Message ID | 20230301210928.565562-10-ricarkol@google.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Implement Eager Page Splitting for ARM | expand |
On 3/2/23 05:09, Ricardo Koller wrote: > Split huge pages eagerly when enabling dirty logging. The goal is to > avoid doing it while faulting on write-protected pages, which > negatively impacts guest performance. > > A memslot marked for dirty logging is split in 1GB pieces at a time. > This is in order to release the mmu_lock and give other kernel threads > the opportunity to run, and also in order to allocate enough pages to > split a 1GB range worth of huge pages (or a single 1GB huge page). > Note that these page allocations can fail, so eager page splitting is > best-effort. This is not a correctness issue though, as huge pages > can still be split on write-faults. > > The benefits of eager page splitting are the same as in x86, added > with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by > the TDP MMU when dirty logging is enabled"). For example, when running > dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU, > 50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access > all of their memory after dirty logging is enabled decreased by 44% > from 2.58s to 1.42s. > > Signed-off-by: Ricardo Koller <ricarkol@google.com> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> > --- > arch/arm64/kvm/mmu.c | 118 ++++++++++++++++++++++++++++++++++++++++++- > 1 file changed, 116 insertions(+), 2 deletions(-) > > diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c > index e2ada6588017..20458251c85e 100644 > --- a/arch/arm64/kvm/mmu.c > +++ b/arch/arm64/kvm/mmu.c > @@ -31,14 +31,21 @@ static phys_addr_t hyp_idmap_vector; > > static unsigned long io_map_base; > > -static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) > +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, > + phys_addr_t size) > { > - phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); > phys_addr_t boundary = ALIGN_DOWN(addr + size, size); > > return (boundary - 1 < end - 1) ? boundary : end; > } > > +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) > +{ > + phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); > + > + return __stage2_range_addr_end(addr, end, size); > +} > + > /* > * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, > * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, > @@ -71,6 +78,77 @@ static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, > return ret; > } > > +static bool need_topup_split_page_cache_or_resched(struct kvm *kvm, uint64_t min) > +{ > + struct kvm_mmu_memory_cache *cache; > + > + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) > + return true; > + > + cache = &kvm->arch.mmu.split_page_cache; > + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; > +} > + > +/* > + * Get the maximum number of page-tables needed to split a range of > + * blocks into PAGE_SIZE PTEs. It assumes the range is already mapped > + * at the PMD level, or at the PUD level if allowed. > + */ > +static int kvm_mmu_split_nr_page_tables(u64 range) > +{ > + int n = 0; > + > + if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) > + n += DIV_ROUND_UP_ULL(range, PUD_SIZE); > + n += DIV_ROUND_UP_ULL(range, PMD_SIZE); > + return n; > +} > + > +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, > + phys_addr_t end) > +{ > + struct kvm_mmu_memory_cache *cache; > + struct kvm_pgtable *pgt; > + int ret; > + u64 next; > + u64 chunk_size = kvm->arch.mmu.split_page_chunk_size; > + int cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); > + > + if (chunk_size == 0) > + return 0; > + > + lockdep_assert_held_write(&kvm->mmu_lock); > + > + cache = &kvm->arch.mmu.split_page_cache; > + > + do { > + if (need_topup_split_page_cache_or_resched(kvm, > + cache_capacity)) { > + write_unlock(&kvm->mmu_lock); > + cond_resched(); > + /* Eager page splitting is best-effort. */ > + ret = __kvm_mmu_topup_memory_cache(cache, > + cache_capacity, > + cache_capacity); > + write_lock(&kvm->mmu_lock); > + if (ret) > + break; > + } > + > + pgt = kvm->arch.mmu.pgt; > + if (!pgt) > + return -EINVAL; > + > + next = __stage2_range_addr_end(addr, end, chunk_size); > + ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, > + cache, cache_capacity); > + if (ret) > + break; > + } while (addr = next, addr != end); > + > + return ret; > +} > + > #define stage2_apply_range_resched(kvm, addr, end, fn) \ > stage2_apply_range(kvm, addr, end, fn, true) > > @@ -772,6 +850,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t > void kvm_uninit_stage2_mmu(struct kvm *kvm) > { > kvm_free_stage2_pgd(&kvm->arch.mmu); > + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); > } > > static void stage2_unmap_memslot(struct kvm *kvm, > @@ -999,6 +1078,31 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, > stage2_wp_range(&kvm->arch.mmu, start, end); > } > > +/** > + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE > + * pages for memory slot > + * @kvm: The KVM pointer > + * @slot: The memory slot to split > + * > + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, > + * serializing operations for VM memory regions. > + */ > +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) > +{ > + struct kvm_memslots *slots = kvm_memslots(kvm); > + struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); > + phys_addr_t start, end; > + > + lockdep_assert_held(&kvm->slots_lock); > + > + start = memslot->base_gfn << PAGE_SHIFT; > + end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; > + > + write_lock(&kvm->mmu_lock); > + kvm_mmu_split_huge_pages(kvm, start, end); > + write_unlock(&kvm->mmu_lock); > +} > + > /* > * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected > * dirty pages. > @@ -1790,6 +1894,16 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, > return; > > kvm_mmu_wp_memory_region(kvm, new->id); > + kvm_mmu_split_memory_region(kvm, new->id); > + } else { > + /* > + * Free any leftovers from the eager page splitting cache. Do > + * this when deleting, moving, disabling dirty logging, or > + * creating the memslot (a nop). Doing it for deletes makes > + * sure we don't leak memory, and there's no need to keep the > + * cache around for any of the other cases. > + */ > + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); > } > } >
diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c index e2ada6588017..20458251c85e 100644 --- a/arch/arm64/kvm/mmu.c +++ b/arch/arm64/kvm/mmu.c @@ -31,14 +31,21 @@ static phys_addr_t hyp_idmap_vector; static unsigned long io_map_base; -static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, + phys_addr_t size) { - phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); phys_addr_t boundary = ALIGN_DOWN(addr + size, size); return (boundary - 1 < end - 1) ? boundary : end; } +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); + + return __stage2_range_addr_end(addr, end, size); +} + /* * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, @@ -71,6 +78,77 @@ static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, return ret; } +static bool need_topup_split_page_cache_or_resched(struct kvm *kvm, uint64_t min) +{ + struct kvm_mmu_memory_cache *cache; + + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) + return true; + + cache = &kvm->arch.mmu.split_page_cache; + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; +} + +/* + * Get the maximum number of page-tables needed to split a range of + * blocks into PAGE_SIZE PTEs. It assumes the range is already mapped + * at the PMD level, or at the PUD level if allowed. + */ +static int kvm_mmu_split_nr_page_tables(u64 range) +{ + int n = 0; + + if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) + n += DIV_ROUND_UP_ULL(range, PUD_SIZE); + n += DIV_ROUND_UP_ULL(range, PMD_SIZE); + return n; +} + +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, + phys_addr_t end) +{ + struct kvm_mmu_memory_cache *cache; + struct kvm_pgtable *pgt; + int ret; + u64 next; + u64 chunk_size = kvm->arch.mmu.split_page_chunk_size; + int cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); + + if (chunk_size == 0) + return 0; + + lockdep_assert_held_write(&kvm->mmu_lock); + + cache = &kvm->arch.mmu.split_page_cache; + + do { + if (need_topup_split_page_cache_or_resched(kvm, + cache_capacity)) { + write_unlock(&kvm->mmu_lock); + cond_resched(); + /* Eager page splitting is best-effort. */ + ret = __kvm_mmu_topup_memory_cache(cache, + cache_capacity, + cache_capacity); + write_lock(&kvm->mmu_lock); + if (ret) + break; + } + + pgt = kvm->arch.mmu.pgt; + if (!pgt) + return -EINVAL; + + next = __stage2_range_addr_end(addr, end, chunk_size); + ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, + cache, cache_capacity); + if (ret) + break; + } while (addr = next, addr != end); + + return ret; +} + #define stage2_apply_range_resched(kvm, addr, end, fn) \ stage2_apply_range(kvm, addr, end, fn, true) @@ -772,6 +850,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t void kvm_uninit_stage2_mmu(struct kvm *kvm) { kvm_free_stage2_pgd(&kvm->arch.mmu); + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); } static void stage2_unmap_memslot(struct kvm *kvm, @@ -999,6 +1078,31 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, stage2_wp_range(&kvm->arch.mmu, start, end); } +/** + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE + * pages for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to split + * + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); + phys_addr_t start, end; + + lockdep_assert_held(&kvm->slots_lock); + + start = memslot->base_gfn << PAGE_SHIFT; + end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + write_lock(&kvm->mmu_lock); + kvm_mmu_split_huge_pages(kvm, start, end); + write_unlock(&kvm->mmu_lock); +} + /* * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected * dirty pages. @@ -1790,6 +1894,16 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, return; kvm_mmu_wp_memory_region(kvm, new->id); + kvm_mmu_split_memory_region(kvm, new->id); + } else { + /* + * Free any leftovers from the eager page splitting cache. Do + * this when deleting, moving, disabling dirty logging, or + * creating the memslot (a nop). Doing it for deletes makes + * sure we don't leak memory, and there's no need to keep the + * cache around for any of the other cases. + */ + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); } }
Split huge pages eagerly when enabling dirty logging. The goal is to avoid doing it while faulting on write-protected pages, which negatively impacts guest performance. A memslot marked for dirty logging is split in 1GB pieces at a time. This is in order to release the mmu_lock and give other kernel threads the opportunity to run, and also in order to allocate enough pages to split a 1GB range worth of huge pages (or a single 1GB huge page). Note that these page allocations can fail, so eager page splitting is best-effort. This is not a correctness issue though, as huge pages can still be split on write-faults. The benefits of eager page splitting are the same as in x86, added with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled"). For example, when running dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU, 50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access all of their memory after dirty logging is enabled decreased by 44% from 2.58s to 1.42s. Signed-off-by: Ricardo Koller <ricarkol@google.com> --- arch/arm64/kvm/mmu.c | 118 ++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 116 insertions(+), 2 deletions(-)