@@ -38,32 +38,131 @@
#include <linux/bootmem.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/rbtree.h>
#include <xen/swiotlb-xen.h>
#include <xen/page.h>
#include <xen/xen-ops.h>
#include <xen/hvc-console.h>
+#include <xen/features.h>
/*
* Used to do a quick range check in swiotlb_tbl_unmap_single and
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
+#define NR_DMA_SEGS ((xen_io_tlb_nslabs + IO_TLB_SEGSIZE - 1) / IO_TLB_SEGSIZE)
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/*
* Quick lookup value of the bus address of the IOTLB.
*/
-static u64 start_dma_addr;
+struct xen_dma_info {
+ dma_addr_t dma_addr;
+ phys_addr_t phys_addr;
+ size_t size;
+ struct rb_node rbnode;
+};
+
+/*
+ * This array of struct xen_dma_info is indexed by physical addresses,
+ * starting from virt_to_phys(xen_io_tlb_start). Each entry maps
+ * (IO_TLB_SEGSIZE << IO_TLB_SHIFT) bytes, except the last one that is
+ * smaller. Getting the dma address corresponding to a given physical
+ * address can be done by direct access with the right index on the
+ * array.
+ */
+static struct xen_dma_info *xen_dma_seg;
+/*
+ * This tree keeps track of bus address to physical address
+ * mappings.
+ */
+static struct rb_root bus_to_phys = RB_ROOT;
+
+static int xen_dma_add_entry(struct xen_dma_info *new)
+{
+ struct rb_node **link = &bus_to_phys.rb_node;
+ struct rb_node *parent = NULL;
+ struct xen_dma_info *entry;
+ int rc = 0;
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct xen_dma_info, rbnode);
+
+ if (new->dma_addr == entry->dma_addr)
+ goto err_out;
+ if (new->phys_addr == entry->phys_addr)
+ goto err_out;
+
+ if (new->dma_addr < entry->dma_addr)
+ link = &(*link)->rb_left;
+ else
+ link = &(*link)->rb_right;
+ }
+ rb_link_node(&new->rbnode, parent, link);
+ rb_insert_color(&new->rbnode, &bus_to_phys);
+ goto out;
+
+err_out:
+ rc = -EINVAL;
+ pr_warn("%s: cannot add phys=%pa -> dma=%pa: phys=%pa -> dma=%pa already exists\n",
+ __func__, &new->phys_addr, &new->dma_addr, &entry->phys_addr, &entry->dma_addr);
+out:
+ return rc;
+}
+
+static struct xen_dma_info *xen_get_dma_info_from_dma(dma_addr_t dma_addr)
+{
+ struct rb_node *n = bus_to_phys.rb_node;
+ struct xen_dma_info *entry;
+
+ while (n) {
+ entry = rb_entry(n, struct xen_dma_info, rbnode);
+ if (entry->dma_addr <= dma_addr &&
+ entry->dma_addr + entry->size > dma_addr) {
+ return entry;
+ }
+ if (dma_addr < entry->dma_addr)
+ n = n->rb_left;
+ else
+ n = n->rb_right;
+ }
+
+ return NULL;
+}
static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
{
- return phys_to_machine(XPADDR(paddr)).maddr;
+ int nr_seg;
+ unsigned long offset;
+ char *vaddr;
+
+ if (!xen_feature(XENFEAT_auto_translated_physmap))
+ return phys_to_machine(XPADDR(paddr)).maddr;
+
+ vaddr = (char *)phys_to_virt(paddr);
+ if (vaddr >= xen_io_tlb_end || vaddr < xen_io_tlb_start)
+ return DMA_ERROR_CODE;
+
+ offset = vaddr - xen_io_tlb_start;
+ nr_seg = offset / (IO_TLB_SEGSIZE << IO_TLB_SHIFT);
+
+ return xen_dma_seg[nr_seg].dma_addr +
+ (paddr - xen_dma_seg[nr_seg].phys_addr);
}
static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
{
- return machine_to_phys(XMADDR(baddr)).paddr;
+ if (xen_feature(XENFEAT_auto_translated_physmap)) {
+ struct xen_dma_info *dma = xen_get_dma_info_from_dma(baddr);
+ if (dma == NULL)
+ return DMA_ERROR_CODE;
+ else
+ return dma->phys_addr + (baddr - dma->dma_addr);
+ } else
+ return machine_to_phys(XMADDR(baddr)).paddr;
}
static dma_addr_t xen_virt_to_bus(void *address)
@@ -107,6 +206,9 @@ static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
unsigned long pfn = mfn_to_local_pfn(mfn);
phys_addr_t paddr;
+ if (xen_feature(XENFEAT_auto_translated_physmap))
+ return 1;
+
/* If the address is outside our domain, it CAN
* have the same virtual address as another address
* in our domain. Therefore _only_ check address within our domain.
@@ -124,13 +226,12 @@ static int max_dma_bits = 32;
static int
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{
- int i, rc;
+ int i, j, rc;
int dma_bits;
- dma_addr_t dma_handle;
dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
- i = 0;
+ i = j = 0;
do {
int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
@@ -138,12 +239,18 @@ xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
rc = xen_create_contiguous_region(
(unsigned long)buf + (i << IO_TLB_SHIFT),
get_order(slabs << IO_TLB_SHIFT),
- dma_bits, &dma_handle);
+ dma_bits, &xen_dma_seg[j].dma_addr);
} while (rc && dma_bits++ < max_dma_bits);
if (rc)
return rc;
+ xen_dma_seg[j].phys_addr = virt_to_phys(buf + (i << IO_TLB_SHIFT));
+ xen_dma_seg[j].size = slabs << IO_TLB_SHIFT;
+ rc = xen_dma_add_entry(&xen_dma_seg[j]);
+ if (rc != 0)
+ return rc;
i += slabs;
+ j++;
} while (i < nslabs);
return 0;
}
@@ -193,9 +300,10 @@ retry:
/*
* Get IO TLB memory from any location.
*/
- if (early)
+ if (early) {
xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
- else {
+ xen_dma_seg = alloc_bootmem(sizeof(struct xen_dma_info) * NR_DMA_SEGS);
+ } else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
@@ -210,6 +318,8 @@ retry:
xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
+ xen_dma_seg = kzalloc(sizeof(struct xen_dma_info) * NR_DMA_SEGS,
+ GFP_KERNEL);
}
if (!xen_io_tlb_start) {
m_ret = XEN_SWIOTLB_ENOMEM;
@@ -232,7 +342,6 @@ retry:
m_ret = XEN_SWIOTLB_EFIXUP;
goto error;
}
- start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
if (early) {
if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
verbose))
@@ -267,6 +376,7 @@ xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
unsigned long vstart;
phys_addr_t phys;
dma_addr_t dev_addr;
+ struct xen_dma_info *dma_info = NULL;
/*
* Ignore region specifiers - the kernel's ideas of
@@ -290,7 +400,8 @@ xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
phys = virt_to_phys(ret);
dev_addr = xen_phys_to_bus(phys);
- if (((dev_addr + size - 1 <= dma_mask)) &&
+ if (!xen_feature(XENFEAT_auto_translated_physmap) &&
+ ((dev_addr + size - 1 <= dma_mask)) &&
!range_straddles_page_boundary(phys, size))
*dma_handle = dev_addr;
else {
@@ -299,6 +410,22 @@ xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
free_pages(vstart, order);
return NULL;
}
+
+ dma_info = kzalloc(sizeof(struct xen_dma_info), GFP_KERNEL);
+ if (!dma_info) {
+ pr_warn("cannot allocate xen_dma_info\n");
+ xen_destroy_contiguous_region(phys, order);
+ return NULL;
+ }
+ dma_info->phys_addr = phys;
+ dma_info->size = size;
+ dma_info->dma_addr = *dma_handle;
+ if (xen_dma_add_entry(dma_info)) {
+ pr_warn("cannot add new entry to bus_to_phys\n");
+ xen_destroy_contiguous_region(phys, order);
+ kfree(dma_info);
+ return NULL;
+ }
}
memset(ret, 0, size);
return ret;
@@ -312,6 +439,7 @@ xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
int order = get_order(size);
phys_addr_t phys;
u64 dma_mask = DMA_BIT_MASK(32);
+ struct xen_dma_info *dma_info = NULL;
if (dma_release_from_coherent(hwdev, order, vaddr))
return;
@@ -321,9 +449,14 @@ xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
phys = virt_to_phys(vaddr);
- if (((dev_addr + size - 1 > dma_mask)) ||
- range_straddles_page_boundary(phys, size))
+ if (xen_feature(XENFEAT_auto_translated_physmap) ||
+ (((dev_addr + size - 1 > dma_mask)) ||
+ range_straddles_page_boundary(phys, size))) {
xen_destroy_contiguous_region((unsigned long)vaddr, order);
+ dma_info = xen_get_dma_info_from_dma(dev_addr);
+ rb_erase(&dma_info->rbnode, &bus_to_phys);
+ kfree(dma_info);
+ }
free_pages((unsigned long)vaddr, order);
}
@@ -351,14 +484,19 @@ dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
- if (dma_capable(dev, dev_addr, size) &&
+ if (!xen_feature(XENFEAT_auto_translated_physmap) &&
+ dma_capable(dev, dev_addr, size) &&
!range_straddles_page_boundary(phys, size) && !swiotlb_force)
return dev_addr;
/*
* Oh well, have to allocate and map a bounce buffer.
+ * Pass the dma_addr of the first slab in the iotlb buffer as
+ * argument so that swiotlb_tbl_map_single is free to allocate
+ * the bounce buffer anywhere appropriate in io_tlb_start -
+ * io_tlb_end.
*/
- map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
+ map = swiotlb_tbl_map_single(dev, xen_dma_seg[0].dma_addr, phys, size, dir);
if (map == SWIOTLB_MAP_ERROR)
return DMA_ERROR_CODE;
@@ -494,10 +632,17 @@ xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
dma_addr_t dev_addr = xen_phys_to_bus(paddr);
if (swiotlb_force ||
+ xen_feature(XENFEAT_auto_translated_physmap) ||
!dma_capable(hwdev, dev_addr, sg->length) ||
range_straddles_page_boundary(paddr, sg->length)) {
+ /*
+ * Pass the dma_addr of the first slab in the iotlb buffer as
+ * argument so that swiotlb_tbl_map_single is free to allocate
+ * the bounce buffer anywhere appropriate in io_tlb_start -
+ * io_tlb_end.
+ */
phys_addr_t map = swiotlb_tbl_map_single(hwdev,
- start_dma_addr,
+ xen_dma_seg[0].dma_addr,
sg_phys(sg),
sg->length,
dir);