@@ -455,42 +455,6 @@ bool intel_can_enable_sagv(struct drm_i915_private *i915,
return bw_state->pipe_sagv_reject == 0;
}
-static int intel_compute_sagv_mask(struct intel_atomic_state *state)
-{
- struct intel_display *display = to_intel_display(state);
- struct drm_i915_private *i915 = to_i915(state->base.dev);
- struct intel_crtc *crtc;
- struct intel_crtc_state *new_crtc_state;
- int i;
-
- for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
- struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
-
- /*
- * We store use_sagv_wm in the crtc state rather than relying on
- * that bw state since we have no convenient way to get at the
- * latter from the plane commit hooks (especially in the legacy
- * cursor case).
- *
- * drm_atomic_check_only() gets upset if we pull more crtcs
- * into the state, so we have to calculate this based on the
- * individual intel_crtc_can_enable_sagv() rather than
- * the overall intel_can_enable_sagv(). Otherwise the
- * crtcs not included in the commit would not switch to the
- * SAGV watermarks when we are about to enable SAGV, and that
- * would lead to underruns. This does mean extra power draw
- * when only a subset of the crtcs are blocking SAGV as the
- * other crtcs can't be allowed to use the more optimal
- * normal (ie. non-SAGV) watermarks.
- */
- pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(display) &&
- DISPLAY_VER(i915) >= 12 &&
- intel_crtc_can_enable_sagv(new_crtc_state);
- }
-
- return 0;
-}
-
static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
u16 start, u16 end)
{
@@ -3022,6 +2986,7 @@ intel_program_dpkgc_latency(struct intel_atomic_state *state)
static int
skl_compute_wm(struct intel_atomic_state *state)
{
+ struct intel_display *display = to_intel_display(state);
struct intel_crtc *crtc;
struct intel_crtc_state __maybe_unused *new_crtc_state;
int ret, i;
@@ -3036,16 +3001,35 @@ skl_compute_wm(struct intel_atomic_state *state)
if (ret)
return ret;
- ret = intel_compute_sagv_mask(state);
- if (ret)
- return ret;
-
/*
* skl_compute_ddb() will have adjusted the final watermarks
* based on how much ddb is available. Now we can actually
* check if the final watermarks changed.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
+ struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
+
+ /*
+ * We store use_sagv_wm in the crtc state rather than relying on
+ * that bw state since we have no convenient way to get at the
+ * latter from the plane commit hooks (especially in the legacy
+ * cursor case).
+ *
+ * drm_atomic_check_only() gets upset if we pull more crtcs
+ * into the state, so we have to calculate this based on the
+ * individual intel_crtc_can_enable_sagv() rather than
+ * the overall intel_can_enable_sagv(). Otherwise the
+ * crtcs not included in the commit would not switch to the
+ * SAGV watermarks when we are about to enable SAGV, and that
+ * would lead to underruns. This does mean extra power draw
+ * when only a subset of the crtcs are blocking SAGV as the
+ * other crtcs can't be allowed to use the more optimal
+ * normal (ie. non-SAGV) watermarks.
+ */
+ pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(display) &&
+ DISPLAY_VER(display) >= 12 &&
+ intel_crtc_can_enable_sagv(new_crtc_state);
+
ret = skl_wm_add_affected_planes(state, crtc);
if (ret)
return ret;