@@ -44,14 +44,15 @@
#define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
-#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
-#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
-#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
-#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
-#define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
-#define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
-#define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
-#define KVM_REQ_NESTED_S2_UNMAP KVM_ARCH_REQ(8)
+#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
+#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
+#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
+#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
+#define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
+#define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
+#define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
+#define KVM_REQ_NESTED_S2_UNMAP KVM_ARCH_REQ(8)
+#define KVM_REQ_GUEST_HYP_IRQ_PENDING KVM_ARCH_REQ(9)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
@@ -1153,6 +1153,11 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
* preserved on VMID roll-over if the task was preempted,
* making a thread's VMID inactive. So we need to call
* kvm_arm_vmid_update() in non-premptible context.
+ *
+ * Note that this must happen after the check_vcpu_request()
+ * call to pick the correct s2_mmu structure, as a pending
+ * nested exception (IRQ, for example) can trigger a change
+ * in translation regime.
*/
if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
has_vhe())
@@ -1295,4 +1295,7 @@ void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
}
write_unlock(&vcpu->kvm->mmu_lock);
}
+
+ if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
+ kvm_inject_nested_irq(vcpu);
}
@@ -906,6 +906,29 @@ static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
/* Flush our emulation state into the GIC hardware before entering the guest. */
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
+ /*
+ * If in a nested state, we must return early. Two possibilities:
+ *
+ * - If we have any pending IRQ for the guest and the guest
+ * expects IRQs to be handled in its virtual EL2 mode (the
+ * virtual IMO bit is set) and it is not already running in
+ * virtual EL2 mode, then we have to emulate an IRQ
+ * exception to virtual EL2.
+ *
+ * We do that by placing a request to ourselves which will
+ * abort the entry procedure and inject the exception at the
+ * beginning of the run loop.
+ *
+ * - Otherwise, do exactly *NOTHING*. The guest state is
+ * already loaded, and we can carry on with running it.
+ */
+ if (vgic_state_is_nested(vcpu)) {
+ if (kvm_vgic_vcpu_pending_irq(vcpu))
+ kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
+
+ return;
+ }
+
/*
* If there are no virtual interrupts active or pending for this
* VCPU, then there is no work to do and we can bail out without
An interrupt being delivered to L1 while running L2 must result in the correct exception being delivered to L1. This means that if, on entry to L2, we found ourselves with pending interrupts in the L1 distributor, we need to take immediate action. This is done by posting a request which will prevent the entry in L2, and deliver an IRQ exception to L1, forcing the switch. Signed-off-by: Marc Zyngier <maz@kernel.org> --- arch/arm64/include/asm/kvm_host.h | 17 +++++++++-------- arch/arm64/kvm/arm.c | 5 +++++ arch/arm64/kvm/nested.c | 3 +++ arch/arm64/kvm/vgic/vgic.c | 23 +++++++++++++++++++++++ 4 files changed, 40 insertions(+), 8 deletions(-)