Message ID | 20230831083020.2187109-20-zhaotianrui@loongson.cn (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Add KVM LoongArch support | expand |
On 8/31/23 16:30, Tianrui Zhao wrote: > Implement LoongArch kvm mmu, it is used to switch gpa to hpa when > guest exit because of address translation exception. This patch > implement allocate gpa page table, search gpa from it and flush guest > gpa in the table. > > Reviewed-by: Bibo Mao <maobibo@loongson.cn> > Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> > --- > arch/loongarch/kvm/mmu.c | 678 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 678 insertions(+) > create mode 100644 arch/loongarch/kvm/mmu.c > > diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c > new file mode 100644 > index 0000000000..4bb20393f4 > --- /dev/null > +++ b/arch/loongarch/kvm/mmu.c > @@ -0,0 +1,678 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited > + */ > + > +#include <linux/highmem.h> > +#include <linux/page-flags.h> > +#include <linux/kvm_host.h> > +#include <linux/uaccess.h> > +#include <asm/mmu_context.h> > +#include <asm/pgalloc.h> > +#include <asm/tlb.h> > + > +/* > + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels > + * for which pages need to be cached. > + */ > +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) > + > +static inline void kvm_set_pte(pte_t *ptep, pte_t pteval) > +{ > + *ptep = pteval; > +} > + > +/** > + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. > + * > + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical > + * to host physical page mappings. > + * > + * Returns: Pointer to new KVM GPA page directory. > + * NULL on allocation failure. > + */ > +pgd_t *kvm_pgd_alloc(void) > +{ > + pgd_t *pgd; > + > + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); > + if (pgd) > + pgd_init((void *)pgd); > + > + return pgd; > +} > + > +/* > + * Caller must hold kvm->mm_lock > + * > + * Walk the page tables of kvm to find the PTE corresponding to the > + * address @addr. If page tables don't exist for @addr, they will be created > + * from the MMU cache if @cache is not NULL. > + */ > +static pte_t *kvm_populate_gpa(struct kvm *kvm, > + struct kvm_mmu_memory_cache *cache, > + unsigned long addr) > +{ > + pgd_t *pgd; > + p4d_t *p4d; > + pud_t *pud; > + pmd_t *pmd; > + > + pgd = kvm->arch.pgd + pgd_index(addr); > + p4d = p4d_offset(pgd, addr); > + if (p4d_none(*p4d)) { > + if (!cache) > + return NULL; > + > + pud = kvm_mmu_memory_cache_alloc(cache); > + pud_init(pud); > + p4d_populate(NULL, p4d, pud); > + } > + > + pud = pud_offset(p4d, addr); > + if (pud_none(*pud)) { > + if (!cache) > + return NULL; > + pmd = kvm_mmu_memory_cache_alloc(cache); > + pmd_init(pmd); > + pud_populate(NULL, pud, pmd); > + } > + > + pmd = pmd_offset(pud, addr); > + if (pmd_none(*pmd)) { > + pte_t *pte; > + > + if (!cache) > + return NULL; > + pte = kvm_mmu_memory_cache_alloc(cache); > + clear_page(pte); > + pmd_populate_kernel(NULL, pmd, pte); > + } > + > + return pte_offset_kernel(pmd, addr); > +} > + > +typedef int (*kvm_pte_ops)(pte_t *pte); > + > +struct kvm_ptw_ctx { > + kvm_pte_ops ops; > + int need_flush; > +}; > + > +static int kvm_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, > + struct kvm_ptw_ctx *context) > +{ > + pte_t *pte; > + unsigned long next, start; > + int ret; > + > + ret = 0; > + start = addr; > + pte = pte_offset_kernel(pmd, addr); > + do { > + next = addr + PAGE_SIZE; > + if (!pte_present(*pte)) > + continue; > + > + ret |= context->ops(pte); > + } while (pte++, addr = next, addr != end); > + > + if (context->need_flush && (start + PMD_SIZE == end)) { > + pte = pte_offset_kernel(pmd, 0); > + pmd_clear(pmd); > + free_page((unsigned long)pte); > + } > + > + return ret; > +} > + > +static int kvm_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, > + struct kvm_ptw_ctx *context) > +{ > + pmd_t *pmd; > + unsigned long next, start; > + int ret; > + > + ret = 0; > + start = addr; > + pmd = pmd_offset(pud, addr); > + do { > + next = pmd_addr_end(addr, end); > + if (!pmd_present(*pmd)) > + continue; > + > + ret |= kvm_ptw_pte(pmd, addr, next, context); > + } while (pmd++, addr = next, addr != end); > + > +#ifndef __PAGETABLE_PMD_FOLDED > + if (context->need_flush && (start + PUD_SIZE == end)) { > + pmd = pmd_offset(pud, 0); > + pud_clear(pud); > + free_page((unsigned long)pmd); > + } > +#endif > + > + return ret; > +} > + > +static int kvm_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, > + struct kvm_ptw_ctx *context) > +{ > + p4d_t *p4d; > + pud_t *pud; > + int ret = 0; > + unsigned long next; > +#ifndef __PAGETABLE_PUD_FOLDED > + unsigned long start = addr; > +#endif > + > + p4d = p4d_offset(pgd, addr); > + pud = pud_offset(p4d, addr); > + do { > + next = pud_addr_end(addr, end); > + if (!pud_present(*pud)) > + continue; > + > + ret |= kvm_ptw_pmd(pud, addr, next, context); > + } while (pud++, addr = next, addr != end); > + > +#ifndef __PAGETABLE_PUD_FOLDED > + if (context->need_flush && (start + PGDIR_SIZE == end)) { > + pud = pud_offset(p4d, 0); > + p4d_clear(p4d); > + free_page((unsigned long)pud); > + } > +#endif > + > + return ret; > +} > + > +static int kvm_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, > + struct kvm_ptw_ctx *context) > +{ > + unsigned long next; > + int ret; > + > + ret = 0; > + if (addr > end - 1) > + return ret; > + pgd = pgd + pgd_index(addr); > + do { > + next = pgd_addr_end(addr, end); > + if (!pgd_present(*pgd)) > + continue; > + > + ret |= kvm_ptw_pud(pgd, addr, next, context); > + } while (pgd++, addr = next, addr != end); > + > + return ret; > +} > + > +/* > + * clear pte entry > + */ > +static int kvm_flush_pte(pte_t *pte) > +{ > + kvm_set_pte(pte, __pte(0)); > + return 1; > +} > + > +/** > + * kvm_flush_range() - Flush a range of guest physical addresses. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Flushes a range of GPA mappings from the GPA page tables. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether its safe to remove the top level page directory because > + * all lower levels have been removed. > + */ > +static bool kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > +{ > + struct kvm_ptw_ctx ctx; > + > + ctx.ops = kvm_flush_pte; > + ctx.need_flush = 1; > + > + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT, &ctx); > +} > + > +/* > + * kvm_mkclean_pte > + * Mark a range of guest physical address space clean (writes fault) in the VM's > + * GPA page table to allow dirty page tracking. > + */ > +static int kvm_mkclean_pte(pte_t *pte) > +{ > + pte_t val; > + > + val = *pte; > + if (pte_dirty(val)) { > + *pte = pte_mkclean(val); > + return 1; > + } > + return 0; > +} > + > +/* > + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Make a range of GPA mappings clean so that guest writes will fault and > + * trigger dirty page logging. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether any GPA mappings were modified, which would require > + * derived mappings (GVA page tables & TLB enties) to be > + * invalidated. > + */ > +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > +{ > + struct kvm_ptw_ctx ctx; > + > + ctx.ops = kvm_mkclean_pte; > + ctx.need_flush = 0; > + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT, &ctx); > +} > + > +/* > + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages > + * @kvm: The KVM pointer > + * @slot: The memory slot associated with mask > + * @gfn_offset: The gfn offset in memory slot > + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory > + * slot to be write protected > + * > + * Walks bits set in mask write protects the associated pte's. Caller must > + * acquire @kvm->mmu_lock. > + */ > +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, > + struct kvm_memory_slot *slot, > + gfn_t gfn_offset, unsigned long mask) > +{ > + gfn_t base_gfn = slot->base_gfn + gfn_offset; > + gfn_t start = base_gfn + __ffs(mask); One extra space after the plus sign? > + gfn_t end = base_gfn + __fls(mask) + 1; > + > + kvm_mkclean_gpa_pt(kvm, start, end); > +} > + > +void kvm_arch_commit_memory_region(struct kvm *kvm, > + struct kvm_memory_slot *old, > + const struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + int needs_flush; > + > + /* > + * If dirty page logging is enabled, write protect all pages in the slot > + * ready for dirty logging. > + * > + * There is no need to do this in any of the following cases: > + * CREATE: No dirty mappings will already exist. > + * MOVE/DELETE: The old mappings will already have been cleaned up by > + * kvm_arch_flush_shadow_memslot() > + */ > + if (change == KVM_MR_FLAGS_ONLY && > + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && > + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { > + spin_lock(&kvm->mmu_lock); > + /* Write protect GPA page table entries */ > + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, > + new->base_gfn + new->npages); > + if (needs_flush) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > + } > +} > + > +void kvm_arch_flush_shadow_all(struct kvm *kvm) > +{ > + /* Flush whole GPA */ > + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > + /* Flush vpid for each vCPU individually */ > + kvm_flush_remote_tlbs(kvm); > +} > + > +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, > + struct kvm_memory_slot *slot) > +{ > + int ret; > + > + /* > + * The slot has been made invalid (ready for moving or deletion), so we > + * need to ensure that it can no longer be accessed by any guest vCPUs. > + */ > + spin_lock(&kvm->mmu_lock); > + /* Flush slot from GPA */ > + ret = kvm_flush_range(kvm, slot->base_gfn, > + slot->base_gfn + slot->npages); > + /* Let implementation do the rest */ > + if (ret) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > +} > + > +void _kvm_destroy_mm(struct kvm *kvm) > +{ > + /* It should always be safe to remove after flushing the whole range */ > + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > + pgd_free(NULL, kvm->arch.pgd); > + kvm->arch.pgd = NULL; > +} > + > +/* > + * Mark a range of guest physical address space old (all accesses fault) in the > + * VM's GPA page table to allow detection of commonly used pages. > + */ > +static int kvm_mkold_pte(pte_t *pte) > +{ > + pte_t val; > + > + val = *pte; "pte_t val = *pte" would be enough... You may want to check the entire patch series for simplifications like this. > + if (pte_young(val)) { > + *pte = pte_mkold(val); > + return 1; > + } > + return 0; > +} > + > +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + return kvm_flush_range(kvm, range->start, range->end); > +} > + > +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t hva_pte = range->pte; This has become "range->arg.pte" since commit 3e1efe2b67d3 ("KVM: Wrap kvm_{gfn,hva}_range.pte in a per-action union") which is already inside linux-next. > + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); > + pte_t old_pte; > + > + if (!ptep) > + return false; > + > + /* Mapping may need adjusting depending on memslot flags */ > + old_pte = *ptep; > + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) > + hva_pte = pte_mkclean(hva_pte); > + else if (range->slot->flags & KVM_MEM_READONLY) > + hva_pte = pte_wrprotect(hva_pte); > + > + kvm_set_pte(ptep, hva_pte); > + > + /* Replacing an absent or old page doesn't need flushes */ > + if (!pte_present(old_pte) || !pte_young(old_pte)) > + return false; > + > + /* Pages swapped, aged, moved, or cleaned require flushes */ > + return !pte_present(hva_pte) || > + !pte_young(hva_pte) || > + pte_pfn(old_pte) != pte_pfn(hva_pte) || > + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); > +} > + > +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + struct kvm_ptw_ctx ctx; > + > + ctx.ops = kvm_mkold_pte; > + ctx.need_flush = 0; > + return kvm_ptw_pgd(kvm->arch.pgd, range->start << PAGE_SHIFT, > + range->end << PAGE_SHIFT, &ctx); > +} > + > +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); > + > + if (ptep && pte_present(*ptep) && pte_young(*ptep)) > + return true; > + > + return false; > +} > + > +/** > + * kvm_map_page_fast() - Fast path GPA fault handler. > + * @vcpu: vCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Perform fast path GPA fault handling, doing all that can be done without > + * calling into KVM. This handles marking old pages young (for idle page > + * tracking), and dirtying of clean pages (for dirty page logging). > + * > + * Returns: 0 on success, in which case we can update derived mappings and > + * resume guest execution. > + * -EFAULT on failure due to absent GPA mapping or write to > + * read-only page, in which case KVM must be consulted. > + */ > +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, > + bool write) > +{ > + struct kvm *kvm = vcpu->kvm; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + pte_t *ptep; > + kvm_pfn_t pfn = 0; > + bool pfn_valid = false, pfn_dirty = false; > + int ret = 0; > + > + spin_lock(&kvm->mmu_lock); > + > + /* Fast path - just check GPA page table for an existing entry */ > + ptep = kvm_populate_gpa(kvm, NULL, gpa); > + if (!ptep || !pte_present(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track access to pages marked old */ > + if (!pte_young(*ptep)) { > + kvm_set_pte(ptep, pte_mkyoung(*ptep)); > + pfn = pte_pfn(*ptep); > + pfn_valid = true; > + /* call kvm_set_pfn_accessed() after unlock */ > + } > + if (write && !pte_dirty(*ptep)) { > + if (!pte_write(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track dirtying of writeable pages */ > + kvm_set_pte(ptep, pte_mkdirty(*ptep)); > + pfn = pte_pfn(*ptep); > + pfn_dirty = true; > + } > + > +out: > + spin_unlock(&kvm->mmu_lock); > + if (pfn_valid) > + kvm_set_pfn_accessed(pfn); > + if (pfn_dirty) { > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + return ret; > +} > + > +/** > + * kvm_map_page() - Map a guest physical page. > + * @vcpu: vCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Handle GPA faults by creating a new GPA mapping (or updating an existing > + * one). > + * > + * This takes care of marking pages young or dirty (idle/dirty page tracking), > + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page > + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the > + * caller. > + * > + * Returns: 0 on success > + * -EFAULT if there is no memory region at @gpa or a write was > + * attempted to a read-only memory region. This is usually handled > + * as an MMIO access. > + */ > +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + bool writeable; > + int srcu_idx, err = 0, retry_no = 0; > + unsigned long hva; > + unsigned long mmu_seq; > + unsigned long prot_bits; > + pte_t *ptep, new_pte; > + kvm_pfn_t pfn; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + struct vm_area_struct *vma; > + struct kvm *kvm = vcpu->kvm; > + struct kvm_memory_slot *memslot; > + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; > + > + /* Try the fast path to handle old / clean pages */ > + srcu_idx = srcu_read_lock(&kvm->srcu); > + err = kvm_map_page_fast(vcpu, gpa, write); > + if (!err) > + goto out; > + > + memslot = gfn_to_memslot(kvm, gfn); > + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); > + if (kvm_is_error_hva(hva) || (write && !writeable)) > + goto out; > + > + mmap_read_lock(current->mm); > + vma = find_vma_intersection(current->mm, hva, hva + 1); > + if (unlikely(!vma)) { > + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); > + mmap_read_unlock(current->mm); > + err = -EFAULT; > + goto out; > + } > + mmap_read_unlock(current->mm); > + > + /* We need a minimum of cached pages ready for page table creation */ > + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); > + if (err) > + goto out; > + > +retry: > + /* > + * Used to check for invalidations in progress, of the pfn that is > + * returned by pfn_to_pfn_prot below. > + */ > + mmu_seq = kvm->mmu_invalidate_seq; > + /* > + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in > + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't > + * risk the page we get a reference to getting unmapped before we have a > + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. > + * > + * This smp_rmb() pairs with the effective smp_wmb() of the combination > + * of the pte_unmap_unlock() after the PTE is zapped, and the > + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before > + * mmu_invalidate_seq is incremented. > + */ > + smp_rmb(); > + > + /* Slow path - ask KVM core whether we can access this GPA */ > + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); > + if (is_error_noslot_pfn(pfn)) { > + err = -EFAULT; > + goto out; > + } > + > + /* Check if an invalidation has taken place since we got pfn */ > + if (mmu_invalidate_retry(kvm, mmu_seq)) { > + /* Wrong indentation? > + * This can happen when mappings are changed asynchronously, but > + * also synchronously if a COW is triggered by > + * gfn_to_pfn_prot(). > + */ > + kvm_set_pfn_accessed(pfn); > + kvm_release_pfn_clean(pfn); > + if (retry_no > 100) { > + retry_no = 0; > + schedule(); > + } > + retry_no++; > + goto retry; > + } > + > + /* > + * For emulated devices such virtio device, actual cache attribute is > + * determined by physical machine. > + * For pass through physical device, it should be uncachable > + */ > + prot_bits = _PAGE_PRESENT | __READABLE; > + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) > + prot_bits |= _CACHE_SUC; > + else > + prot_bits |= _CACHE_CC; > + > + if (writeable) { > + prot_bits |= _PAGE_WRITE; > + if (write) > + prot_bits |= __WRITEABLE; > + } > + > + /* Ensure page tables are allocated */ > + spin_lock(&kvm->mmu_lock); > + ptep = kvm_populate_gpa(kvm, memcache, gpa); > + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); > + kvm_set_pte(ptep, new_pte); > + > + err = 0; > + spin_unlock(&kvm->mmu_lock); > + > + if (prot_bits & _PAGE_DIRTY) { > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + > + kvm_set_pfn_accessed(pfn); > + kvm_release_pfn_clean(pfn); > +out: > + srcu_read_unlock(&kvm->srcu, srcu_idx); > + return err; > +} > + > +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + int ret; > + > + ret = kvm_map_page(vcpu, gpa, write); > + if (ret) > + return ret; > + > + /* Invalidate this entry in the TLB */ > + return kvm_flush_tlb_gpa(vcpu, gpa); > +} > + > +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) > +{ > + > +} > + > +int kvm_arch_prepare_memory_region(struct kvm *kvm, > + const struct kvm_memory_slot *old, > + struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + return 0; > +} > + > +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, > + const struct kvm_memory_slot *memslot) > +{ > + kvm_flush_remote_tlbs(kvm); > +}
在 2023/9/8 上午3:57, WANG Xuerui 写道: > On 8/31/23 16:30, Tianrui Zhao wrote: >> Implement LoongArch kvm mmu, it is used to switch gpa to hpa when >> guest exit because of address translation exception. This patch >> implement allocate gpa page table, search gpa from it and flush guest >> gpa in the table. >> >> Reviewed-by: Bibo Mao <maobibo@loongson.cn> >> Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> >> --- >> arch/loongarch/kvm/mmu.c | 678 +++++++++++++++++++++++++++++++++++++++ >> 1 file changed, 678 insertions(+) >> create mode 100644 arch/loongarch/kvm/mmu.c >> >> diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c >> new file mode 100644 >> index 0000000000..4bb20393f4 >> --- /dev/null >> +++ b/arch/loongarch/kvm/mmu.c >> @@ -0,0 +1,678 @@ >> +// SPDX-License-Identifier: GPL-2.0 >> +/* >> + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited >> + */ >> + >> +#include <linux/highmem.h> >> +#include <linux/page-flags.h> >> +#include <linux/kvm_host.h> >> +#include <linux/uaccess.h> >> +#include <asm/mmu_context.h> >> +#include <asm/pgalloc.h> >> +#include <asm/tlb.h> >> + >> +/* >> + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table >> translation levels >> + * for which pages need to be cached. >> + */ >> +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) >> + >> +static inline void kvm_set_pte(pte_t *ptep, pte_t pteval) >> +{ >> + *ptep = pteval; >> +} >> + >> +/** >> + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. >> + * >> + * Allocate a blank KVM GPA page directory (PGD) for representing >> guest physical >> + * to host physical page mappings. >> + * >> + * Returns: Pointer to new KVM GPA page directory. >> + * NULL on allocation failure. >> + */ >> +pgd_t *kvm_pgd_alloc(void) >> +{ >> + pgd_t *pgd; >> + >> + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); >> + if (pgd) >> + pgd_init((void *)pgd); >> + >> + return pgd; >> +} >> + >> +/* >> + * Caller must hold kvm->mm_lock >> + * >> + * Walk the page tables of kvm to find the PTE corresponding to the >> + * address @addr. If page tables don't exist for @addr, they will be >> created >> + * from the MMU cache if @cache is not NULL. >> + */ >> +static pte_t *kvm_populate_gpa(struct kvm *kvm, >> + struct kvm_mmu_memory_cache *cache, >> + unsigned long addr) >> +{ >> + pgd_t *pgd; >> + p4d_t *p4d; >> + pud_t *pud; >> + pmd_t *pmd; >> + >> + pgd = kvm->arch.pgd + pgd_index(addr); >> + p4d = p4d_offset(pgd, addr); >> + if (p4d_none(*p4d)) { >> + if (!cache) >> + return NULL; >> + >> + pud = kvm_mmu_memory_cache_alloc(cache); >> + pud_init(pud); >> + p4d_populate(NULL, p4d, pud); >> + } >> + >> + pud = pud_offset(p4d, addr); >> + if (pud_none(*pud)) { >> + if (!cache) >> + return NULL; >> + pmd = kvm_mmu_memory_cache_alloc(cache); >> + pmd_init(pmd); >> + pud_populate(NULL, pud, pmd); >> + } >> + >> + pmd = pmd_offset(pud, addr); >> + if (pmd_none(*pmd)) { >> + pte_t *pte; >> + >> + if (!cache) >> + return NULL; >> + pte = kvm_mmu_memory_cache_alloc(cache); >> + clear_page(pte); >> + pmd_populate_kernel(NULL, pmd, pte); >> + } >> + >> + return pte_offset_kernel(pmd, addr); >> +} >> + >> +typedef int (*kvm_pte_ops)(pte_t *pte); >> + >> +struct kvm_ptw_ctx { >> + kvm_pte_ops ops; >> + int need_flush; >> +}; >> + >> +static int kvm_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long >> end, >> + struct kvm_ptw_ctx *context) >> +{ >> + pte_t *pte; >> + unsigned long next, start; >> + int ret; >> + >> + ret = 0; >> + start = addr; >> + pte = pte_offset_kernel(pmd, addr); >> + do { >> + next = addr + PAGE_SIZE; >> + if (!pte_present(*pte)) >> + continue; >> + >> + ret |= context->ops(pte); >> + } while (pte++, addr = next, addr != end); >> + >> + if (context->need_flush && (start + PMD_SIZE == end)) { >> + pte = pte_offset_kernel(pmd, 0); >> + pmd_clear(pmd); >> + free_page((unsigned long)pte); >> + } >> + >> + return ret; >> +} >> + >> +static int kvm_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long >> end, >> + struct kvm_ptw_ctx *context) >> +{ >> + pmd_t *pmd; >> + unsigned long next, start; >> + int ret; >> + >> + ret = 0; >> + start = addr; >> + pmd = pmd_offset(pud, addr); >> + do { >> + next = pmd_addr_end(addr, end); >> + if (!pmd_present(*pmd)) >> + continue; >> + >> + ret |= kvm_ptw_pte(pmd, addr, next, context); >> + } while (pmd++, addr = next, addr != end); >> + >> +#ifndef __PAGETABLE_PMD_FOLDED >> + if (context->need_flush && (start + PUD_SIZE == end)) { >> + pmd = pmd_offset(pud, 0); >> + pud_clear(pud); >> + free_page((unsigned long)pmd); >> + } >> +#endif >> + >> + return ret; >> +} >> + >> +static int kvm_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long >> end, >> + struct kvm_ptw_ctx *context) >> +{ >> + p4d_t *p4d; >> + pud_t *pud; >> + int ret = 0; >> + unsigned long next; >> +#ifndef __PAGETABLE_PUD_FOLDED >> + unsigned long start = addr; >> +#endif >> + >> + p4d = p4d_offset(pgd, addr); >> + pud = pud_offset(p4d, addr); >> + do { >> + next = pud_addr_end(addr, end); >> + if (!pud_present(*pud)) >> + continue; >> + >> + ret |= kvm_ptw_pmd(pud, addr, next, context); >> + } while (pud++, addr = next, addr != end); >> + >> +#ifndef __PAGETABLE_PUD_FOLDED >> + if (context->need_flush && (start + PGDIR_SIZE == end)) { >> + pud = pud_offset(p4d, 0); >> + p4d_clear(p4d); >> + free_page((unsigned long)pud); >> + } >> +#endif >> + >> + return ret; >> +} >> + >> +static int kvm_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long >> end, >> + struct kvm_ptw_ctx *context) >> +{ >> + unsigned long next; >> + int ret; >> + >> + ret = 0; >> + if (addr > end - 1) >> + return ret; >> + pgd = pgd + pgd_index(addr); >> + do { >> + next = pgd_addr_end(addr, end); >> + if (!pgd_present(*pgd)) >> + continue; >> + >> + ret |= kvm_ptw_pud(pgd, addr, next, context); >> + } while (pgd++, addr = next, addr != end); >> + >> + return ret; >> +} >> + >> +/* >> + * clear pte entry >> + */ >> +static int kvm_flush_pte(pte_t *pte) >> +{ >> + kvm_set_pte(pte, __pte(0)); >> + return 1; >> +} >> + >> +/** >> + * kvm_flush_range() - Flush a range of guest physical addresses. >> + * @kvm: KVM pointer. >> + * @start_gfn: Guest frame number of first page in GPA range to >> flush. >> + * @end_gfn: Guest frame number of last page in GPA range to flush. >> + * >> + * Flushes a range of GPA mappings from the GPA page tables. >> + * >> + * The caller must hold the @kvm->mmu_lock spinlock. >> + * >> + * Returns: Whether its safe to remove the top level page >> directory because >> + * all lower levels have been removed. >> + */ >> +static bool kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t >> end_gfn) >> +{ >> + struct kvm_ptw_ctx ctx; >> + >> + ctx.ops = kvm_flush_pte; >> + ctx.need_flush = 1; >> + >> + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, >> + end_gfn << PAGE_SHIFT, &ctx); >> +} >> + >> +/* >> + * kvm_mkclean_pte >> + * Mark a range of guest physical address space clean (writes fault) >> in the VM's >> + * GPA page table to allow dirty page tracking. >> + */ >> +static int kvm_mkclean_pte(pte_t *pte) >> +{ >> + pte_t val; >> + >> + val = *pte; >> + if (pte_dirty(val)) { >> + *pte = pte_mkclean(val); >> + return 1; >> + } >> + return 0; >> +} >> + >> +/* >> + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses >> clean. >> + * @kvm: KVM pointer. >> + * @start_gfn: Guest frame number of first page in GPA range to >> flush. >> + * @end_gfn: Guest frame number of last page in GPA range to flush. >> + * >> + * Make a range of GPA mappings clean so that guest writes will >> fault and >> + * trigger dirty page logging. >> + * >> + * The caller must hold the @kvm->mmu_lock spinlock. >> + * >> + * Returns: Whether any GPA mappings were modified, which would >> require >> + * derived mappings (GVA page tables & TLB enties) to be >> + * invalidated. >> + */ >> +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, >> gfn_t end_gfn) >> +{ >> + struct kvm_ptw_ctx ctx; >> + >> + ctx.ops = kvm_mkclean_pte; >> + ctx.need_flush = 0; >> + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, >> + end_gfn << PAGE_SHIFT, &ctx); >> +} >> + >> +/* >> + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty >> pages >> + * @kvm: The KVM pointer >> + * @slot: The memory slot associated with mask >> + * @gfn_offset: The gfn offset in memory slot >> + * @mask: The mask of dirty pages at offset 'gfn_offset' in this >> memory >> + * slot to be write protected >> + * >> + * Walks bits set in mask write protects the associated pte's. >> Caller must >> + * acquire @kvm->mmu_lock. >> + */ >> +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, >> + struct kvm_memory_slot *slot, >> + gfn_t gfn_offset, unsigned long mask) >> +{ >> + gfn_t base_gfn = slot->base_gfn + gfn_offset; >> + gfn_t start = base_gfn + __ffs(mask); > One extra space after the plus sign? Thanks, I will remove the extra space. >> + gfn_t end = base_gfn + __fls(mask) + 1; >> + >> + kvm_mkclean_gpa_pt(kvm, start, end); >> +} >> + >> +void kvm_arch_commit_memory_region(struct kvm *kvm, >> + struct kvm_memory_slot *old, >> + const struct kvm_memory_slot *new, >> + enum kvm_mr_change change) >> +{ >> + int needs_flush; >> + >> + /* >> + * If dirty page logging is enabled, write protect all pages in >> the slot >> + * ready for dirty logging. >> + * >> + * There is no need to do this in any of the following cases: >> + * CREATE: No dirty mappings will already exist. >> + * MOVE/DELETE: The old mappings will already have been >> cleaned up by >> + * kvm_arch_flush_shadow_memslot() >> + */ >> + if (change == KVM_MR_FLAGS_ONLY && >> + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && >> + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { >> + spin_lock(&kvm->mmu_lock); >> + /* Write protect GPA page table entries */ >> + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, >> + new->base_gfn + new->npages); >> + if (needs_flush) >> + kvm_flush_remote_tlbs(kvm); >> + spin_unlock(&kvm->mmu_lock); >> + } >> +} >> + >> +void kvm_arch_flush_shadow_all(struct kvm *kvm) >> +{ >> + /* Flush whole GPA */ >> + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); >> + /* Flush vpid for each vCPU individually */ >> + kvm_flush_remote_tlbs(kvm); >> +} >> + >> +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, >> + struct kvm_memory_slot *slot) >> +{ >> + int ret; >> + >> + /* >> + * The slot has been made invalid (ready for moving or >> deletion), so we >> + * need to ensure that it can no longer be accessed by any guest >> vCPUs. >> + */ >> + spin_lock(&kvm->mmu_lock); >> + /* Flush slot from GPA */ >> + ret = kvm_flush_range(kvm, slot->base_gfn, >> + slot->base_gfn + slot->npages); >> + /* Let implementation do the rest */ >> + if (ret) >> + kvm_flush_remote_tlbs(kvm); >> + spin_unlock(&kvm->mmu_lock); >> +} >> + >> +void _kvm_destroy_mm(struct kvm *kvm) >> +{ >> + /* It should always be safe to remove after flushing the whole >> range */ >> + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); >> + pgd_free(NULL, kvm->arch.pgd); >> + kvm->arch.pgd = NULL; >> +} >> + >> +/* >> + * Mark a range of guest physical address space old (all accesses >> fault) in the >> + * VM's GPA page table to allow detection of commonly used pages. >> + */ >> +static int kvm_mkold_pte(pte_t *pte) >> +{ >> + pte_t val; >> + >> + val = *pte; > "pte_t val = *pte" would be enough... You may want to check the entire > patch series for simplifications like this. Thanks, I will fix this. >> + if (pte_young(val)) { >> + *pte = pte_mkold(val); >> + return 1; >> + } >> + return 0; >> +} >> + >> +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + return kvm_flush_range(kvm, range->start, range->end); >> +} >> + >> +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + gpa_t gpa = range->start << PAGE_SHIFT; >> + pte_t hva_pte = range->pte; > This has become "range->arg.pte" since commit 3e1efe2b67d3 ("KVM: Wrap > kvm_{gfn,hva}_range.pte in a per-action union") which is already > inside linux-next. Thanks, I will update it. >> + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); >> + pte_t old_pte; >> + >> + if (!ptep) >> + return false; >> + >> + /* Mapping may need adjusting depending on memslot flags */ >> + old_pte = *ptep; >> + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && >> !pte_dirty(old_pte)) >> + hva_pte = pte_mkclean(hva_pte); >> + else if (range->slot->flags & KVM_MEM_READONLY) >> + hva_pte = pte_wrprotect(hva_pte); >> + >> + kvm_set_pte(ptep, hva_pte); >> + >> + /* Replacing an absent or old page doesn't need flushes */ >> + if (!pte_present(old_pte) || !pte_young(old_pte)) >> + return false; >> + >> + /* Pages swapped, aged, moved, or cleaned require flushes */ >> + return !pte_present(hva_pte) || >> + !pte_young(hva_pte) || >> + pte_pfn(old_pte) != pte_pfn(hva_pte) || >> + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); >> +} >> + >> +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + struct kvm_ptw_ctx ctx; >> + >> + ctx.ops = kvm_mkold_pte; >> + ctx.need_flush = 0; >> + return kvm_ptw_pgd(kvm->arch.pgd, range->start << PAGE_SHIFT, >> + range->end << PAGE_SHIFT, &ctx); >> +} >> + >> +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) >> +{ >> + gpa_t gpa = range->start << PAGE_SHIFT; >> + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); >> + >> + if (ptep && pte_present(*ptep) && pte_young(*ptep)) >> + return true; >> + >> + return false; >> +} >> + >> +/** >> + * kvm_map_page_fast() - Fast path GPA fault handler. >> + * @vcpu: vCPU pointer. >> + * @gpa: Guest physical address of fault. >> + * @write: Whether the fault was due to a write. >> + * >> + * Perform fast path GPA fault handling, doing all that can be done >> without >> + * calling into KVM. This handles marking old pages young (for idle >> page >> + * tracking), and dirtying of clean pages (for dirty page logging). >> + * >> + * Returns: 0 on success, in which case we can update derived >> mappings and >> + * resume guest execution. >> + * -EFAULT on failure due to absent GPA mapping or write to >> + * read-only page, in which case KVM must be consulted. >> + */ >> +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, >> + bool write) >> +{ >> + struct kvm *kvm = vcpu->kvm; >> + gfn_t gfn = gpa >> PAGE_SHIFT; >> + pte_t *ptep; >> + kvm_pfn_t pfn = 0; >> + bool pfn_valid = false, pfn_dirty = false; >> + int ret = 0; >> + >> + spin_lock(&kvm->mmu_lock); >> + >> + /* Fast path - just check GPA page table for an existing entry */ >> + ptep = kvm_populate_gpa(kvm, NULL, gpa); >> + if (!ptep || !pte_present(*ptep)) { >> + ret = -EFAULT; >> + goto out; >> + } >> + >> + /* Track access to pages marked old */ >> + if (!pte_young(*ptep)) { >> + kvm_set_pte(ptep, pte_mkyoung(*ptep)); >> + pfn = pte_pfn(*ptep); >> + pfn_valid = true; >> + /* call kvm_set_pfn_accessed() after unlock */ >> + } >> + if (write && !pte_dirty(*ptep)) { >> + if (!pte_write(*ptep)) { >> + ret = -EFAULT; >> + goto out; >> + } >> + >> + /* Track dirtying of writeable pages */ >> + kvm_set_pte(ptep, pte_mkdirty(*ptep)); >> + pfn = pte_pfn(*ptep); >> + pfn_dirty = true; >> + } >> + >> +out: >> + spin_unlock(&kvm->mmu_lock); >> + if (pfn_valid) >> + kvm_set_pfn_accessed(pfn); >> + if (pfn_dirty) { >> + mark_page_dirty(kvm, gfn); >> + kvm_set_pfn_dirty(pfn); >> + } >> + return ret; >> +} >> + >> +/** >> + * kvm_map_page() - Map a guest physical page. >> + * @vcpu: vCPU pointer. >> + * @gpa: Guest physical address of fault. >> + * @write: Whether the fault was due to a write. >> + * >> + * Handle GPA faults by creating a new GPA mapping (or updating an >> existing >> + * one). >> + * >> + * This takes care of marking pages young or dirty (idle/dirty page >> tracking), >> + * asking KVM for the corresponding PFN, and creating a mapping in >> the GPA page >> + * tables. Derived mappings (GVA page tables and TLBs) must be >> handled by the >> + * caller. >> + * >> + * Returns: 0 on success >> + * -EFAULT if there is no memory region at @gpa or a write was >> + * attempted to a read-only memory region. This is usually >> handled >> + * as an MMIO access. >> + */ >> +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, >> bool write) >> +{ >> + bool writeable; >> + int srcu_idx, err = 0, retry_no = 0; >> + unsigned long hva; >> + unsigned long mmu_seq; >> + unsigned long prot_bits; >> + pte_t *ptep, new_pte; >> + kvm_pfn_t pfn; >> + gfn_t gfn = gpa >> PAGE_SHIFT; >> + struct vm_area_struct *vma; >> + struct kvm *kvm = vcpu->kvm; >> + struct kvm_memory_slot *memslot; >> + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; >> + >> + /* Try the fast path to handle old / clean pages */ >> + srcu_idx = srcu_read_lock(&kvm->srcu); >> + err = kvm_map_page_fast(vcpu, gpa, write); >> + if (!err) >> + goto out; >> + >> + memslot = gfn_to_memslot(kvm, gfn); >> + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); >> + if (kvm_is_error_hva(hva) || (write && !writeable)) >> + goto out; >> + >> + mmap_read_lock(current->mm); >> + vma = find_vma_intersection(current->mm, hva, hva + 1); >> + if (unlikely(!vma)) { >> + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); >> + mmap_read_unlock(current->mm); >> + err = -EFAULT; >> + goto out; >> + } >> + mmap_read_unlock(current->mm); >> + >> + /* We need a minimum of cached pages ready for page table >> creation */ >> + err = kvm_mmu_topup_memory_cache(memcache, >> KVM_MMU_CACHE_MIN_PAGES); >> + if (err) >> + goto out; >> + >> +retry: >> + /* >> + * Used to check for invalidations in progress, of the pfn that is >> + * returned by pfn_to_pfn_prot below. >> + */ >> + mmu_seq = kvm->mmu_invalidate_seq; >> + /* >> + * Ensure the read of mmu_invalidate_seq isn't reordered with >> PTE reads in >> + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we >> don't >> + * risk the page we get a reference to getting unmapped before >> we have a >> + * chance to grab the mmu_lock without mmu_invalidate_retry() >> noticing. >> + * >> + * This smp_rmb() pairs with the effective smp_wmb() of the >> combination >> + * of the pte_unmap_unlock() after the PTE is zapped, and the >> + * spin_lock() in >> kvm_mmu_invalidate_invalidate_<page|range_end>() before >> + * mmu_invalidate_seq is incremented. >> + */ >> + smp_rmb(); >> + >> + /* Slow path - ask KVM core whether we can access this GPA */ >> + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); >> + if (is_error_noslot_pfn(pfn)) { >> + err = -EFAULT; >> + goto out; >> + } >> + >> + /* Check if an invalidation has taken place since we got pfn */ >> + if (mmu_invalidate_retry(kvm, mmu_seq)) { >> + /* > Wrong indentation? I will fix this indentation. Thanks Tianrui Zhao >> + * This can happen when mappings are changed asynchronously, >> but >> + * also synchronously if a COW is triggered by >> + * gfn_to_pfn_prot(). >> + */ >> + kvm_set_pfn_accessed(pfn); >> + kvm_release_pfn_clean(pfn); >> + if (retry_no > 100) { >> + retry_no = 0; >> + schedule(); >> + } >> + retry_no++; >> + goto retry; >> + } >> + >> + /* >> + * For emulated devices such virtio device, actual cache >> attribute is >> + * determined by physical machine. >> + * For pass through physical device, it should be uncachable >> + */ >> + prot_bits = _PAGE_PRESENT | __READABLE; >> + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) >> + prot_bits |= _CACHE_SUC; >> + else >> + prot_bits |= _CACHE_CC; >> + >> + if (writeable) { >> + prot_bits |= _PAGE_WRITE; >> + if (write) >> + prot_bits |= __WRITEABLE; >> + } >> + >> + /* Ensure page tables are allocated */ >> + spin_lock(&kvm->mmu_lock); >> + ptep = kvm_populate_gpa(kvm, memcache, gpa); >> + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); >> + kvm_set_pte(ptep, new_pte); >> + >> + err = 0; >> + spin_unlock(&kvm->mmu_lock); >> + >> + if (prot_bits & _PAGE_DIRTY) { >> + mark_page_dirty(kvm, gfn); >> + kvm_set_pfn_dirty(pfn); >> + } >> + >> + kvm_set_pfn_accessed(pfn); >> + kvm_release_pfn_clean(pfn); >> +out: >> + srcu_read_unlock(&kvm->srcu, srcu_idx); >> + return err; >> +} >> + >> +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, >> bool write) >> +{ >> + int ret; >> + >> + ret = kvm_map_page(vcpu, gpa, write); >> + if (ret) >> + return ret; >> + >> + /* Invalidate this entry in the TLB */ >> + return kvm_flush_tlb_gpa(vcpu, gpa); >> +} >> + >> +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot >> *memslot) >> +{ >> + >> +} >> + >> +int kvm_arch_prepare_memory_region(struct kvm *kvm, >> + const struct kvm_memory_slot *old, >> + struct kvm_memory_slot *new, >> + enum kvm_mr_change change) >> +{ >> + return 0; >> +} >> + >> +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, >> + const struct kvm_memory_slot *memslot) >> +{ >> + kvm_flush_remote_tlbs(kvm); >> +} >
diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c new file mode 100644 index 0000000000..4bb20393f4 --- /dev/null +++ b/arch/loongarch/kvm/mmu.c @@ -0,0 +1,678 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited + */ + +#include <linux/highmem.h> +#include <linux/page-flags.h> +#include <linux/kvm_host.h> +#include <linux/uaccess.h> +#include <asm/mmu_context.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> + +/* + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels + * for which pages need to be cached. + */ +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) + +static inline void kvm_set_pte(pte_t *ptep, pte_t pteval) +{ + *ptep = pteval; +} + +/** + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. + * + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical + * to host physical page mappings. + * + * Returns: Pointer to new KVM GPA page directory. + * NULL on allocation failure. + */ +pgd_t *kvm_pgd_alloc(void) +{ + pgd_t *pgd; + + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); + if (pgd) + pgd_init((void *)pgd); + + return pgd; +} + +/* + * Caller must hold kvm->mm_lock + * + * Walk the page tables of kvm to find the PTE corresponding to the + * address @addr. If page tables don't exist for @addr, they will be created + * from the MMU cache if @cache is not NULL. + */ +static pte_t *kvm_populate_gpa(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, + unsigned long addr) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + pgd = kvm->arch.pgd + pgd_index(addr); + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) { + if (!cache) + return NULL; + + pud = kvm_mmu_memory_cache_alloc(cache); + pud_init(pud); + p4d_populate(NULL, p4d, pud); + } + + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) { + if (!cache) + return NULL; + pmd = kvm_mmu_memory_cache_alloc(cache); + pmd_init(pmd); + pud_populate(NULL, pud, pmd); + } + + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) { + pte_t *pte; + + if (!cache) + return NULL; + pte = kvm_mmu_memory_cache_alloc(cache); + clear_page(pte); + pmd_populate_kernel(NULL, pmd, pte); + } + + return pte_offset_kernel(pmd, addr); +} + +typedef int (*kvm_pte_ops)(pte_t *pte); + +struct kvm_ptw_ctx { + kvm_pte_ops ops; + int need_flush; +}; + +static int kvm_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, + struct kvm_ptw_ctx *context) +{ + pte_t *pte; + unsigned long next, start; + int ret; + + ret = 0; + start = addr; + pte = pte_offset_kernel(pmd, addr); + do { + next = addr + PAGE_SIZE; + if (!pte_present(*pte)) + continue; + + ret |= context->ops(pte); + } while (pte++, addr = next, addr != end); + + if (context->need_flush && (start + PMD_SIZE == end)) { + pte = pte_offset_kernel(pmd, 0); + pmd_clear(pmd); + free_page((unsigned long)pte); + } + + return ret; +} + +static int kvm_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, + struct kvm_ptw_ctx *context) +{ + pmd_t *pmd; + unsigned long next, start; + int ret; + + ret = 0; + start = addr; + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + if (!pmd_present(*pmd)) + continue; + + ret |= kvm_ptw_pte(pmd, addr, next, context); + } while (pmd++, addr = next, addr != end); + +#ifndef __PAGETABLE_PMD_FOLDED + if (context->need_flush && (start + PUD_SIZE == end)) { + pmd = pmd_offset(pud, 0); + pud_clear(pud); + free_page((unsigned long)pmd); + } +#endif + + return ret; +} + +static int kvm_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, + struct kvm_ptw_ctx *context) +{ + p4d_t *p4d; + pud_t *pud; + int ret = 0; + unsigned long next; +#ifndef __PAGETABLE_PUD_FOLDED + unsigned long start = addr; +#endif + + p4d = p4d_offset(pgd, addr); + pud = pud_offset(p4d, addr); + do { + next = pud_addr_end(addr, end); + if (!pud_present(*pud)) + continue; + + ret |= kvm_ptw_pmd(pud, addr, next, context); + } while (pud++, addr = next, addr != end); + +#ifndef __PAGETABLE_PUD_FOLDED + if (context->need_flush && (start + PGDIR_SIZE == end)) { + pud = pud_offset(p4d, 0); + p4d_clear(p4d); + free_page((unsigned long)pud); + } +#endif + + return ret; +} + +static int kvm_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, + struct kvm_ptw_ctx *context) +{ + unsigned long next; + int ret; + + ret = 0; + if (addr > end - 1) + return ret; + pgd = pgd + pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + if (!pgd_present(*pgd)) + continue; + + ret |= kvm_ptw_pud(pgd, addr, next, context); + } while (pgd++, addr = next, addr != end); + + return ret; +} + +/* + * clear pte entry + */ +static int kvm_flush_pte(pte_t *pte) +{ + kvm_set_pte(pte, __pte(0)); + return 1; +} + +/** + * kvm_flush_range() - Flush a range of guest physical addresses. + * @kvm: KVM pointer. + * @start_gfn: Guest frame number of first page in GPA range to flush. + * @end_gfn: Guest frame number of last page in GPA range to flush. + * + * Flushes a range of GPA mappings from the GPA page tables. + * + * The caller must hold the @kvm->mmu_lock spinlock. + * + * Returns: Whether its safe to remove the top level page directory because + * all lower levels have been removed. + */ +static bool kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) +{ + struct kvm_ptw_ctx ctx; + + ctx.ops = kvm_flush_pte; + ctx.need_flush = 1; + + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, + end_gfn << PAGE_SHIFT, &ctx); +} + +/* + * kvm_mkclean_pte + * Mark a range of guest physical address space clean (writes fault) in the VM's + * GPA page table to allow dirty page tracking. + */ +static int kvm_mkclean_pte(pte_t *pte) +{ + pte_t val; + + val = *pte; + if (pte_dirty(val)) { + *pte = pte_mkclean(val); + return 1; + } + return 0; +} + +/* + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. + * @kvm: KVM pointer. + * @start_gfn: Guest frame number of first page in GPA range to flush. + * @end_gfn: Guest frame number of last page in GPA range to flush. + * + * Make a range of GPA mappings clean so that guest writes will fault and + * trigger dirty page logging. + * + * The caller must hold the @kvm->mmu_lock spinlock. + * + * Returns: Whether any GPA mappings were modified, which would require + * derived mappings (GVA page tables & TLB enties) to be + * invalidated. + */ +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) +{ + struct kvm_ptw_ctx ctx; + + ctx.ops = kvm_mkclean_pte; + ctx.need_flush = 0; + return kvm_ptw_pgd(kvm->arch.pgd, start_gfn << PAGE_SHIFT, + end_gfn << PAGE_SHIFT, &ctx); +} + +/* + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages + * @kvm: The KVM pointer + * @slot: The memory slot associated with mask + * @gfn_offset: The gfn offset in memory slot + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory + * slot to be write protected + * + * Walks bits set in mask write protects the associated pte's. Caller must + * acquire @kvm->mmu_lock. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + gfn_t base_gfn = slot->base_gfn + gfn_offset; + gfn_t start = base_gfn + __ffs(mask); + gfn_t end = base_gfn + __fls(mask) + 1; + + kvm_mkclean_gpa_pt(kvm, start, end); +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + int needs_flush; + + /* + * If dirty page logging is enabled, write protect all pages in the slot + * ready for dirty logging. + * + * There is no need to do this in any of the following cases: + * CREATE: No dirty mappings will already exist. + * MOVE/DELETE: The old mappings will already have been cleaned up by + * kvm_arch_flush_shadow_memslot() + */ + if (change == KVM_MR_FLAGS_ONLY && + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { + spin_lock(&kvm->mmu_lock); + /* Write protect GPA page table entries */ + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, + new->base_gfn + new->npages); + if (needs_flush) + kvm_flush_remote_tlbs(kvm); + spin_unlock(&kvm->mmu_lock); + } +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + /* Flush whole GPA */ + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); + /* Flush vpid for each vCPU individually */ + kvm_flush_remote_tlbs(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + int ret; + + /* + * The slot has been made invalid (ready for moving or deletion), so we + * need to ensure that it can no longer be accessed by any guest vCPUs. + */ + spin_lock(&kvm->mmu_lock); + /* Flush slot from GPA */ + ret = kvm_flush_range(kvm, slot->base_gfn, + slot->base_gfn + slot->npages); + /* Let implementation do the rest */ + if (ret) + kvm_flush_remote_tlbs(kvm); + spin_unlock(&kvm->mmu_lock); +} + +void _kvm_destroy_mm(struct kvm *kvm) +{ + /* It should always be safe to remove after flushing the whole range */ + kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); + pgd_free(NULL, kvm->arch.pgd); + kvm->arch.pgd = NULL; +} + +/* + * Mark a range of guest physical address space old (all accesses fault) in the + * VM's GPA page table to allow detection of commonly used pages. + */ +static int kvm_mkold_pte(pte_t *pte) +{ + pte_t val; + + val = *pte; + if (pte_young(val)) { + *pte = pte_mkold(val); + return 1; + } + return 0; +} + +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return kvm_flush_range(kvm, range->start, range->end); +} + +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + gpa_t gpa = range->start << PAGE_SHIFT; + pte_t hva_pte = range->pte; + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); + pte_t old_pte; + + if (!ptep) + return false; + + /* Mapping may need adjusting depending on memslot flags */ + old_pte = *ptep; + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) + hva_pte = pte_mkclean(hva_pte); + else if (range->slot->flags & KVM_MEM_READONLY) + hva_pte = pte_wrprotect(hva_pte); + + kvm_set_pte(ptep, hva_pte); + + /* Replacing an absent or old page doesn't need flushes */ + if (!pte_present(old_pte) || !pte_young(old_pte)) + return false; + + /* Pages swapped, aged, moved, or cleaned require flushes */ + return !pte_present(hva_pte) || + !pte_young(hva_pte) || + pte_pfn(old_pte) != pte_pfn(hva_pte) || + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); +} + +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + struct kvm_ptw_ctx ctx; + + ctx.ops = kvm_mkold_pte; + ctx.need_flush = 0; + return kvm_ptw_pgd(kvm->arch.pgd, range->start << PAGE_SHIFT, + range->end << PAGE_SHIFT, &ctx); +} + +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + gpa_t gpa = range->start << PAGE_SHIFT; + pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa); + + if (ptep && pte_present(*ptep) && pte_young(*ptep)) + return true; + + return false; +} + +/** + * kvm_map_page_fast() - Fast path GPA fault handler. + * @vcpu: vCPU pointer. + * @gpa: Guest physical address of fault. + * @write: Whether the fault was due to a write. + * + * Perform fast path GPA fault handling, doing all that can be done without + * calling into KVM. This handles marking old pages young (for idle page + * tracking), and dirtying of clean pages (for dirty page logging). + * + * Returns: 0 on success, in which case we can update derived mappings and + * resume guest execution. + * -EFAULT on failure due to absent GPA mapping or write to + * read-only page, in which case KVM must be consulted. + */ +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, + bool write) +{ + struct kvm *kvm = vcpu->kvm; + gfn_t gfn = gpa >> PAGE_SHIFT; + pte_t *ptep; + kvm_pfn_t pfn = 0; + bool pfn_valid = false, pfn_dirty = false; + int ret = 0; + + spin_lock(&kvm->mmu_lock); + + /* Fast path - just check GPA page table for an existing entry */ + ptep = kvm_populate_gpa(kvm, NULL, gpa); + if (!ptep || !pte_present(*ptep)) { + ret = -EFAULT; + goto out; + } + + /* Track access to pages marked old */ + if (!pte_young(*ptep)) { + kvm_set_pte(ptep, pte_mkyoung(*ptep)); + pfn = pte_pfn(*ptep); + pfn_valid = true; + /* call kvm_set_pfn_accessed() after unlock */ + } + if (write && !pte_dirty(*ptep)) { + if (!pte_write(*ptep)) { + ret = -EFAULT; + goto out; + } + + /* Track dirtying of writeable pages */ + kvm_set_pte(ptep, pte_mkdirty(*ptep)); + pfn = pte_pfn(*ptep); + pfn_dirty = true; + } + +out: + spin_unlock(&kvm->mmu_lock); + if (pfn_valid) + kvm_set_pfn_accessed(pfn); + if (pfn_dirty) { + mark_page_dirty(kvm, gfn); + kvm_set_pfn_dirty(pfn); + } + return ret; +} + +/** + * kvm_map_page() - Map a guest physical page. + * @vcpu: vCPU pointer. + * @gpa: Guest physical address of fault. + * @write: Whether the fault was due to a write. + * + * Handle GPA faults by creating a new GPA mapping (or updating an existing + * one). + * + * This takes care of marking pages young or dirty (idle/dirty page tracking), + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the + * caller. + * + * Returns: 0 on success + * -EFAULT if there is no memory region at @gpa or a write was + * attempted to a read-only memory region. This is usually handled + * as an MMIO access. + */ +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) +{ + bool writeable; + int srcu_idx, err = 0, retry_no = 0; + unsigned long hva; + unsigned long mmu_seq; + unsigned long prot_bits; + pte_t *ptep, new_pte; + kvm_pfn_t pfn; + gfn_t gfn = gpa >> PAGE_SHIFT; + struct vm_area_struct *vma; + struct kvm *kvm = vcpu->kvm; + struct kvm_memory_slot *memslot; + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; + + /* Try the fast path to handle old / clean pages */ + srcu_idx = srcu_read_lock(&kvm->srcu); + err = kvm_map_page_fast(vcpu, gpa, write); + if (!err) + goto out; + + memslot = gfn_to_memslot(kvm, gfn); + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); + if (kvm_is_error_hva(hva) || (write && !writeable)) + goto out; + + mmap_read_lock(current->mm); + vma = find_vma_intersection(current->mm, hva, hva + 1); + if (unlikely(!vma)) { + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); + mmap_read_unlock(current->mm); + err = -EFAULT; + goto out; + } + mmap_read_unlock(current->mm); + + /* We need a minimum of cached pages ready for page table creation */ + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); + if (err) + goto out; + +retry: + /* + * Used to check for invalidations in progress, of the pfn that is + * returned by pfn_to_pfn_prot below. + */ + mmu_seq = kvm->mmu_invalidate_seq; + /* + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't + * risk the page we get a reference to getting unmapped before we have a + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. + * + * This smp_rmb() pairs with the effective smp_wmb() of the combination + * of the pte_unmap_unlock() after the PTE is zapped, and the + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before + * mmu_invalidate_seq is incremented. + */ + smp_rmb(); + + /* Slow path - ask KVM core whether we can access this GPA */ + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); + if (is_error_noslot_pfn(pfn)) { + err = -EFAULT; + goto out; + } + + /* Check if an invalidation has taken place since we got pfn */ + if (mmu_invalidate_retry(kvm, mmu_seq)) { + /* + * This can happen when mappings are changed asynchronously, but + * also synchronously if a COW is triggered by + * gfn_to_pfn_prot(). + */ + kvm_set_pfn_accessed(pfn); + kvm_release_pfn_clean(pfn); + if (retry_no > 100) { + retry_no = 0; + schedule(); + } + retry_no++; + goto retry; + } + + /* + * For emulated devices such virtio device, actual cache attribute is + * determined by physical machine. + * For pass through physical device, it should be uncachable + */ + prot_bits = _PAGE_PRESENT | __READABLE; + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) + prot_bits |= _CACHE_SUC; + else + prot_bits |= _CACHE_CC; + + if (writeable) { + prot_bits |= _PAGE_WRITE; + if (write) + prot_bits |= __WRITEABLE; + } + + /* Ensure page tables are allocated */ + spin_lock(&kvm->mmu_lock); + ptep = kvm_populate_gpa(kvm, memcache, gpa); + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); + kvm_set_pte(ptep, new_pte); + + err = 0; + spin_unlock(&kvm->mmu_lock); + + if (prot_bits & _PAGE_DIRTY) { + mark_page_dirty(kvm, gfn); + kvm_set_pfn_dirty(pfn); + } + + kvm_set_pfn_accessed(pfn); + kvm_release_pfn_clean(pfn); +out: + srcu_read_unlock(&kvm->srcu, srcu_idx); + return err; +} + +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) +{ + int ret; + + ret = kvm_map_page(vcpu, gpa, write); + if (ret) + return ret; + + /* Invalidate this entry in the TLB */ + return kvm_flush_tlb_gpa(vcpu, gpa); +} + +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) +{ + +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + const struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + return 0; +} + +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, + const struct kvm_memory_slot *memslot) +{ + kvm_flush_remote_tlbs(kvm); +}