gpu/drm/i915/intel_vbt_defs.h
-      </sect2>
-    </sect1>
-
-    <sect1>
-      <title>Memory Management and Command Submission</title>
-      <para>
-	This sections covers all things related to the GEM implementation in the
-	i915 driver.
-      </para>
-      <sect2>
-        <title>Batchbuffer Parsing</title>
-!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
-!Idrivers/gpu/drm/i915/i915_cmd_parser.c
-      </sect2>
-      <sect2>
-        <title>Batchbuffer Pools</title>
-!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
-!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
-      </sect2>
-      <sect2>
-        <title>Logical Rings, Logical Ring Contexts and Execlists</title>
-!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
-!Idrivers/gpu/drm/i915/intel_lrc.c
-      </sect2>
-      <sect2>
-        <title>Global GTT views</title>
-!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
-!Idrivers/gpu/drm/i915/i915_gem_gtt.c
-      </sect2>
-      <sect2>
-        <title>GTT Fences and Swizzling</title>
-!Idrivers/gpu/drm/i915/i915_gem_fence.c
-        <sect3>
-          <title>Global GTT Fence Handling</title>
-!Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
-        </sect3>
-        <sect3>
-          <title>Hardware Tiling and Swizzling Details</title>
-!Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
-        </sect3>
-      </sect2>
-      <sect2>
-        <title>Object Tiling IOCTLs</title>
-!Idrivers/gpu/drm/i915/i915_gem_tiling.c
-!Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
-      </sect2>
-      <sect2>
-        <title>Buffer Object Eviction</title>
-	<para>
-	  This section documents the interface functions for evicting buffer
-	  objects to make space available in the virtual gpu address spaces.
-	  Note that this is mostly orthogonal to shrinking buffer objects
-	  caches, which has the goal to make main memory (shared with the gpu
-	  through the unified memory architecture) available.
-	</para>
-!Idrivers/gpu/drm/i915/i915_gem_evict.c
-      </sect2>
-      <sect2>
-        <title>Buffer Object Memory Shrinking</title>
-	<para>
-	  This section documents the interface function for shrinking memory
-	  usage of buffer object caches. Shrinking is used to make main memory
-	  available.  Note that this is mostly orthogonal to evicting buffer
-	  objects, which has the goal to make space in gpu virtual address
-	  spaces.
-	</para>
-!Idrivers/gpu/drm/i915/i915_gem_shrinker.c
-      </sect2>
-    </sect1>
-    <sect1>
-      <title>GuC</title>
-      <sect2>
-        <title>GuC-specific firmware loader</title>
-!Pdrivers/gpu/drm/i915/intel_guc_loader.c GuC-specific firmware loader
-!Idrivers/gpu/drm/i915/intel_guc_loader.c
-      </sect2>
-      <sect2>
-        <title>GuC-based command submission</title>
-!Pdrivers/gpu/drm/i915/i915_guc_submission.c GuC-based command submission
-!Idrivers/gpu/drm/i915/i915_guc_submission.c
-      </sect2>
-      <sect2>
-        <title>GuC Firmware Layout</title>
-!Pdrivers/gpu/drm/i915/intel_guc_fwif.h GuC Firmware Layout
-      </sect2>
-    </sect1>
-
-    <sect1>
-      <title> Tracing </title>
-      <para>
-    This sections covers all things related to the tracepoints implemented in
-    the i915 driver.
-      </para>
-      <sect2>
-        <title> i915_ppgtt_create and i915_ppgtt_release </title>
-!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints
-      </sect2>
-      <sect2>
-        <title> i915_context_create and i915_context_free </title>
-!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints
-      </sect2>
-      <sect2>
-        <title> switch_mm </title>
-!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint
-      </sect2>
-    </sect1>
-
-  </chapter>
-!Cdrivers/gpu/drm/i915/i915_irq.c
-</part>
-
-<part id="vga_switcheroo">
-  <title>vga_switcheroo</title>
-  <partintro>
-!Pdrivers/gpu/vga/vga_switcheroo.c Overview
-  </partintro>
-
-  <chapter id="modes_of_use">
-    <title>Modes of Use</title>
-    <sect1>
-      <title>Manual switching and manual power control</title>
-!Pdrivers/gpu/vga/vga_switcheroo.c Manual switching and manual power control
-    </sect1>
-    <sect1>
-      <title>Driver power control</title>
-!Pdrivers/gpu/vga/vga_switcheroo.c Driver power control
-    </sect1>
-  </chapter>
-
-  <chapter id="api">
-    <title>API</title>
-    <sect1>
-      <title>Public functions</title>
-!Edrivers/gpu/vga/vga_switcheroo.c
-    </sect1>
-    <sect1>
-      <title>Public structures</title>
-!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler
-!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_ops
-    </sect1>
-    <sect1>
-      <title>Public constants</title>
-!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler_flags_t
-!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_id
-!Finclude/linux/vga_switcheroo.h vga_switcheroo_state
-    </sect1>
-    <sect1>
-      <title>Private structures</title>
-!Fdrivers/gpu/vga/vga_switcheroo.c vgasr_priv
-!Fdrivers/gpu/vga/vga_switcheroo.c vga_switcheroo_client
-    </sect1>
-  </chapter>
-
-  <chapter id="handlers">
-    <title>Handlers</title>
-    <sect1>
-      <title>apple-gmux Handler</title>
-!Pdrivers/platform/x86/apple-gmux.c Overview
-!Pdrivers/platform/x86/apple-gmux.c Interrupt
-      <sect2>
-        <title>Graphics mux</title>
-!Pdrivers/platform/x86/apple-gmux.c Graphics mux
-      </sect2>
-      <sect2>
-        <title>Power control</title>
-!Pdrivers/platform/x86/apple-gmux.c Power control
-      </sect2>
-      <sect2>
-        <title>Backlight control</title>
-!Pdrivers/platform/x86/apple-gmux.c Backlight control
-      </sect2>
-      <sect2>
-        <title>Public functions</title>
-!Iinclude/linux/apple-gmux.h
-      </sect2>
-    </sect1>
-  </chapter>
-
-!Cdrivers/gpu/vga/vga_switcheroo.c
-!Cinclude/linux/vga_switcheroo.h
-!Cdrivers/platform/x86/apple-gmux.c
-</part>
-
-</book>
diff --git a/MAINTAINERS b/MAINTAINERS
index ce9c23dd02c6..dddf1944999a 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -3858,7 +3858,6 @@  F:	Documentation/devicetree/bindings/display/
 F:	Documentation/devicetree/bindings/gpu/
 F:	Documentation/devicetree/bindings/video/
 F:	Documentation/gpu/
-F:	Documentation/DocBook/gpu.*
 F:	include/drm/
 F:	include/uapi/drm/