From patchwork Mon Aug 9 03:29:19 2021 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Zeng Guang X-Patchwork-Id: 12425329 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-11.8 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_PATCH,MAILING_LIST_MULTI,SPF_HELO_NONE, SPF_PASS,URIBL_BLOCKED,USER_AGENT_GIT autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 066EDC4338F for ; Mon, 9 Aug 2021 03:54:32 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id D6A106101E for ; Mon, 9 Aug 2021 03:54:31 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S232824AbhHIDyu (ORCPT ); Sun, 8 Aug 2021 23:54:50 -0400 Received: from mga11.intel.com ([192.55.52.93]:3427 "EHLO mga11.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S231459AbhHIDyt (ORCPT ); Sun, 8 Aug 2021 23:54:49 -0400 X-IronPort-AV: E=McAfee;i="6200,9189,10070"; a="211513539" X-IronPort-AV: E=Sophos;i="5.84,305,1620716400"; d="scan'208";a="211513539" Received: from fmsmga008.fm.intel.com ([10.253.24.58]) by fmsmga102.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 08 Aug 2021 20:54:29 -0700 X-IronPort-AV: E=Sophos;i="5.84,305,1620716400"; d="scan'208";a="483122375" Received: from arthur-vostro-3668.sh.intel.com ([10.239.13.1]) by fmsmga008-auth.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 08 Aug 2021 20:54:24 -0700 From: Zeng Guang To: Paolo Bonzini , Sean Christopherson , Vitaly Kuznetsov , Wanpeng Li , Jim Mattson , Joerg Roedel , kvm@vger.kernel.org, Dave Hansen , Tony Luck , Kan Liang , Thomas Gleixner , Ingo Molnar , Borislav Petkov , "H. Peter Anvin" , Kim Phillips , Jarkko Sakkinen , Jethro Beekman , Kai Huang Cc: x86@kernel.org, linux-kernel@vger.kernel.org, Robert Hu , Gao Chao , Zeng Guang Subject: [PATCH v4 0/6] IPI virtualization support for VM Date: Mon, 9 Aug 2021 11:29:19 +0800 Message-Id: <20210809032925.3548-1-guang.zeng@intel.com> X-Mailer: git-send-email 2.17.1 Precedence: bulk List-ID: X-Mailing-List: kvm@vger.kernel.org Current IPI process in guest VM will virtualize the writing to interrupt command register(ICR) of the local APIC which will cause VM-exit anyway on source vCPU. Frequent VM-exit could induce much overhead accumulated if running IPI intensive task. IPI virtualization as a new VT-x feature targets to eliminate VM-exits when issuing IPI on source vCPU. It introduces a new VM-execution control - "IPI virtualization"(bit4) in the tertiary processor-based VM-execution controls and a new data structure - "PID-pointer table address" and "Last PID-pointer index" referenced by the VMCS. When "IPI virtualization" is enabled, processor emulates following kind of writes to APIC registers that would send IPIs, moreover without causing VM-exits. - Memory-mapped ICR writes - MSR-mapped ICR writes - SENDUIPI execution This patch series implements IPI virtualization support in KVM. Patches 1-4 add tertiary processor-based VM-execution support framework. Patch 5 implements interrupt dispatch support in x2APIC mode with APIC-write VM exit. In previous platform, no CPU would produce APIC-write VM exit with exit qualification 300H when the "virtual x2APIC mode" VM-execution control was 1. Patch 6 implement IPI virtualization related function including feature enabling through tertiary processor-based VM-execution in various scenarios of VMCS configuration, PID table setup in vCPU creation and vCPU block consideration. Document for IPI virtualization is now available at the latest "Intel Architecture Instruction Set Extensions Programming Reference". Document Link: https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html We did experiment to measure average time sending IPI from source vCPU to the target vCPU completing the IPI handling by kvm unittest w/ and w/o IPI virtualization. When IPI virtualization enabled, it will reduce 22.21% and 15.98% cycles consuming in xAPIC mode and x2APIC mode respectively. KVM unittest:vmexit/ipi, 2 vCPU, AP was modified to run in idle loop instead of halt to ensure no VM exit impact on target vCPU. Cycles of IPI xAPIC mode x2APIC mode test w/o IPIv w/ IPIv w/o IPIv w/ IPIv 1 6106 4816 4265 3768 2 6244 4656 4404 3546 3 6165 4658 4233 3474 4 5992 4710 4363 3430 5 6083 4741 4215 3551 6 6238 4904 4304 3547 7 6164 4617 4263 3709 8 5984 4763 4518 3779 9 5931 4712 4645 3667 10 5955 4530 4332 3724 11 5897 4673 4283 3569 12 6140 4794 4178 3598 13 6183 4728 4363 3628 14 5991 4994 4509 3842 15 5866 4665 4520 3739 16 6032 4654 4229 3701 17 6050 4653 4185 3726 18 6004 4792 4319 3746 19 5961 4626 4196 3392 20 6194 4576 4433 3760 Average cycles 6059 4713.1 4337.85 3644.8 %Reduction -22.21% -15.98% -------------------------------------- IPI microbenchmark: (https://lore.kernel.org/kvm/20171219085010.4081-1-ynorov@caviumnetworks.com) 2 vCPUs, 1:1 pin vCPU to pCPU, guest VM runs with idle=poll, x2APIC mode Result with IPIv enabled: Dry-run: 0, 272798 ns Self-IPI: 5094123, 11114037 ns Normal IPI: 131697087, 173321200 ns Broadcast IPI: 0, 155649075 ns Broadcast lock: 0, 161518031 ns Result with IPIv disabled: Dry-run: 0, 272766 ns Self-IPI: 5091788, 11123699 ns Normal IPI: 145215772, 174558920 ns Broadcast IPI: 0, 175785384 ns Broadcast lock: 0, 149076195 ns As IPIv can benefit unicast IPI to other CPU, Normal IPI test case gain about 9.73% time saving on average out of 15 test runs when IPIv is enabled. Normal IPI statistics (unit:ns): test w/o IPIv w/ IPIv 1 153346049 140907046 2 147218648 141660618 3 145215772 117890672 4 146621682 136430470 5 144821472 136199421 6 144704378 131676928 7 141403224 131697087 8 144775766 125476250 9 140658192 137263330 10 144768626 138593127 11 145166679 131946752 12 145020451 116852889 13 148161353 131406280 14 148378655 130174353 15 148903652 127969674 Average time 145944306.6 131742993.1 ns %Reduction -9.73% -------------------------------------- hackbench: 8 vCPUs, guest VM free run, x2APIC mode ./hackbench -p -l 100000 w/o IPIv w/ IPIv Time 91.887 74.605 %Reduction -18.808% 96 vCPUs, guest VM free run, x2APIC mode ./hackbench -p -l 1000000 w/o IPIv w/ IPIv Time 287.504 235.185 %Reduction -18.198% -------------------------------------- v3 -> v4: 1. Refine code style of patch 2 2. Move tertiary control shadow build into patch 3 3. Make vmx_tertiary_exec_control to be static function v2 -> v3: 1. Misc change on tertiary execution control definition and capability setup 2. Alternative to get tertiary execution control configuration v1 -> v2: 1. Refine the IPIv enabling logic for VM. Remove ipiv_active definition per vCPU. Gao Chao (1): KVM: VMX: enable IPI virtualization Robert Hoo (4): x86/feat_ctl: Add new VMX feature, Tertiary VM-Execution control KVM: VMX: Extend BUILD_CONTROLS_SHADOW macro to support 64-bit variation KVM: VMX: Detect Tertiary VM-Execution control when setup VMCS config KVM: VMX: dump_vmcs() reports tertiary_exec_control field as well Zeng Guang (1): KVM: x86: Support interrupt dispatch in x2APIC mode with APIC-write VM exit arch/x86/include/asm/msr-index.h | 1 + arch/x86/include/asm/vmx.h | 11 +++ arch/x86/include/asm/vmxfeatures.h | 5 +- arch/x86/kernel/cpu/feat_ctl.c | 11 ++- arch/x86/kvm/lapic.c | 9 ++- arch/x86/kvm/vmx/capabilities.h | 14 ++++ arch/x86/kvm/vmx/evmcs.c | 2 + arch/x86/kvm/vmx/evmcs.h | 1 + arch/x86/kvm/vmx/posted_intr.c | 22 ++++-- arch/x86/kvm/vmx/vmcs.h | 1 + arch/x86/kvm/vmx/vmx.c | 114 +++++++++++++++++++++++++++-- arch/x86/kvm/vmx/vmx.h | 55 ++++++++------ 12 files changed, 208 insertions(+), 38 deletions(-)