Message ID | 20201020031733.17883-3-yifeng.zhao@rock-chips.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Add Rockchip NFC drivers for RK3308 and others | expand |
Hi Yifeng, Miquèl and others, I've copied some comments from Miquèl from version 8 to this one here and added some more. ;) On 10/20/20 5:17 AM, Yifeng Zhao wrote: > This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, > RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using > 8-bit NAND interface on the ARM based RK3308 platform. > > Support Rockchip SoCs and NFC versions: > - PX30 and RK3326(NFCv900). > ECC: 16/40/60/70 bits/1KB. > CLOCK: ahb and nfc. > - RK3308 and RV1108(NFCv800). > ECC: 16 bits/1KB. > CLOCK: ahb and nfc. > - RK3036 and RK3128(NFCv622). > ECC: 16/24/40/60 bits/1KB. > CLOCK: ahb and nfc. > - RK3066, RK3188 and RK2928(NFCv600). > ECC: 16/24/40/60 bits/1KB. > CLOCK: ahb. > > Supported features: > - Read full page data by DMA. > - Support HW ECC(one step is 1KB). > - Support 2 - 32K page size. > - Support 8 CS(depend on SoCs) > > Limitations: > - No support for the ecc step size is 512. > - Untested on some SoCs. > - No support for subpages. > - No support for the builtin randomizer. > - The original bad block mask is not supported. It is recommended to use > the BBT(bad block table). > > Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com> > --- > > (no changes since v11) > > Changes in v11: > - Fix compile error. > > Changes in v10: > - Fix compile error on master v5.9-rc7. > > Changes in v9: > - The nfc->buffer will realloc while the page size of the second mtd > is large than the first one > - Fix coding style. > - Remove struct rk_nfc_clk. > - Prepend some function with rk_nfc_. > - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout. > - Remove function rk_nfc_read_byte and rk_nfc_write_byte. > - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. > - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. > > Changes in v7: > - Rebase to linux-next. > - Fix coding style. > - Reserved 4 bytes at the beginning of the oob area. > - Page raw read and write included ecc data. > > Changes in v6: > - The mtd->name set by NAND label property. > - Add some comments. > - Fix compile error. > > Changes in v5: > - Add boot blocks support with different ECC for bootROM. > - Rename rockchip-nand.c to rockchip-nand-controller.c. > - Unification of other variable names. > - Remove some compatible define. > > Changes in v4: > - Define platform data structure for the register offsets. > - The compatible define with rkxx_nfc. > - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. > - Use exec_op instead of legacy hooks. > > Changes in v2: > - Fix compile error. > - Include header files sorted by file name. > > drivers/mtd/nand/raw/Kconfig | 12 + > drivers/mtd/nand/raw/Makefile | 1 + > .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++ > 3 files changed, 1452 insertions(+) > create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index 6c46f25b57e2..2cc533e4e239 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN > Enables the driver for the Arasan NAND flash controller on > Zynq Ultrascale+ MPSoC. > > +config MTD_NAND_ROCKCHIP > + tristate "Rockchip NAND controller" > + depends on ARCH_ROCKCHIP && HAS_IOMEM > + help > + Enables support for NAND controller on Rockchip SoCs. > + There are four different versions of NAND FLASH Controllers, > + including: > + NFC v600: RK2928, RK3066, RK3188 > + NFC v622: RK3036, RK3128 > + NFC v800: RK3308, RV1108 > + NFC v900: PX30, RK3326 > + > comment "Misc" > > config MTD_SM_COMMON > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 2930f5b9015d..960c9be25204 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o > obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o > obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o > obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o > +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_onfi.o > diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c > new file mode 100644 > index 000000000000..cf28c5936209 > --- /dev/null > +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c > @@ -0,0 +1,1439 @@ > +// SPDX-License-Identifier: GPL-2.0 OR MIT > +/* > + * Rockchip NAND Flash controller driver. > + * Copyright (C) 2020 Rockchip Inc. > + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> > + */ > + > +#include <linux/clk.h> > +#include <linux/delay.h> > +#include <linux/dma-mapping.h> > +#include <linux/dmaengine.h> > +#include <linux/interrupt.h> > +#include <linux/iopoll.h> > +#include <linux/module.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/rawnand.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > +#include <linux/platform_device.h> > +#include <linux/slab.h> > + > +/* > + * NFC Page Data Layout: > + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + > + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + > + * ...... > + * NAND Page Data Layout: > + * 1024 * n Data + m Bytes oob > + * Original Bad Block Mask Location: > + * First byte of oob(spare). > + * nand_chip->oob_poi data layout: > + * 4Bytes sys data + .... + 4Bytes sys data + ecc data. > + */ > + > +/* NAND controller register definition */ > +#define NFC_READ (0) > +#define NFC_WRITE (1) > + > +#define NFC_FMCTL (0x00) > +#define FMCTL_CE_SEL_M 0xFF > +#define FMCTL_CE_SEL(x) (1 << (x)) > +#define FMCTL_WP BIT(8) > +#define FMCTL_RDY BIT(9) > + > +#define NFC_FMWAIT (0x04) > +#define FLCTL_RST BIT(0) > +#define FLCTL_WR (1) /* 0: read, 1: write */ > +#define FLCTL_XFER_ST BIT(2) > +#define FLCTL_XFER_EN BIT(3) > +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ > +#define FLCTL_XFER_READY BIT(20) > +#define FLCTL_XFER_SECTOR (22) > +#define FLCTL_TOG_FIX BIT(29) > + > +#define BCHCTL_BANK_M (7 << 5) > +#define BCHCTL_BANK (5) > + > +#define DMA_ST BIT(0) > +#define DMA_WR (1) /* 0: write, 1: read */ > +#define DMA_EN BIT(2) > +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ > +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ > +#define DMA_INC_NUM (9) /* 1 - 16 */ > + > +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ > + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) > +#define INT_DMA BIT(0) > +#define NFC_BANK (0x800) > +#define NFC_BANK_STEP (0x100) > +#define BANK_DATA (0x00) > +#define BANK_ADDR (0x04) > +#define BANK_CMD (0x08) > +#define NFC_SRAM0 (0x1000) > +#define NFC_SRAM1 (0x1400) > +#define NFC_SRAM_SIZE (0x400) > +#define NFC_TIMEOUT (500000) > +#define NFC_MAX_OOB_PER_STEP 128 > +#define NFC_MIN_OOB_PER_STEP 64 > +#define MAX_DATA_SIZE 0xFFFC > +#define MAX_ADDRESS_CYC 6 > +#define NFC_ECC_MAX_MODES 4 > +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ > +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ > +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ > +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) > + > +enum nfc_type { > + NFC_V6, > + NFC_V8, > + NFC_V9, > +}; > + > +/** > + * struct rk_ecc_cnt_status: represent a ecc status data. > + * @err_flag_bit: error flag bit index at register. > + * @low: ecc count low bit index at register. > + * @low_mask: mask bit. > + * @low_bn: ecc count low bit number. > + * @high: ecc count high bit index at register. > + * @high_mask: mask bit > + */ > +struct ecc_cnt_status { > + u8 err_flag_bit; > + u8 low; > + u8 low_mask; > + u8 low_bn; > + u8 high; > + u8 high_mask; > +}; > + > +/* > + * @type: nfc version > + * @ecc_strengths: ecc strengths > + * @ecc_cfgs: ecc config values > + * @flctl_off: FLCTL register offset > + * @bchctl_off: BCHCTL register offset > + * @dma_data_buf_off: DMA_DATA_BUF register offset > + * @dma_oob_buf_off: DMA_OOB_BUF register offset > + * @dma_cfg_off: DMA_CFG register offset > + * @dma_st_off: DMA_ST register offset > + * @bch_st_off: BCG_ST register offset > + * @randmz_off: RANDMZ register offset > + * @int_en_off: interrupt enable register offset > + * @int_clr_off: interrupt clean register offset > + * @int_st_off: interrupt status register offset > + * @oob0_off: oob0 register offset > + * @oob1_off: oob1 register offset > + * @ecc0: represent ECC0 status data > + * @ecc1: represent ECC1 status data > + */ > +struct nfc_cfg { > + enum nfc_type type; > + u8 ecc_strengths[NFC_ECC_MAX_MODES]; > + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; > + u32 flctl_off; > + u32 bchctl_off; > + u32 dma_cfg_off; > + u32 dma_data_buf_off; > + u32 dma_oob_buf_off; > + u32 dma_st_off; > + u32 bch_st_off; > + u32 randmz_off; > + u32 int_en_off; > + u32 int_clr_off; > + u32 int_st_off; > + u32 oob0_off; > + u32 oob1_off; > + struct ecc_cnt_status ecc0; > + struct ecc_cnt_status ecc1; > +}; > + > +struct rk_nfc_nand_chip { > + struct list_head node; > + struct nand_chip chip; > + > + u16 spare_per_sector; > + u16 oob_buf_per_sector; > + u16 boot_blks; > + u16 boot_ecc; > + u16 metadata_size; > + > + u8 nsels; > + u8 sels[0]; > + /* Nothing after this field. */ > +}; > + > +struct rk_nfc { > + struct nand_controller controller; > + const struct nfc_cfg *cfg; > + struct device *dev; > + > + struct clk *nfc_clk; > + struct clk *ahb_clk; > + void __iomem *regs; > + > + u32 selected_bank; > + u32 band_offset; > + u32 cur_clk; > + > + struct completion done; > + struct list_head chips; > + > + u8 *buffer; > + u8 *page_buf; > + u32 *oob_buf; > + u32 buffer_size; > + > + unsigned long assigned_cs; > +}; > + > +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip) > +{ > + return container_of(chip, struct rk_nfc_nand_chip, chip); > +} > + > +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, int i) rk_nfc_buf_to_data_ptr ? Comment by Miquèl: Please prepend all your functions with rk_nfc_ For the ftrace filters it is needed to have all functions start with the same prefix in a module. > +{ > + return (u8 *)p + i * chip->ecc.size; > +} > + > +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i) same here > +{ > + u8 *poi; > + > + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; > + > + return poi; > +} > + > +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i) same here > +{ > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + u8 *poi; > + > + poi = chip->oob_poi + rknand->metadata_size + > + chip->ecc.bytes * i; > + > + return poi; > +} > + > +static inline int rk_nfc_data_len(struct nand_chip *chip) > +{ > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + > + return chip->ecc.size + rknand->spare_per_sector; > +} > + > +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + > + return nfc->buffer + i * rk_nfc_data_len(chip); > +} > + > +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + > + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size; > +} > + > +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + u32 val; > + > + if (cs < 0) { > + nfc->selected_bank = -1; > + /* Deselect the currently selected target. */ > + val = readl_relaxed(nfc->regs + NFC_FMCTL); > + val &= ~FMCTL_CE_SEL_M; > + writel(val, nfc->regs + NFC_FMCTL); > + return; > + } > + > + nfc->selected_bank = rknand->sels[cs]; > + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; > + > + val = readl_relaxed(nfc->regs + NFC_FMCTL); > + val &= ~FMCTL_CE_SEL_M; > + val |= FMCTL_CE_SEL(nfc->selected_bank); > + > + writel(val, nfc->regs + NFC_FMCTL); > +} > + > +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) > +{ > + int rc; > + u32 val; > + > + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, > + val & FMCTL_RDY, 10, NFC_TIMEOUT); > + > + return rc; > +} > + > +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) > +{ > + int i; > + > + for (i = 0; i < len; i++) > + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + > + BANK_DATA); > +} > + > +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) > +{ > + int i; > + > + for (i = 0; i < len; i++) > + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); > +} > + > +static int rk_nfc_cmd(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + unsigned int i, j, remaining, start; > + int reg_offset = nfc->band_offset; > + u8 *inbuf = NULL; > + const u8 *outbuf; > + u32 cnt = 0; > + int ret = 0; > + > + for (i = 0; i < subop->ninstrs; i++) { > + const struct nand_op_instr *instr = &subop->instrs[i]; > + > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + writeb(instr->ctx.cmd.opcode, > + nfc->regs + reg_offset + BANK_CMD); > + break; > + > + case NAND_OP_ADDR_INSTR: > + remaining = nand_subop_get_num_addr_cyc(subop, i); > + start = nand_subop_get_addr_start_off(subop, i); > + > + for (j = 0; j < 8 && j + start < remaining; j++) > + writeb(instr->ctx.addr.addrs[j + start], > + nfc->regs + reg_offset + BANK_ADDR); > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + case NAND_OP_DATA_OUT_INSTR: > + start = nand_subop_get_data_start_off(subop, i); > + cnt = nand_subop_get_data_len(subop, i); > + > + if (instr->type == NAND_OP_DATA_OUT_INSTR) { > + outbuf = instr->ctx.data.buf.out + start; > + rk_nfc_write_buf(nfc, outbuf, cnt); > + } else { > + inbuf = instr->ctx.data.buf.in + start; > + rk_nfc_read_buf(nfc, inbuf, cnt); > + } > + break; > + > + case NAND_OP_WAITRDY_INSTR: > + if (rk_nfc_wait_ioready(nfc) < 0) { > + ret = -ETIMEDOUT; > + dev_err(nfc->dev, "IO not ready\n"); > + } > + break; > + } > + } > + > + return ret; > +} > + > +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( > + NAND_OP_PARSER_PATTERN( > + rk_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), > + NAND_OP_PARSER_PATTERN( > + rk_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > +); > + > +static int rk_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + if (!check_only) > + rk_nfc_select_chip(chip, op->cs); > + > + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, > + check_only); > +} > + > +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline, > + const struct nand_interface_config *conf) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + const struct nand_sdr_timings *timings; > + u32 rate, tc2rw, trwpw, trw2c; > + u32 temp; > + > + if (csline == NAND_DATA_IFACE_CHECK_ONLY) > + return 0; > + > + timings = nand_get_sdr_timings(conf); > + if (IS_ERR(timings)) > + return -EOPNOTSUPP; > + > + if (IS_ERR(nfc->nfc_clk)) > + rate = clk_get_rate(nfc->ahb_clk); > + else > + rate = clk_get_rate(nfc->nfc_clk); > + > + /* Turn clock rate into kHz. */ > + rate /= 1000; > + > + tc2rw = 1; > + trw2c = 1; > + > + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; > + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); > + > + temp = timings->tREA_max / 1000; > + temp = DIV_ROUND_UP(temp * rate, 1000000); > + > + if (trwpw < temp) > + trwpw = temp; > + > + /* > + * ACCON: access timing control register > + * ------------------------------------- > + * 31:18: reserved > + * 17:12: csrw, clock cycles from the falling edge of CSn to the > + * falling edge of RDn or WRn > + * 11:11: reserved > + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles > + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the > + * rising edge of CSn > + */ > + temp = ACCTIMING(tc2rw, trwpw, trw2c); > + writel(temp, nfc->regs + NFC_FMWAIT); > + > + return 0; > +} > + > +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, > + struct nand_ecc_ctrl *ecc, > + uint32_t strength) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + u32 reg, i; > + > + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { > + if (ecc->strength == nfc->cfg->ecc_strengths[i]) { > + reg = nfc->cfg->ecc_cfgs[i]; > + break; > + } > + } > + > + if (i >= NFC_ECC_MAX_MODES) > + return -EINVAL; > + > + writel(reg, nfc->regs + nfc->cfg->bchctl_off); > + > + return 0; > +} > + > +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, > + dma_addr_t dma_data, dma_addr_t dma_oob) > +{ > + u32 dma_reg, fl_reg, bch_reg; > + > + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | > + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); > + > + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | > + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; > + > + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { > + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); > + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | > + (nfc->selected_bank << BCHCTL_BANK); > + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); > + } > + > + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); > + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); > + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); > + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); > + fl_reg |= FLCTL_XFER_ST; > + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); > +} > + > +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) > +{ > + void __iomem *ptr; > + int ret = 0; > + u32 reg; > + > + ptr = nfc->regs + nfc->cfg->flctl_off; > + > + ret = readl_relaxed_poll_timeout(ptr, reg, > + reg & FLCTL_XFER_READY, > + 10, NFC_TIMEOUT); > + > + return ret; > +} > + > +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, > + int oob_on, int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + int ret = 0; > + u32 i; > + > + if (!buf) > + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); > + > + for (i = 0; i < chip->ecc.steps; i++) { > + /* Copy data to nfc buffer. */ > + if (buf) > + memcpy(rk_nfc_data_ptr(chip, i), > + nand_data_ptr(chip, buf, i), > + chip->ecc.size); > + /* > + * The first four bytes of OOB are reserved for the > + * boot ROM. In some debugging cases, sush as dump such as > + * data and write back, the last four bytes stored > + * in OOB need to be write back. such as with a read, erase and write back test these 4 bytes stored in OOB also need to be written back. > + */ > + if (!i) > + memcpy(rk_nfc_oob_ptr(chip, i), > + nand_oob_ptr(chip, chip->ecc.steps - 1), > + NFC_SYS_DATA_SIZE); > + else > + memcpy(rk_nfc_oob_ptr(chip, i), > + nand_oob_ptr(chip, i - 1), > + NFC_SYS_DATA_SIZE); > + /* Copy ecc data to nfc buffer. */ Copy ECC data to the NFC buffer. > + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, > + nand_oob_ecc_ptr(chip, i), > + chip->ecc.bytes); > + } > + > + nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); > + ret = nand_prog_page_end_op(chip); > + > + /* > + * Deselect the currently selected target after ops done, > + * otherwise the NAND flash will has extra power consumption. will have or use for example: Deselect the currently selected target after the ops is done to reduce the power consumption. > + */ > + rk_nfc_select_chip(chip, -1); > + > + return ret; > +} > + > +static int rk_nfc_write_oob(struct nand_chip *chip, int page) > +{ > + return rk_nfc_write_page_raw(chip, NULL, 1, page); > +} > + > +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, > + int oob_on, int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : > + NFC_MIN_OOB_PER_STEP; > + int pages_per_blk = mtd->erasesize / mtd->writesize; > + int ret = 0, i, boot_rom_mode = 0; > + dma_addr_t dma_data, dma_oob; > + u32 reg; > + u8 *oob; > + > + nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + > + memcpy(nfc->page_buf, buf, mtd->writesize); > + > + /* > + * The first blocks (4, 8 or 16 depending on the device) are used > + * by the boot ROM and the first 32 bits of oob need to link to OOB > + * the next page address in the same block. Add more explanation why: We can't copy OOB directly, because this page address conflicts with the bad block marker (BBM), so we shift all OOB including the BBM with 4 byte positions. As consequence the OOB size then is also reduced with 4 bytes. PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... If a NAND is not a boot medium the first 4 bytes are left untouched by writing 0xFF to them. 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... Could you include the above layout to make things more clear? > + * Config the ECC algorithm supported by the boot ROM. comment by Miquèl: s/Config/Configure/ > + */ > + if ((page < pages_per_blk * rknand->boot_blks) && > + (chip->options & NAND_IS_BOOT_MEDIUM)) { > + boot_rom_mode = 1; > + if (rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc, > + rknand->boot_ecc); > + } > + > + for (i = 0; i < ecc->steps; i++) { > + if (!i) { > + reg = 0xFFFFFFFF; > + } else { > + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; > + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | > + oob[3] << 24; > + } > + if (!i && boot_rom_mode) > + reg = (page & (pages_per_blk - 1)) * 4; > + > + if (nfc->cfg->type == NFC_V9) > + nfc->oob_buf[i] = reg; > + else > + nfc->oob_buf[i * oob_step / 4] = reg; Please use brackets. > + } > + > + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, Do you need this cast? > + mtd->writesize, DMA_TO_DEVICE); > + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, > + ecc->steps * oob_step, > + DMA_TO_DEVICE); > + > + reinit_completion(&nfc->done); > + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); > + > + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, > + dma_oob); > + ret = wait_for_completion_timeout(&nfc->done, > + msecs_to_jiffies(100)); > + if (!ret) > + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); > + /* > + * Whether the DMA transfer is completed or not. The driver > + * needs to check the NFC`s status register to see if the data > + * transfer was completed. > + */ > + ret = rk_nfc_wait_for_xfer_done(nfc); > + > + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, > + DMA_TO_DEVICE); > + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, > + DMA_TO_DEVICE); > + > + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); > + > + if (ret) { > + ret = -EIO; > + dev_err(nfc->dev, > + "write: wait transfer done timeout.\n"); > + } > + > + if (ret) > + return ret; > + > + ret = nand_prog_page_end_op(chip); > + > + /* > + * Deselect the currently selected target after ops done, > + * otherwise the NAND flash will has extra power consumption. will have or use for example: Deselect the currently selected target after the ops is done to reduce the power consumption. > + */ > + rk_nfc_select_chip(chip, -1); > + > + return ret; > +} > + > +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, > + int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + int i; > + > + nand_read_page_op(chip, page, 0, NULL, 0); > + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize); > + > + /* > + * Deselect the currently selected target after ops done, > + * otherwise the NAND flash will has extra power consumption. will have or use for example: Deselect the currently selected target after the ops is done to reduce the power consumption. > + */ > + rk_nfc_select_chip(chip, -1); > + > + for (i = 0; i < chip->ecc.steps; i++) { > + /* > + * The first four bytes of OOB are reserved for the > + * boot ROM. In some debugging cases, sush as dump data such as > + * and write back, it`s need to read out this four bytes, such as with a read, erase and write back test these 4 bytes also must be saved somewhere, > + * otherwise this information will be lost during write back. otherwise this information will be lost during a write back. > + */ > + if (!i) > + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1), > + rk_nfc_oob_ptr(chip, i), > + NFC_SYS_DATA_SIZE); > + else > + memcpy(nand_oob_ptr(chip, i - 1), > + rk_nfc_oob_ptr(chip, i), > + NFC_SYS_DATA_SIZE); > + /* Copy ecc data form nfc buffer. */ Copy ECC data from the NFC buffer. > + memcpy(nand_oob_ecc_ptr(chip, i), > + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, > + chip->ecc.bytes); > + /* Copy data form nfc buffer. */ Copy data from the NFC buffer. > + if (buf) > + memcpy(nand_data_ptr(chip, buf, i), > + rk_nfc_data_ptr(chip, i), > + chip->ecc.size); > + } > + > + return 0; > +} > + > +static int rk_nfc_read_oob(struct nand_chip *chip, int page) > +{ > + return rk_nfc_read_page_raw(chip, NULL, 1, page); > +} > + > +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, > + int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : > + NFC_MIN_OOB_PER_STEP; > + int pages_per_blk = mtd->erasesize / mtd->writesize; > + dma_addr_t dma_data, dma_oob; > + int ret = 0, i, boot_rom_mode = 0; > + int bitflips = 0, bch_st; > + u8 *oob; > + u32 tmp; > + > + nand_read_page_op(chip, page, 0, NULL, 0); > + > + dma_data = dma_map_single(nfc->dev, nfc->page_buf, > + mtd->writesize, > + DMA_FROM_DEVICE); > + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, > + ecc->steps * oob_step, > + DMA_FROM_DEVICE); > + > + /* > + * The first blocks (4, 8 or 16 depending on the device) > + * are used by the boot ROM. > + * Config the ECC algorithm supported by the boot ROM. > + */ > + if ((page < pages_per_blk * rknand->boot_blks) && > + (chip->options & NAND_IS_BOOT_MEDIUM)) { > + boot_rom_mode = 1; > + if (rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc, > + rknand->boot_ecc); > + } > + > + reinit_completion(&nfc->done); > + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); > + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, > + dma_oob); > + ret = wait_for_completion_timeout(&nfc->done, > + msecs_to_jiffies(100)); > + if (!ret) > + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); > + /* > + * Whether the DMA transfer is completed or not. The driver > + * needs to check the NFC`s status register to see if the data > + * transfer was completed. > + */ > + ret = rk_nfc_wait_for_xfer_done(nfc); > + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, > + DMA_FROM_DEVICE); > + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, > + DMA_FROM_DEVICE); > + > + if (ret) { > + bitflips = -EIO; > + dev_err(nfc->dev, > + "read: wait transfer done timeout.\n"); > + goto out; > + } > + > + for (i = 1; i < ecc->steps; i++) { > + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; > + if (nfc->cfg->type == NFC_V9) > + tmp = nfc->oob_buf[i]; > + else > + tmp = nfc->oob_buf[i * oob_step / 4]; > + *oob++ = (u8)tmp; > + *oob++ = (u8)(tmp >> 8); > + *oob++ = (u8)(tmp >> 16); > + *oob++ = (u8)(tmp >> 24); > + } > + > + for (i = 0; i < ecc->steps / 2; i++) { Brackets here as well please > + bch_st = readl_relaxed(nfc->regs + > + nfc->cfg->bch_st_off + i * 4); > + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || > + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { > + mtd->ecc_stats.failed++; > + /* ECC failed, return the minimum number of error bits */ > + bitflips = ecc->strength + 1; Could you explain why: bitflips = -1; changed to: bitflips = ecc->strength + 1; Comment by Miquèl: I think you should return 0. Then the upper layer will check for failures. > + } else { > + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); > + mtd->ecc_stats.corrected += ret; > + bitflips = max_t(u32, bitflips, ret); > + > + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); > + mtd->ecc_stats.corrected += ret; > + bitflips = max_t(u32, bitflips, ret); > + } > + } > +out: > + memcpy(buf, nfc->page_buf, mtd->writesize); > + > + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); > + > + if (bitflips > ecc->strength) > + dev_err(nfc->dev, "read page: %x ecc error!\n", page); > + > + /* > + * Deselect the currently selected target after ops done, > + * otherwise the NAND flash will has extra power consumption. will have or use for example: Deselect the currently selected target after the ops is done to reduce the power consumption. > + */ > + rk_nfc_select_chip(chip, -1); > + > + return bitflips; > +} > + > +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) > +{ > + /* Disable flash wp. */ > + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); > + /* Config default timing 40ns at 150 Mhz nfc clock. */ > + writel(0x1081, nfc->regs + NFC_FMWAIT); > + /* Disable randomizer and DMA. */ > + writel(0, nfc->regs + nfc->cfg->randmz_off); > + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); > + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); > +} > + > +static irqreturn_t rk_nfc_irq(int irq, void *id) > +{ > + struct rk_nfc *nfc = id; > + u32 sta, ien; > + > + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); > + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); > + > + if (!(sta & ien)) > + return IRQ_NONE; > + > + writel(sta, nfc->regs + nfc->cfg->int_clr_off); > + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); > + > + complete(&nfc->done); > + > + return IRQ_HANDLED; > +} > + > +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc) Change function name, because there are 2 clocks. _clks with an s to inform that there are several of them. _clk ==>> _clks > +{ > + int ret; > + > + if (!IS_ERR(nfc->nfc_clk)) { > + ret = clk_prepare_enable(nfc->nfc_clk); > + if (ret) { > + dev_err(dev, "failed to enable nfc clk\n"); > + return ret; > + } > + } > + > + ret = clk_prepare_enable(nfc->ahb_clk); > + if (ret) { > + dev_err(dev, "failed to enable ahb clk\n"); > + if (!IS_ERR(nfc->nfc_clk)) > + clk_disable_unprepare(nfc->nfc_clk); > + return ret; > + } > + > + return 0; > +} > + > +static void rk_nfc_disable_clk(struct rk_nfc *nfc) Change function name, because there are 2 clocks. ditto _clk ==>> _clks > +{ > + if (!IS_ERR(nfc->nfc_clk)) > + clk_disable_unprepare(nfc->nfc_clk); > + clk_disable_unprepare(nfc->ahb_clk); > +} > + > +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oob_region) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + > + if (section) > + return -ERANGE; > + > + /* > + * The beginning of the oob area stores the reserved data for the NFC, OOB area > + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. > + */ > + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; > + oob_region->offset = NFC_SYS_DATA_SIZE + 2; > + > + return 0; > +} > + > +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oob_region) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + > + if (section) > + return -ERANGE; > + > + oob_region->offset = rknand->metadata_size; > + oob_region->length = mtd->oobsize - oob_region->offset; oob_region->length = mtd->oobsize - oob_region->offset; oob_region->offset = rknand->metadata_size; Keep length and offset in the same sort order as in rk_nfc_ooblayout_free(). > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { > + .free = rk_nfc_ooblayout_free, > + .ecc = rk_nfc_ooblayout_ecc, > +}; > + > +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + const u8 *strengths = nfc->cfg->ecc_strengths; > + u8 max_strength, nfc_max_strength; > + int i; > + > + nfc_max_strength = nfc->cfg->ecc_strengths[0]; > + /* If optional dt settings not present. */ > + if (!ecc->size || !ecc->strength || > + ecc->strength > nfc_max_strength) { > + chip->ecc.size = 1024; > + ecc->steps = mtd->writesize / ecc->size; > + > + /* > + * HW ECC always requests the number of ECC bytes per 1024 byte > + * blocks. 4 Bytes is oob for sys data. The first 4 OOB bytes are reserved for sys data. > + */ > + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / > + fls(8 * 1024); > + if (max_strength > nfc_max_strength) > + max_strength = nfc_max_strength; > + > + for (i = 0; i < 4; i++) { > + if (max_strength >= strengths[i]) > + break; > + } > + > + if (i >= 4) { > + dev_err(nfc->dev, "Unsupported ECC strength\n"); > + return -EOPNOTSUPP; > + } > + > + ecc->strength = strengths[i]; > + } > + ecc->steps = mtd->writesize / ecc->size; > + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); > + /* HW ECC always work with even numbers of ECC bytes. */ > + ecc->bytes = ALIGN(ecc->bytes, 2); > + > + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); > + > + return 0; > +} > + > +static int rk_nfc_attach_chip(struct nand_chip *chip) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct device *dev = mtd->dev.parent; > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + u8 *temp_buf; > + int len, oob_len; > + int ret; > + > + if (chip->options & NAND_BUSWIDTH_16) { > + dev_err(dev, "16 bits bus width not supported"); > + return -EINVAL; > + } > + > + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) > + return 0; > + > + ret = rk_nfc_ecc_init(dev, mtd); > + if (ret) > + return ret; > + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; > + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; > + > + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { > + dev_err(dev, > + "Driver needs at least %d bytes of meta data\n", > + NFC_SYS_DATA_SIZE + 2); > + return -EIO; > + } > + len = mtd->writesize + mtd->oobsize; > + > + /* Check buffer first, avoid duplicate alloc buffer. */ > + if (nfc->buffer) { > + if (len > nfc->buffer_size) { Check only for buffer_size. Maybe split in 2. One size variable per buffer. Reorder flow, see example? > + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA); > + if (!temp_buf) > + return -ENOMEM; > + kfree(nfc->buffer); Is there a realloc for kernels or use helper? > + nfc->buffer = temp_buf; > + nfc->buffer_size = len; > + > + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; > + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); > + if (!temp_buf) > + return -ENOMEM; > + kfree(nfc->oob_buf); > + nfc->oob_buf = (u32 *)temp_buf; > + } > + return 0; > + } > + Example: // Check and resize existing buffer sizes. new_len = mtd->writesize + mtd->oobsize; if (nfc->buffer && new_len > nfc->buffer_size) { ret = resize(...); if (!ret) return -ENOMEM; nfc->buffer_size = new_len; } new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) { ret = resize(...); if (!ret) { free(nfc->buffer); return -ENOMEM; } nfc->oob_buffer_size = new_oob_len; } // If no buffers exists then create new buffers. if (!nfc->buffer) { ret = kzalloc(...); if (!ret) return -ENOMEM; nfc->buffer_size = new_len; } if (!nfc->oob_buf) { ret = kzalloc(...); if (!ret) { free(nfc->buffer); return -ENOMEM; } nfc->oob_buffer_size = new_oob_len; } > + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA); > + if (!nfc->buffer) > + return -ENOMEM; > + > + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; > + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); > + if (!nfc->oob_buf) { > + kfree(nfc->buffer); > + nfc->buffer = NULL; > + nfc->oob_buf = NULL; !nfc->oob_buf == (nfc->oob_buf = NULL) Comment from Miquèl: I don't think this is needed If something is NULL then there's no need to set it to NULL again. > + return -ENOMEM; > + } > + > + nfc->buffer_size = len; > + nfc->page_buf = nfc->buffer; > + > + chip->ecc.write_page_raw = rk_nfc_write_page_raw; > + chip->ecc.write_page = rk_nfc_write_page_hwecc; > + chip->ecc.write_oob_raw = rk_nfc_write_oob; > + chip->ecc.write_oob = rk_nfc_write_oob; > + > + chip->ecc.read_page_raw = rk_nfc_read_page_raw; > + chip->ecc.read_page = rk_nfc_read_page_hwecc; > + chip->ecc.read_oob_raw = rk_nfc_read_oob; > + chip->ecc.read_oob = rk_nfc_read_oob; > + > + return 0; > +} > + > +static const struct nand_controller_ops rk_nfc_controller_ops = { > + .attach_chip = rk_nfc_attach_chip, > + .exec_op = rk_nfc_exec_op, > + .setup_interface = rk_nfc_setup_data_interface, > +}; > + > +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, > + struct device_node *np) > +{ > + struct rk_nfc_nand_chip *rknand; > + struct nand_chip *chip; > + struct mtd_info *mtd; > + int nsels; > + u32 tmp; > + int ret; > + int i; > + > + if (!of_get_property(np, "reg", &nsels)) > + return -ENODEV; > + nsels /= sizeof(u32); > + if (!nsels || nsels > NFC_MAX_NSELS) { > + dev_err(dev, "invalid reg property size %d\n", nsels); > + return -EINVAL; > + } > + > + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), > + GFP_KERNEL); > + if (!rknand) > + return -ENOMEM; > + > + rknand->nsels = nsels; > + for (i = 0; i < nsels; i++) { > + ret = of_property_read_u32_index(np, "reg", i, &tmp); > + if (ret) { > + dev_err(dev, "reg property failure : %d\n", ret); > + return ret; > + } > + > + if (tmp >= NFC_MAX_NSELS) { > + dev_err(dev, "invalid CS: %u\n", tmp); > + return -EINVAL; > + } > + > + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { > + dev_err(dev, "CS %u already assigned\n", tmp); > + return -EINVAL; > + } > + > + rknand->sels[i] = tmp; > + } > + > + chip = &rknand->chip; > + chip->controller = &nfc->controller; > + > + nand_set_flash_node(chip, np); > + > + nand_set_controller_data(chip, nfc); > + > + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; > + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; > + > + /* Set default mode in case dt entry is missing. */ > + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; > + > + mtd = nand_to_mtd(chip); > + mtd->owner = THIS_MODULE; > + mtd->dev.parent = dev; > + > + if (!mtd->name) { > + dev_err(nfc->dev, "NAND label property is mandatory\n"); > + return -EINVAL; > + } > + > + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); > + rk_nfc_hw_init(nfc); > + ret = nand_scan(chip, nsels); > + if (ret) > + return ret; > + > + if (chip->options & NAND_IS_BOOT_MEDIUM) { > + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); > + rknand->boot_blks = ret ? 0 : tmp; Comment by Miquèl: Can't you guess this entry knowing the IP version/SoC version? No, "rockchip,boot-blks" depends on the size of multiple partitions and is user layout dependent. > + > + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", > + &tmp); > + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; > + } > + > + ret = mtd_device_register(mtd, NULL, 0); > + if (ret) { > + dev_err(dev, "mtd parse partition error\n"); > + nand_cleanup(chip); > + return ret; > + } > + > + list_add_tail(&rknand->node, &nfc->chips); > + > + return 0; > +} > + > +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) > +{ > + struct rk_nfc_nand_chip *rknand, *tmp; > + struct nand_chip *chip; > + int ret; > + > + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { > + chip = &rknand->chip; > + ret = mtd_device_unregister(nand_to_mtd(chip)); > + WARN_ON(ret); > + nand_cleanup(chip); > + list_del(&rknand->node); > + } > +} > + > +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) > +{ > + struct device_node *np = dev->of_node, *nand_np; > + int nchips = of_get_child_count(np); > + int ret; > + > + if (!nchips || nchips > NFC_MAX_NSELS) { > + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", > + nchips); > + return -EINVAL; > + } > + > + for_each_child_of_node(np, nand_np) { > + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); > + if (ret) { > + of_node_put(nand_np); > + rk_nfc_chips_cleanup(nfc); > + return ret; > + } > + } > + > + return 0; > +} > + > +static struct nfc_cfg nfc_v6_cfg = { > + .type = NFC_V6, > + .ecc_strengths = {60, 40, 24, 16}, > + .ecc_cfgs = { > + 0x00040011, 0x00040001, 0x00000011, 0x00000001, > + }, > + .flctl_off = 0x08, > + .bchctl_off = 0x0C, > + .dma_cfg_off = 0x10, > + .dma_data_buf_off = 0x14, > + .dma_oob_buf_off = 0x18, > + .dma_st_off = 0x1C, > + .bch_st_off = 0x20, > + .randmz_off = 0x150, > + .int_en_off = 0x16C, > + .int_clr_off = 0x170, > + .int_st_off = 0x174, > + .oob0_off = 0x200, > + .oob1_off = 0x230, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 27, > + .high_mask = 0x1, > + }, > + .ecc1 = { > + .err_flag_bit = 15, > + .low = 16, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 29, > + .high_mask = 0x1, > + }, > +}; > + > +static struct nfc_cfg nfc_v8_cfg = { > + .type = NFC_V8, > + .ecc_strengths = {16, 16, 16, 16}, > + .ecc_cfgs = { > + 0x00000001, 0x00000001, 0x00000001, 0x00000001, > + }, > + .flctl_off = 0x08, > + .bchctl_off = 0x0C, > + .dma_cfg_off = 0x10, > + .dma_data_buf_off = 0x14, > + .dma_oob_buf_off = 0x18, > + .dma_st_off = 0x1C, > + .bch_st_off = 0x20, > + .randmz_off = 0x150, > + .int_en_off = 0x16C, > + .int_clr_off = 0x170, > + .int_st_off = 0x174, > + .oob0_off = 0x200, > + .oob1_off = 0x230, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 27, > + .high_mask = 0x1, > + }, > + .ecc1 = { > + .err_flag_bit = 15, > + .low = 16, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 29, > + .high_mask = 0x1, > + }, > +}; > + > +static struct nfc_cfg nfc_v9_cfg = { > + .type = NFC_V9, > + .ecc_strengths = {70, 60, 40, 16}, > + .ecc_cfgs = { > + 0x00000001, 0x06000001, 0x04000001, 0x02000001, > + }, > + .flctl_off = 0x10, > + .bchctl_off = 0x20, > + .dma_cfg_off = 0x30, > + .dma_data_buf_off = 0x34, > + .dma_oob_buf_off = 0x38, > + .dma_st_off = 0x3C, > + .bch_st_off = 0x150, > + .randmz_off = 0x208, > + .int_en_off = 0x120, > + .int_clr_off = 0x124, > + .int_st_off = 0x128, > + .oob0_off = 0x200, > + .oob1_off = 0x204, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x7F, > + .low_bn = 7, > + .high = 0, > + .high_mask = 0x0, > + }, > + .ecc1 = { > + .err_flag_bit = 18, > + .low = 19, > + .low_mask = 0x7F, > + .low_bn = 7, > + .high = 0, > + .high_mask = 0x0, > + }, > +}; > + > +static const struct of_device_id rk_nfc_id_table[] = { > + { > + .compatible = "rockchip,px30-nfc", > + .data = &nfc_v9_cfg > + }, > + { > + .compatible = "rockchip,rk2928-nfc", > + .data = &nfc_v6_cfg > + }, > + { > + .compatible = "rockchip,rv1108-nfc", > + .data = &nfc_v8_cfg > + }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); > + > +static int rk_nfc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct rk_nfc *nfc; > + int ret, irq; > + > + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); > + if (!nfc) > + return -ENOMEM; > + > + nand_controller_init(&nfc->controller); > + INIT_LIST_HEAD(&nfc->chips); > + nfc->controller.ops = &rk_nfc_controller_ops; > + > + nfc->cfg = of_device_get_match_data(dev); > + nfc->dev = dev; > + > + init_completion(&nfc->done); > + > + nfc->regs = devm_platform_ioremap_resource(pdev, 0); > + if (IS_ERR(nfc->regs)) { > + ret = PTR_ERR(nfc->regs); > + goto release_nfc; > + } > + > + nfc->nfc_clk = devm_clk_get(dev, "nfc"); > + if (IS_ERR(nfc->nfc_clk)) { > + dev_dbg(dev, "no nfc clk\n"); > + /* Some earlier models, such as rk3066, have no nfc clk. */ > + } > + > + nfc->ahb_clk = devm_clk_get(dev, "ahb"); > + if (IS_ERR(nfc->ahb_clk)) { > + dev_err(dev, "no ahb clk\n"); > + ret = PTR_ERR(nfc->ahb_clk); > + goto release_nfc; > + } > + > + ret = rk_nfc_enable_clk(dev, nfc); > + if (ret) > + goto release_nfc; > + > + irq = platform_get_irq(pdev, 0); > + if (irq < 0) { > + dev_err(dev, "no nfc irq resource\n"); > + ret = -EINVAL; > + goto clk_disable; > + } > + > + writel(0, nfc->regs + nfc->cfg->int_en_off); > + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); > + if (ret) { > + dev_err(dev, "failed to request nfc irq\n"); > + goto clk_disable; > + } > + > + platform_set_drvdata(pdev, nfc); > + > + ret = rk_nfc_nand_chips_init(dev, nfc); > + if (ret) { > + dev_err(dev, "failed to init NAND chips\n"); > + goto clk_disable; > + } > + return 0; > + > +clk_disable: > + rk_nfc_disable_clk(nfc); > +release_nfc: > + return ret; > +} > + > +static int rk_nfc_remove(struct platform_device *pdev) > +{ > + struct rk_nfc *nfc = platform_get_drvdata(pdev); > + > + kfree(nfc->buffer); > + kfree(nfc->oob_buf); > + rk_nfc_chips_cleanup(nfc); > + rk_nfc_disable_clk(nfc); > + > + return 0; > +} > + > +static int __maybe_unused rk_nfc_suspend(struct device *dev) > +{ > + struct rk_nfc *nfc = dev_get_drvdata(dev); > + > + rk_nfc_disable_clk(nfc); > + > + return 0; > +} > + > +static int __maybe_unused rk_nfc_resume(struct device *dev) > +{ > + struct rk_nfc *nfc = dev_get_drvdata(dev); > + struct rk_nfc_nand_chip *rknand; > + struct nand_chip *chip; > + int ret; > + u32 i; > + > + ret = rk_nfc_enable_clk(dev, nfc); > + if (ret) > + return ret; > + > + /* Reset NAND chip if VCC was powered off. */ > + list_for_each_entry(rknand, &nfc->chips, node) { > + chip = &rknand->chip; > + for (i = 0; i < rknand->nsels; i++) > + nand_reset(chip, i); > + } > + > + return 0; > +} > + > +static const struct dev_pm_ops rk_nfc_pm_ops = { > + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) > +}; > + > +static struct platform_driver rk_nfc_driver = { > + .probe = rk_nfc_probe, > + .remove = rk_nfc_remove, > + .driver = { > + .name = "rockchip-nfc", > + .of_match_table = rk_nfc_id_table, > + .pm = &rk_nfc_pm_ops, > + }, > +}; > + > +module_platform_driver(rk_nfc_driver); > + > +MODULE_LICENSE("Dual MIT/GPL"); > +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); > +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); > +MODULE_ALIAS("platform:rockchip-nand-controller"); >
Hi Miquèl and Johan, I've fixed some comments, but there are still a few points I can`t understand. >Hi Yifeng, Miquèl and others, > >I've copied some comments from Miquèl from version 8 to this one here >and added some more. ;) > > >On 10/20/20 5:17 AM, Yifeng Zhao wrote: >> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, >> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using >> 8-bit NAND interface on the ARM based RK3308 platform. >> >> Support Rockchip SoCs and NFC versions: >> - PX30 and RK3326(NFCv900). >> ECC: 16/40/60/70 bits/1KB. >> CLOCK: ahb and nfc. >> - RK3308 and RV1108(NFCv800). >> ECC: 16 bits/1KB. >> CLOCK: ahb and nfc. >> - RK3036 and RK3128(NFCv622). >> ECC: 16/24/40/60 bits/1KB. >> CLOCK: ahb and nfc. >> - RK3066, RK3188 and RK2928(NFCv600). >> ECC: 16/24/40/60 bits/1KB. >> CLOCK: ahb. >> >> Supported features: >> - Read full page data by DMA. >> - Support HW ECC(one step is 1KB). >> - Support 2 - 32K page size. >> - Support 8 CS(depend on SoCs) >> >> Limitations: >> - No support for the ecc step size is 512. >> - Untested on some SoCs. >> - No support for subpages. >> - No support for the builtin randomizer. >> - The original bad block mask is not supported. It is recommended to use >> the BBT(bad block table). >> >> Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com> >> --- >> >> (no changes since v11) >> >> Changes in v11: >> - Fix compile error. >> >> Changes in v10: >> - Fix compile error on master v5.9-rc7. >> >> Changes in v9: >> - The nfc->buffer will realloc while the page size of the second mtd >> is large than the first one >> - Fix coding style. >> - Remove struct rk_nfc_clk. >> - Prepend some function with rk_nfc_. >> - Replace function readl_poll_timeout_atomic with >readl_relaxed_poll_timeout. >> - Remove function rk_nfc_read_byte and rk_nfc_write_byte. >> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. >> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. >> >> Changes in v7: >> - Rebase to linux-next. >> - Fix coding style. >> - Reserved 4 bytes at the beginning of the oob area. >> - Page raw read and write included ecc data. >> >> Changes in v6: >> - The mtd->name set by NAND label property. >> - Add some comments. >> - Fix compile error. >> >> Changes in v5: >> - Add boot blocks support with different ECC for bootROM. >> - Rename rockchip-nand.c to rockchip-nand-controller.c. >> - Unification of other variable names. >> - Remove some compatible define. >> >> Changes in v4: >> - Define platform data structure for the register offsets. >> - The compatible define with rkxx_nfc. >> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. >> - Use exec_op instead of legacy hooks. >> >> Changes in v2: >> - Fix compile error. >> - Include header files sorted by file name. >> >> drivers/mtd/nand/raw/Kconfig | 12 + >> drivers/mtd/nand/raw/Makefile | 1 + >> .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++ >> 3 files changed, 1452 insertions(+) >> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c >> >> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >> index 6c46f25b57e2..2cc533e4e239 100644 >> --- a/drivers/mtd/nand/raw/Kconfig >> +++ b/drivers/mtd/nand/raw/Kconfig >> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN >> Enables the driver for the Arasan NAND flash controller on >> Zynq Ultrascale+ MPSoC. >> >> +config MTD_NAND_ROCKCHIP >> + tristate "Rockchip NAND controller" >> + depends on ARCH_ROCKCHIP && HAS_IOMEM >> + help >> + Enables support for NAND controller on Rockchip SoCs. >> + There are four different versions of NAND FLASH Controllers, >> + including: >> + NFC v600: RK2928, RK3066, RK3188 >> + NFC v622: RK3036, RK3128 >> + NFC v800: RK3308, RV1108 >> + NFC v900: PX30, RK3326 >> + >> comment "Misc" >> >> config MTD_SM_COMMON >> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >> index 2930f5b9015d..960c9be25204 100644 >> --- a/drivers/mtd/nand/raw/Makefile >> +++ b/drivers/mtd/nand/raw/Makefile >> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o >> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o >> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o >> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o >> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o >> >> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o >nand_ids.o >> nand-objs += nand_onfi.o >> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c >b/drivers/mtd/nand/raw/rockchip-nand-controller.c >> new file mode 100644 >> index 000000000000..cf28c5936209 >> --- /dev/null >> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c >> @@ -0,0 +1,1439 @@ >> +// SPDX-License-Identifier: GPL-2.0 OR MIT >> +/* >> + * Rockchip NAND Flash controller driver. >> + * Copyright (C) 2020 Rockchip Inc. >> + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> >> + */ >> + >> +#include <linux/clk.h> >> +#include <linux/delay.h> >> +#include <linux/dma-mapping.h> >> +#include <linux/dmaengine.h> >> +#include <linux/interrupt.h> >> +#include <linux/iopoll.h> >> +#include <linux/module.h> >> +#include <linux/mtd/mtd.h> >> +#include <linux/mtd/rawnand.h> >> +#include <linux/of.h> >> +#include <linux/of_device.h> >> +#include <linux/platform_device.h> >> +#include <linux/slab.h> >> + >> +/* >> + * NFC Page Data Layout: >> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >> + * ...... >> + * NAND Page Data Layout: >> + * 1024 * n Data + m Bytes oob >> + * Original Bad Block Mask Location: >> + * First byte of oob(spare). >> + * nand_chip->oob_poi data layout: >> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data. >> + */ >> + >> +/* NAND controller register definition */ >> +#define NFC_READ (0) >> +#define NFC_WRITE (1) >> + >> +#define NFC_FMCTL (0x00) >> +#define FMCTL_CE_SEL_M 0xFF >> +#define FMCTL_CE_SEL(x) (1 << (x)) >> +#define FMCTL_WP BIT(8) >> +#define FMCTL_RDY BIT(9) >> + >> +#define NFC_FMWAIT (0x04) >> +#define FLCTL_RST BIT(0) >> +#define FLCTL_WR (1) /* 0: read, 1: write */ >> +#define FLCTL_XFER_ST BIT(2) >> +#define FLCTL_XFER_EN BIT(3) >> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ >> +#define FLCTL_XFER_READY BIT(20) >> +#define FLCTL_XFER_SECTOR (22) >> +#define FLCTL_TOG_FIX BIT(29) >> + >> +#define BCHCTL_BANK_M (7 << 5) >> +#define BCHCTL_BANK (5) >> + >> +#define DMA_ST BIT(0) >> +#define DMA_WR (1) /* 0: write, 1: read */ >> +#define DMA_EN BIT(2) >> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ >> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ >> +#define DMA_INC_NUM (9) /* 1 - 16 */ >> + >> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ >> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) >> +#define INT_DMA BIT(0) >> +#define NFC_BANK (0x800) >> +#define NFC_BANK_STEP (0x100) >> +#define BANK_DATA (0x00) >> +#define BANK_ADDR (0x04) >> +#define BANK_CMD (0x08) >> +#define NFC_SRAM0 (0x1000) >> +#define NFC_SRAM1 (0x1400) >> +#define NFC_SRAM_SIZE (0x400) >> +#define NFC_TIMEOUT (500000) >> +#define NFC_MAX_OOB_PER_STEP 128 >> +#define NFC_MIN_OOB_PER_STEP 64 >> +#define MAX_DATA_SIZE 0xFFFC >> +#define MAX_ADDRESS_CYC 6 >> +#define NFC_ECC_MAX_MODES 4 >> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ >> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 >data.*/ >> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ >> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) >> + >> +enum nfc_type { >> + NFC_V6, >> + NFC_V8, >> + NFC_V9, >> +}; >> + >> +/** >> + * struct rk_ecc_cnt_status: represent a ecc status data. >> + * @err_flag_bit: error flag bit index at register. >> + * @low: ecc count low bit index at register. >> + * @low_mask: mask bit. >> + * @low_bn: ecc count low bit number. >> + * @high: ecc count high bit index at register. >> + * @high_mask: mask bit >> + */ >> +struct ecc_cnt_status { >> + u8 err_flag_bit; >> + u8 low; >> + u8 low_mask; >> + u8 low_bn; >> + u8 high; >> + u8 high_mask; >> +}; >> + >> +/* >> + * @type: nfc version >> + * @ecc_strengths: ecc strengths >> + * @ecc_cfgs: ecc config values >> + * @flctl_off: FLCTL register offset >> + * @bchctl_off: BCHCTL register offset >> + * @dma_data_buf_off: DMA_DATA_BUF register offset >> + * @dma_oob_buf_off: DMA_OOB_BUF register offset >> + * @dma_cfg_off: DMA_CFG register offset >> + * @dma_st_off: DMA_ST register offset >> + * @bch_st_off: BCG_ST register offset >> + * @randmz_off: RANDMZ register offset >> + * @int_en_off: interrupt enable register offset >> + * @int_clr_off: interrupt clean register offset >> + * @int_st_off: interrupt status register offset >> + * @oob0_off: oob0 register offset >> + * @oob1_off: oob1 register offset >> + * @ecc0: represent ECC0 status data >> + * @ecc1: represent ECC1 status data >> + */ >> +struct nfc_cfg { >> + enum nfc_type type; >> + u8 ecc_strengths[NFC_ECC_MAX_MODES]; >> + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; >> + u32 flctl_off; >> + u32 bchctl_off; >> + u32 dma_cfg_off; >> + u32 dma_data_buf_off; >> + u32 dma_oob_buf_off; >> + u32 dma_st_off; >> + u32 bch_st_off; >> + u32 randmz_off; >> + u32 int_en_off; >> + u32 int_clr_off; >> + u32 int_st_off; >> + u32 oob0_off; >> + u32 oob1_off; >> + struct ecc_cnt_status ecc0; >> + struct ecc_cnt_status ecc1; >> +}; >> + >> +struct rk_nfc_nand_chip { >> + struct list_head node; >> + struct nand_chip chip; >> + >> + u16 spare_per_sector; >> + u16 oob_buf_per_sector; >> + u16 boot_blks; >> + u16 boot_ecc; >> + u16 metadata_size; >> + >> + u8 nsels; >> + u8 sels[0]; >> + /* Nothing after this field. */ >> +}; >> + >> +struct rk_nfc { >> + struct nand_controller controller; >> + const struct nfc_cfg *cfg; >> + struct device *dev; >> + >> + struct clk *nfc_clk; >> + struct clk *ahb_clk; >> + void __iomem *regs; >> + >> + u32 selected_bank; >> + u32 band_offset; >> + u32 cur_clk; >> + >> + struct completion done; >> + struct list_head chips; >> + >> + u8 *buffer; >> + u8 *page_buf; >> + u32 *oob_buf; >> + u32 buffer_size; >> + >> + unsigned long assigned_cs; >> +}; >> + >> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip) Fixed it.,to_rknand -> rk_nfc_to_rknand >> +{ >> + return container_of(chip, struct rk_nfc_nand_chip, chip); >> +} >> + >> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, >int i) > >rk_nfc_buf_to_data_ptr ? >Comment by Miquèl: >Please prepend all your functions with rk_nfc_ > >For the ftrace filters it is needed to have all functions start with >the same prefix in a module. > > >> +{ >> + return (u8 *)p + i * chip->ecc.size; >> +} >> + >> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i) > >same here >> +{ >> + u8 *poi; >> + >> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; >> + >> + return poi; >> +} >> + >> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i) > >same here >> +{ >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + u8 *poi; >> + >> + poi = chip->oob_poi + rknand->metadata_size + >> + chip->ecc.bytes * i; >> + >> + return poi; >> +} >> + >> +static inline int rk_nfc_data_len(struct nand_chip *chip) >> +{ >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + >> + return chip->ecc.size + rknand->spare_per_sector; >> +} >> + >> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + >> + return nfc->buffer + i * rk_nfc_data_len(chip); >> +} >> + >> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + >> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size; >> +} >> + >> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + u32 val; >> + >> + if (cs < 0) { >> + nfc->selected_bank = -1; >> + /* Deselect the currently selected target. */ >> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >> + val &= ~FMCTL_CE_SEL_M; >> + writel(val, nfc->regs + NFC_FMCTL); >> + return; >> + } >> + >> + nfc->selected_bank = rknand->sels[cs]; >> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; >> + >> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >> + val &= ~FMCTL_CE_SEL_M; >> + val |= FMCTL_CE_SEL(nfc->selected_bank); >> + >> + writel(val, nfc->regs + NFC_FMCTL); >> +} >> + >> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) >> +{ >> + int rc; >> + u32 val; >> + >> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, >> + val & FMCTL_RDY, 10, NFC_TIMEOUT); >> + >> + return rc; >> +} >> + >> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) >> +{ >> + int i; >> + >> + for (i = 0; i < len; i++) >> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + >> + BANK_DATA); >> +} >> + >> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) >> +{ >> + int i; >> + >> + for (i = 0; i < len; i++) >> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); >> +} >> + >> +static int rk_nfc_cmd(struct nand_chip *chip, >> + const struct nand_subop *subop) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + unsigned int i, j, remaining, start; >> + int reg_offset = nfc->band_offset; >> + u8 *inbuf = NULL; >> + const u8 *outbuf; >> + u32 cnt = 0; >> + int ret = 0; >> + >> + for (i = 0; i < subop->ninstrs; i++) { >> + const struct nand_op_instr *instr = &subop->instrs[i]; >> + >> + switch (instr->type) { >> + case NAND_OP_CMD_INSTR: >> + writeb(instr->ctx.cmd.opcode, >> + nfc->regs + reg_offset + BANK_CMD); >> + break; >> + >> + case NAND_OP_ADDR_INSTR: >> + remaining = nand_subop_get_num_addr_cyc(subop, i); >> + start = nand_subop_get_addr_start_off(subop, i); >> + >> + for (j = 0; j < 8 && j + start < remaining; j++) >> + writeb(instr->ctx.addr.addrs[j + start], >> + nfc->regs + reg_offset + BANK_ADDR); >> + break; >> + >> + case NAND_OP_DATA_IN_INSTR: >> + case NAND_OP_DATA_OUT_INSTR: >> + start = nand_subop_get_data_start_off(subop, i); >> + cnt = nand_subop_get_data_len(subop, i); >> + >> + if (instr->type == NAND_OP_DATA_OUT_INSTR) { >> + outbuf = instr->ctx.data.buf.out + start; >> + rk_nfc_write_buf(nfc, outbuf, cnt); >> + } else { >> + inbuf = instr->ctx.data.buf.in + start; >> + rk_nfc_read_buf(nfc, inbuf, cnt); >> + } >> + break; >> + >> + case NAND_OP_WAITRDY_INSTR: >> + if (rk_nfc_wait_ioready(nfc) < 0) { >> + ret = -ETIMEDOUT; >> + dev_err(nfc->dev, "IO not ready\n"); >> + } >> + break; >> + } >> + } >> + >> + return ret; >> +} >> + >> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( >> + NAND_OP_PARSER_PATTERN( >> + rk_nfc_cmd, >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), >> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), >> + NAND_OP_PARSER_PATTERN( >> + rk_nfc_cmd, >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), >> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), >> +); >> + >> +static int rk_nfc_exec_op(struct nand_chip *chip, >> + const struct nand_operation *op, >> + bool check_only) >> +{ >> + if (!check_only) >> + rk_nfc_select_chip(chip, op->cs); >> + >> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, >> + check_only); >> +} >> + >> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int >csline, >> + const struct nand_interface_config *conf) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + const struct nand_sdr_timings *timings; >> + u32 rate, tc2rw, trwpw, trw2c; >> + u32 temp; >> + >> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >> + return 0; >> + >> + timings = nand_get_sdr_timings(conf); >> + if (IS_ERR(timings)) >> + return -EOPNOTSUPP; >> + >> + if (IS_ERR(nfc->nfc_clk)) >> + rate = clk_get_rate(nfc->ahb_clk); >> + else >> + rate = clk_get_rate(nfc->nfc_clk); >> + >> + /* Turn clock rate into kHz. */ >> + rate /= 1000; >> + >> + tc2rw = 1; >> + trw2c = 1; >> + >> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; >> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); >> + >> + temp = timings->tREA_max / 1000; >> + temp = DIV_ROUND_UP(temp * rate, 1000000); >> + >> + if (trwpw < temp) >> + trwpw = temp; >> + >> + /* >> + * ACCON: access timing control register >> + * ------------------------------------- >> + * 31:18: reserved >> + * 17:12: csrw, clock cycles from the falling edge of CSn to the >> + * falling edge of RDn or WRn >> + * 11:11: reserved >> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles >> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the >> + * rising edge of CSn >> + */ >> + temp = ACCTIMING(tc2rw, trwpw, trw2c); >> + writel(temp, nfc->regs + NFC_FMWAIT); >> + >> + return 0; >> +} >> + >> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, >> + struct nand_ecc_ctrl *ecc, >> + uint32_t strength) >> +{ >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + u32 reg, i; >> + >> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { >> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) { >> + reg = nfc->cfg->ecc_cfgs[i]; >> + break; >> + } >> + } >> + >> + if (i >= NFC_ECC_MAX_MODES) >> + return -EINVAL; >> + >> + writel(reg, nfc->regs + nfc->cfg->bchctl_off); >> + >> + return 0; >> +} >> + >> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, >> + dma_addr_t dma_data, dma_addr_t dma_oob) >> +{ >> + u32 dma_reg, fl_reg, bch_reg; >> + >> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | >> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); >> + >> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | >> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; >> + >> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { >> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); >> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | >> + (nfc->selected_bank << BCHCTL_BANK); >> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); >> + } >> + >> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); >> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); >> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); >> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >> + fl_reg |= FLCTL_XFER_ST; >> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >> +} >> + >> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) >> +{ >> + void __iomem *ptr; >> + int ret = 0; >> + u32 reg; >> + >> + ptr = nfc->regs + nfc->cfg->flctl_off; >> + >> + ret = readl_relaxed_poll_timeout(ptr, reg, >> + reg & FLCTL_XFER_READY, >> + 10, NFC_TIMEOUT); >> + >> + return ret; >> +} >> + >> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, >> + int oob_on, int page) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + int ret = 0; >> + u32 i; >> + >> + if (!buf) >> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); >> + >> + for (i = 0; i < chip->ecc.steps; i++) { >> + /* Copy data to nfc buffer. */ >> + if (buf) >> + memcpy(rk_nfc_data_ptr(chip, i), >> + nand_data_ptr(chip, buf, i), >> + chip->ecc.size); > >> + /* >> + * The first four bytes of OOB are reserved for the >> + * boot ROM. In some debugging cases, sush as dump > >such as > >> + * data and write back, the last four bytes stored >> + * in OOB need to be write back. > >such as with a read, erase and write back test >these 4 bytes stored in OOB also need to be written back. >> + */ >> + if (!i) >> + memcpy(rk_nfc_oob_ptr(chip, i), >> + nand_oob_ptr(chip, chip->ecc.steps - 1), >> + NFC_SYS_DATA_SIZE); >> + else >> + memcpy(rk_nfc_oob_ptr(chip, i), >> + nand_oob_ptr(chip, i - 1), >> + NFC_SYS_DATA_SIZE); >> + /* Copy ecc data to nfc buffer. */ > >Copy ECC data to the NFC buffer. >> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >> + nand_oob_ecc_ptr(chip, i), >> + chip->ecc.bytes); >> + } >> + >> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); >> + ret = nand_prog_page_end_op(chip); >> + >> + /* >> + * Deselect the currently selected target after ops done, >> + * otherwise the NAND flash will has extra power consumption. > >will have > >or use for example: > >Deselect the currently selected target after the ops is done >to reduce the power consumption. > >> + */ >> + rk_nfc_select_chip(chip, -1); >> + >> + return ret; >> +} >> + >> +static int rk_nfc_write_oob(struct nand_chip *chip, int page) >> +{ >> + return rk_nfc_write_page_raw(chip, NULL, 1, page); >> +} >> + >> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, >> + int oob_on, int page) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + struct nand_ecc_ctrl *ecc = &chip->ecc; >> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >> + NFC_MIN_OOB_PER_STEP; >> + int pages_per_blk = mtd->erasesize / mtd->writesize; >> + int ret = 0, i, boot_rom_mode = 0; >> + dma_addr_t dma_data, dma_oob; >> + u32 reg; >> + u8 *oob; >> + >> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >> + >> + memcpy(nfc->page_buf, buf, mtd->writesize); >> + >> + /* >> + * The first blocks (4, 8 or 16 depending on the device) are used >> + * by the boot ROM and the first 32 bits of oob need to link to > >OOB > >> + * the next page address in the same block. > >Add more explanation why: > >We can't copy OOB directly, >because this page address conflicts with the bad block marker (BBM), >so we shift all OOB including the BBM with 4 byte positions. >As consequence the OOB size then is also reduced with 4 bytes. > >PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... > >If a NAND is not a boot medium the first 4 bytes are left untouched >by writing 0xFF to them. > >0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... > > >Could you include the above layout to make things more clear? > >> + * Config the ECC algorithm supported by the boot ROM. > >comment by Miquèl: > >s/Config/Configure/ modified, please check again... /* * The first blocks (4, 8 or 16 depending on the device) are used * by the boot ROM and the first 32 bits of OOB need to link to * the next page address in the same block. We can't copy OOB * directly, because this page address conflicts with the bad block * marker (BBM), so we shift all OOB including the BBM with 4 byte * positions. As consequence the OOB size then is also reduced with * 4 bytes. * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... * If a NAND is not a boot medium, the first 4 bytes are left untouched * by writing 0xFF to them. * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... */ > >> + */ >> + if ((page < pages_per_blk * rknand->boot_blks) && >> + (chip->options & NAND_IS_BOOT_MEDIUM)) { >> + boot_rom_mode = 1; >> + if (rknand->boot_ecc != ecc->strength) >> + rk_nfc_hw_ecc_setup(chip, ecc, >> + rknand->boot_ecc); >> + } >> + >> + for (i = 0; i < ecc->steps; i++) { >> + if (!i) { >> + reg = 0xFFFFFFFF; >> + } else { >> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | >> + oob[3] << 24; >> + } >> + if (!i && boot_rom_mode) >> + reg = (page & (pages_per_blk - 1)) * 4; >> + >> + if (nfc->cfg->type == NFC_V9) >> + nfc->oob_buf[i] = reg; >> + else >> + nfc->oob_buf[i * oob_step / 4] = reg; > >Please use brackets. I don't understand this. Can you give an example of how to modify it? >> + } >> + >> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, > >Do you need this cast? Yes, need dma_map_single to get phy_addr and do cache ops. >> + mtd->writesize, DMA_TO_DEVICE); >> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >> + ecc->steps * oob_step, >> + DMA_TO_DEVICE); >> + >> + reinit_completion(&nfc->done); >> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >> + >> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, >> + dma_oob); >> + ret = wait_for_completion_timeout(&nfc->done, >> + msecs_to_jiffies(100)); >> + if (!ret) >> + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); >> + /* >> + * Whether the DMA transfer is completed or not. The driver >> + * needs to check the NFC`s status register to see if the data >> + * transfer was completed. >> + */ >> + ret = rk_nfc_wait_for_xfer_done(nfc); >> + >> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >> + DMA_TO_DEVICE); >> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >> + DMA_TO_DEVICE); >> + >> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >> + >> + if (ret) { >> + ret = -EIO; >> + dev_err(nfc->dev, >> + "write: wait transfer done timeout.\n"); >> + } >> + >> + if (ret) >> + return ret; >> + >> + ret = nand_prog_page_end_op(chip); >> + >> + /* >> + * Deselect the currently selected target after ops done, > >> + * otherwise the NAND flash will has extra power consumption. > >will have > >or use for example: > >Deselect the currently selected target after the ops is done >to reduce the power consumption. >> + */ >> + rk_nfc_select_chip(chip, -1); >> + >> + return ret; >> +} >> + >> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int >oob_on, >> + int page) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + int i; >> + >> + nand_read_page_op(chip, page, 0, NULL, 0); >> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize); >> + >> + /* >> + * Deselect the currently selected target after ops done, > >> + * otherwise the NAND flash will has extra power consumption. > >will have > >or use for example: > >Deselect the currently selected target after the ops is done >to reduce the power consumption. >> + */ >> + rk_nfc_select_chip(chip, -1); >> + >> + for (i = 0; i < chip->ecc.steps; i++) { > >> + /* >> + * The first four bytes of OOB are reserved for the >> + * boot ROM. In some debugging cases, sush as dump data > >such as > >> + * and write back, it`s need to read out this four bytes, > >such as with a read, erase and write back test >these 4 bytes also must be saved somewhere, > >> + * otherwise this information will be lost during write back. > >otherwise this information will be lost during a write back. >> + */ >> + if (!i) >> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1), >> + rk_nfc_oob_ptr(chip, i), >> + NFC_SYS_DATA_SIZE); >> + else >> + memcpy(nand_oob_ptr(chip, i - 1), >> + rk_nfc_oob_ptr(chip, i), >> + NFC_SYS_DATA_SIZE); > >> + /* Copy ecc data form nfc buffer. */ > >Copy ECC data from the NFC buffer. >> + memcpy(nand_oob_ecc_ptr(chip, i), >> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >> + chip->ecc.bytes); > >> + /* Copy data form nfc buffer. */ > >Copy data from the NFC buffer. >> + if (buf) >> + memcpy(nand_data_ptr(chip, buf, i), >> + rk_nfc_data_ptr(chip, i), >> + chip->ecc.size); >> + } >> + >> + return 0; >> +} >> + >> +static int rk_nfc_read_oob(struct nand_chip *chip, int page) >> +{ >> + return rk_nfc_read_page_raw(chip, NULL, 1, page); >> +} >> + >> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, >int oob_on, >> + int page) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + struct nand_ecc_ctrl *ecc = &chip->ecc; >> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >> + NFC_MIN_OOB_PER_STEP; >> + int pages_per_blk = mtd->erasesize / mtd->writesize; >> + dma_addr_t dma_data, dma_oob; >> + int ret = 0, i, boot_rom_mode = 0; >> + int bitflips = 0, bch_st; >> + u8 *oob; >> + u32 tmp; >> + >> + nand_read_page_op(chip, page, 0, NULL, 0); >> + >> + dma_data = dma_map_single(nfc->dev, nfc->page_buf, >> + mtd->writesize, >> + DMA_FROM_DEVICE); >> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >> + ecc->steps * oob_step, >> + DMA_FROM_DEVICE); >> + >> + /* >> + * The first blocks (4, 8 or 16 depending on the device) >> + * are used by the boot ROM. >> + * Config the ECC algorithm supported by the boot ROM. >> + */ >> + if ((page < pages_per_blk * rknand->boot_blks) && >> + (chip->options & NAND_IS_BOOT_MEDIUM)) { >> + boot_rom_mode = 1; >> + if (rknand->boot_ecc != ecc->strength) >> + rk_nfc_hw_ecc_setup(chip, ecc, >> + rknand->boot_ecc); >> + } >> + >> + reinit_completion(&nfc->done); >> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, >> + dma_oob); >> + ret = wait_for_completion_timeout(&nfc->done, >> + msecs_to_jiffies(100)); >> + if (!ret) >> + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); >> + /* >> + * Whether the DMA transfer is completed or not. The driver >> + * needs to check the NFC`s status register to see if the data >> + * transfer was completed. >> + */ >> + ret = rk_nfc_wait_for_xfer_done(nfc); >> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >> + DMA_FROM_DEVICE); >> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >> + DMA_FROM_DEVICE); >> + >> + if (ret) { >> + bitflips = -EIO; >> + dev_err(nfc->dev, >> + "read: wait transfer done timeout.\n"); >> + goto out; >> + } >> + >> + for (i = 1; i < ecc->steps; i++) { >> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >> + if (nfc->cfg->type == NFC_V9) >> + tmp = nfc->oob_buf[i]; >> + else >> + tmp = nfc->oob_buf[i * oob_step / 4]; >> + *oob++ = (u8)tmp; >> + *oob++ = (u8)(tmp >> 8); >> + *oob++ = (u8)(tmp >> 16); >> + *oob++ = (u8)(tmp >> 24); >> + } >> + >> + for (i = 0; i < ecc->steps / 2; i++) { > >Brackets here as well please I don't understand this. Can you give an example of how to modify it? >> + bch_st = readl_relaxed(nfc->regs + >> + nfc->cfg->bch_st_off + i * 4); >> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || >> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { >> + mtd->ecc_stats.failed++; >> + /* ECC failed, return the minimum number of error bits */ >> + bitflips = ecc->strength + 1; > >Could you explain why: > >bitflips = -1; > >changed to: > >bitflips = ecc->strength + 1; > > >Comment by Miquèl: > >I think you should return 0. > >Then the upper layer will check for failures. > >> + } else { >> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); >> + mtd->ecc_stats.corrected += ret; >> + bitflips = max_t(u32, bitflips, ret); >> + >> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); >> + mtd->ecc_stats.corrected += ret; >> + bitflips = max_t(u32, bitflips, ret); >> + } >> + } >> +out: >> + memcpy(buf, nfc->page_buf, mtd->writesize); >> + >> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >> + >> + if (bitflips > ecc->strength) >> + dev_err(nfc->dev, "read page: %x ecc error!\n", page); >> + >> + /* >> + * Deselect the currently selected target after ops done, > >> + * otherwise the NAND flash will has extra power consumption. > >will have > >or use for example: > >Deselect the currently selected target after the ops is done >to reduce the power consumption. > >> + */ >> + rk_nfc_select_chip(chip, -1); >> + >> + return bitflips; >> +} >> + >> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) >> +{ >> + /* Disable flash wp. */ >> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); >> + /* Config default timing 40ns at 150 Mhz nfc clock. */ >> + writel(0x1081, nfc->regs + NFC_FMWAIT); >> + /* Disable randomizer and DMA. */ >> + writel(0, nfc->regs + nfc->cfg->randmz_off); >> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); >> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); >> +} >> + >> +static irqreturn_t rk_nfc_irq(int irq, void *id) >> +{ >> + struct rk_nfc *nfc = id; >> + u32 sta, ien; >> + >> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); >> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); >> + >> + if (!(sta & ien)) >> + return IRQ_NONE; >> + >> + writel(sta, nfc->regs + nfc->cfg->int_clr_off); >> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); >> + >> + complete(&nfc->done); >> + >> + return IRQ_HANDLED; >> +} >> + >> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc) > >Change function name, because there are 2 clocks. > >_clks with an s to inform that there are several of them. > >_clk ==>> _clks > >> +{ >> + int ret; >> + >> + if (!IS_ERR(nfc->nfc_clk)) { >> + ret = clk_prepare_enable(nfc->nfc_clk); >> + if (ret) { >> + dev_err(dev, "failed to enable nfc clk\n"); >> + return ret; >> + } >> + } >> + >> + ret = clk_prepare_enable(nfc->ahb_clk); >> + if (ret) { >> + dev_err(dev, "failed to enable ahb clk\n"); >> + if (!IS_ERR(nfc->nfc_clk)) >> + clk_disable_unprepare(nfc->nfc_clk); >> + return ret; >> + } >> + >> + return 0; >> +} >> + >> +static void rk_nfc_disable_clk(struct rk_nfc *nfc) > >Change function name, because there are 2 clocks. > >ditto > >_clk ==>> _clks > >> +{ >> + if (!IS_ERR(nfc->nfc_clk)) >> + clk_disable_unprepare(nfc->nfc_clk); >> + clk_disable_unprepare(nfc->ahb_clk); >> +} >> + >> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oob_region) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + >> + if (section) >> + return -ERANGE; >> + >> + /* >> + * The beginning of the oob area stores the reserved data for the NFC, > >OOB area > >> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. >> + */ >> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; >> + oob_region->offset = NFC_SYS_DATA_SIZE + 2; >> + >> + return 0; >> +} >> + >> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oob_region) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + >> + if (section) >> + return -ERANGE; >> + > >> + oob_region->offset = rknand->metadata_size; >> + oob_region->length = mtd->oobsize - oob_region->offset; > > oob_region->length = mtd->oobsize - oob_region->offset; > oob_region->offset = rknand->metadata_size; > >Keep length and offset in the same sort order as in rk_nfc_ooblayout_free(). modified: oob_region->length = mtd->oobsize - rknand->metadata_size; oob_region->offset = rknand->metadata_size; >> + >> + return 0; >> +} >> + >> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { >> + .free = rk_nfc_ooblayout_free, >> + .ecc = rk_nfc_ooblayout_ecc, >> +}; >> + >> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) >> +{ >> + struct nand_chip *chip = mtd_to_nand(mtd); >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + struct nand_ecc_ctrl *ecc = &chip->ecc; >> + const u8 *strengths = nfc->cfg->ecc_strengths; >> + u8 max_strength, nfc_max_strength; >> + int i; >> + >> + nfc_max_strength = nfc->cfg->ecc_strengths[0]; >> + /* If optional dt settings not present. */ >> + if (!ecc->size || !ecc->strength || >> + ecc->strength > nfc_max_strength) { >> + chip->ecc.size = 1024; >> + ecc->steps = mtd->writesize / ecc->size; >> + >> + /* >> + * HW ECC always requests the number of ECC bytes per 1024 byte > >> + * blocks. 4 Bytes is oob for sys data. > >The first 4 OOB bytes are reserved for sys data. >> + */ >> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / >> + fls(8 * 1024); >> + if (max_strength > nfc_max_strength) >> + max_strength = nfc_max_strength; >> + >> + for (i = 0; i < 4; i++) { >> + if (max_strength >= strengths[i]) >> + break; >> + } >> + >> + if (i >= 4) { >> + dev_err(nfc->dev, "Unsupported ECC strength\n"); >> + return -EOPNOTSUPP; >> + } >> + >> + ecc->strength = strengths[i]; >> + } >> + ecc->steps = mtd->writesize / ecc->size; >> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); >> + /* HW ECC always work with even numbers of ECC bytes. */ >> + ecc->bytes = ALIGN(ecc->bytes, 2); >> + >> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >> + >> + return 0; >> +} >> + >> +static int rk_nfc_attach_chip(struct nand_chip *chip) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct device *dev = mtd->dev.parent; >> + struct rk_nfc *nfc = nand_get_controller_data(chip); >> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >> + struct nand_ecc_ctrl *ecc = &chip->ecc; >> + u8 *temp_buf; >> + int len, oob_len; >> + int ret; >> + >> + if (chip->options & NAND_BUSWIDTH_16) { >> + dev_err(dev, "16 bits bus width not supported"); >> + return -EINVAL; >> + } >> + >> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) >> + return 0; >> + >> + ret = rk_nfc_ecc_init(dev, mtd); >> + if (ret) >> + return ret; >> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; >> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; >> + >> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { >> + dev_err(dev, >> + "Driver needs at least %d bytes of meta data\n", >> + NFC_SYS_DATA_SIZE + 2); >> + return -EIO; >> + } > >> + len = mtd->writesize + mtd->oobsize; > >> + >> + /* Check buffer first, avoid duplicate alloc buffer. */ >> + if (nfc->buffer) { >> + if (len > nfc->buffer_size) { > >Check only for buffer_size. >Maybe split in 2. One size variable per buffer. >Reorder flow, see example? > >> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA); >> + if (!temp_buf) >> + return -ENOMEM; >> + kfree(nfc->buffer); > >Is there a realloc for kernels or use helper? > >> + nfc->buffer = temp_buf; >> + nfc->buffer_size = len; >> + >> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >> + if (!temp_buf) >> + return -ENOMEM; >> + kfree(nfc->oob_buf); >> + nfc->oob_buf = (u32 *)temp_buf; >> + } >> + return 0; >> + } >> + > >Example: > >// Check and resize existing buffer sizes. > >new_len = mtd->writesize + mtd->oobsize; > >if (nfc->buffer && new_len > nfc->buffer_size) { > ret = resize(...); > if (!ret) > return -ENOMEM; > nfc->buffer_size = new_len; >} > >new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; > >if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) { > ret = resize(...); > if (!ret) { > free(nfc->buffer); > return -ENOMEM; > } > nfc->oob_buffer_size = new_oob_len; >} > >// If no buffers exists then create new buffers. > >if (!nfc->buffer) { > ret = kzalloc(...); > if (!ret) > return -ENOMEM; > nfc->buffer_size = new_len; >} > >if (!nfc->oob_buf) { > ret = kzalloc(...); > if (!ret) { > free(nfc->buffer); > return -ENOMEM; > } > nfc->oob_buffer_size = new_oob_len; >} > > >> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA); >> + if (!nfc->buffer) >> + return -ENOMEM; > > >> + >> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >> + if (!nfc->oob_buf) { >> + kfree(nfc->buffer); >> + nfc->buffer = NULL; > >> + nfc->oob_buf = NULL; > >!nfc->oob_buf == (nfc->oob_buf = NULL) > >Comment from Miquèl: >I don't think this is needed > >If something is NULL then there's no need to set it to NULL again. > >> + return -ENOMEM; >> + } >> + >> + nfc->buffer_size = len; >> + nfc->page_buf = nfc->buffer; >> + >> + chip->ecc.write_page_raw = rk_nfc_write_page_raw; >> + chip->ecc.write_page = rk_nfc_write_page_hwecc; >> + chip->ecc.write_oob_raw = rk_nfc_write_oob; >> + chip->ecc.write_oob = rk_nfc_write_oob; >> + >> + chip->ecc.read_page_raw = rk_nfc_read_page_raw; >> + chip->ecc.read_page = rk_nfc_read_page_hwecc; >> + chip->ecc.read_oob_raw = rk_nfc_read_oob; >> + chip->ecc.read_oob = rk_nfc_read_oob; >> + >> + return 0; >> +} >> + >> +static const struct nand_controller_ops rk_nfc_controller_ops = { >> + .attach_chip = rk_nfc_attach_chip, >> + .exec_op = rk_nfc_exec_op, >> + .setup_interface = rk_nfc_setup_data_interface, >> +}; >> + >> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, >> + struct device_node *np) >> +{ >> + struct rk_nfc_nand_chip *rknand; >> + struct nand_chip *chip; >> + struct mtd_info *mtd; >> + int nsels; >> + u32 tmp; >> + int ret; >> + int i; >> + >> + if (!of_get_property(np, "reg", &nsels)) >> + return -ENODEV; >> + nsels /= sizeof(u32); >> + if (!nsels || nsels > NFC_MAX_NSELS) { >> + dev_err(dev, "invalid reg property size %d\n", nsels); >> + return -EINVAL; >> + } >> + >> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), >> + GFP_KERNEL); >> + if (!rknand) >> + return -ENOMEM; >> + >> + rknand->nsels = nsels; >> + for (i = 0; i < nsels; i++) { >> + ret = of_property_read_u32_index(np, "reg", i, &tmp); >> + if (ret) { >> + dev_err(dev, "reg property failure : %d\n", ret); >> + return ret; >> + } >> + >> + if (tmp >= NFC_MAX_NSELS) { >> + dev_err(dev, "invalid CS: %u\n", tmp); >> + return -EINVAL; >> + } >> + >> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { >> + dev_err(dev, "CS %u already assigned\n", tmp); >> + return -EINVAL; >> + } >> + >> + rknand->sels[i] = tmp; >> + } >> + >> + chip = &rknand->chip; >> + chip->controller = &nfc->controller; >> + >> + nand_set_flash_node(chip, np); >> + >> + nand_set_controller_data(chip, nfc); >> + >> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; >> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; >> + >> + /* Set default mode in case dt entry is missing. */ >> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; >> + >> + mtd = nand_to_mtd(chip); >> + mtd->owner = THIS_MODULE; >> + mtd->dev.parent = dev; >> + >> + if (!mtd->name) { >> + dev_err(nfc->dev, "NAND label property is mandatory\n"); >> + return -EINVAL; >> + } >> + >> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); >> + rk_nfc_hw_init(nfc); >> + ret = nand_scan(chip, nsels); >> + if (ret) >> + return ret; >> + >> + if (chip->options & NAND_IS_BOOT_MEDIUM) { >> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); >> + rknand->boot_blks = ret ? 0 : tmp; > >Comment by Miquèl: >Can't you guess this entry knowing the IP version/SoC version? > >No, "rockchip,boot-blks" depends on the size of multiple partitions >and is user layout dependent. The "rockchip,boot-blks" is not a fixed number, can be configured with different number of blocks to store the pre loader for the same SoC. >> + >> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", >> + &tmp); >> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; >> + } >> + >> + ret = mtd_device_register(mtd, NULL, 0); >> + if (ret) { >> + dev_err(dev, "mtd parse partition error\n"); >> + nand_cleanup(chip); >> + return ret; >> + } >> + >> + list_add_tail(&rknand->node, &nfc->chips); >> + >> + return 0; >> +} >> + >> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) >> +{ >> + struct rk_nfc_nand_chip *rknand, *tmp; >> + struct nand_chip *chip; >> + int ret; >> + >> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { >> + chip = &rknand->chip; >> + ret = mtd_device_unregister(nand_to_mtd(chip)); >> + WARN_ON(ret); >> + nand_cleanup(chip); >> + list_del(&rknand->node); >> + } >> +} >> + >> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) >> +{ >> + struct device_node *np = dev->of_node, *nand_np; >> + int nchips = of_get_child_count(np); >> + int ret; >> + >> + if (!nchips || nchips > NFC_MAX_NSELS) { >> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", >> + nchips); >> + return -EINVAL; >> + } >> + >> + for_each_child_of_node(np, nand_np) { >> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); >> + if (ret) { >> + of_node_put(nand_np); >> + rk_nfc_chips_cleanup(nfc); >> + return ret; >> + } >> + } >> + >> + return 0; >> +} >> + >> +static struct nfc_cfg nfc_v6_cfg = { >> + .type = NFC_V6, >> + .ecc_strengths = {60, 40, 24, 16}, >> + .ecc_cfgs = { >> + 0x00040011, 0x00040001, 0x00000011, 0x00000001, >> + }, >> + .flctl_off = 0x08, >> + .bchctl_off = 0x0C, >> + .dma_cfg_off = 0x10, >> + .dma_data_buf_off = 0x14, >> + .dma_oob_buf_off = 0x18, >> + .dma_st_off = 0x1C, >> + .bch_st_off = 0x20, >> + .randmz_off = 0x150, >> + .int_en_off = 0x16C, >> + .int_clr_off = 0x170, >> + .int_st_off = 0x174, >> + .oob0_off = 0x200, >> + .oob1_off = 0x230, >> + .ecc0 = { >> + .err_flag_bit = 2, >> + .low = 3, >> + .low_mask = 0x1F, >> + .low_bn = 5, >> + .high = 27, >> + .high_mask = 0x1, >> + }, >> + .ecc1 = { >> + .err_flag_bit = 15, >> + .low = 16, >> + .low_mask = 0x1F, >> + .low_bn = 5, >> + .high = 29, >> + .high_mask = 0x1, >> + }, >> +}; >> + >> +static struct nfc_cfg nfc_v8_cfg = { >> + .type = NFC_V8, >> + .ecc_strengths = {16, 16, 16, 16}, >> + .ecc_cfgs = { >> + 0x00000001, 0x00000001, 0x00000001, 0x00000001, >> + }, >> + .flctl_off = 0x08, >> + .bchctl_off = 0x0C, >> + .dma_cfg_off = 0x10, >> + .dma_data_buf_off = 0x14, >> + .dma_oob_buf_off = 0x18, >> + .dma_st_off = 0x1C, >> + .bch_st_off = 0x20, >> + .randmz_off = 0x150, >> + .int_en_off = 0x16C, >> + .int_clr_off = 0x170, >> + .int_st_off = 0x174, >> + .oob0_off = 0x200, >> + .oob1_off = 0x230, >> + .ecc0 = { >> + .err_flag_bit = 2, >> + .low = 3, >> + .low_mask = 0x1F, >> + .low_bn = 5, >> + .high = 27, >> + .high_mask = 0x1, >> + }, >> + .ecc1 = { >> + .err_flag_bit = 15, >> + .low = 16, >> + .low_mask = 0x1F, >> + .low_bn = 5, >> + .high = 29, >> + .high_mask = 0x1, >> + }, >> +}; >> + >> +static struct nfc_cfg nfc_v9_cfg = { >> + .type = NFC_V9, >> + .ecc_strengths = {70, 60, 40, 16}, >> + .ecc_cfgs = { >> + 0x00000001, 0x06000001, 0x04000001, 0x02000001, >> + }, >> + .flctl_off = 0x10, >> + .bchctl_off = 0x20, >> + .dma_cfg_off = 0x30, >> + .dma_data_buf_off = 0x34, >> + .dma_oob_buf_off = 0x38, >> + .dma_st_off = 0x3C, >> + .bch_st_off = 0x150, >> + .randmz_off = 0x208, >> + .int_en_off = 0x120, >> + .int_clr_off = 0x124, >> + .int_st_off = 0x128, >> + .oob0_off = 0x200, >> + .oob1_off = 0x204, >> + .ecc0 = { >> + .err_flag_bit = 2, >> + .low = 3, >> + .low_mask = 0x7F, >> + .low_bn = 7, >> + .high = 0, >> + .high_mask = 0x0, >> + }, >> + .ecc1 = { >> + .err_flag_bit = 18, >> + .low = 19, >> + .low_mask = 0x7F, >> + .low_bn = 7, >> + .high = 0, >> + .high_mask = 0x0, >> + }, >> +}; >> + >> +static const struct of_device_id rk_nfc_id_table[] = { >> + { >> + .compatible = "rockchip,px30-nfc", >> + .data = &nfc_v9_cfg >> + }, >> + { >> + .compatible = "rockchip,rk2928-nfc", >> + .data = &nfc_v6_cfg >> + }, >> + { >> + .compatible = "rockchip,rv1108-nfc", >> + .data = &nfc_v8_cfg >> + }, >> + { /* sentinel */ } >> +}; >> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); >> + >> +static int rk_nfc_probe(struct platform_device *pdev) >> +{ >> + struct device *dev = &pdev->dev; >> + struct rk_nfc *nfc; >> + int ret, irq; >> + >> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); >> + if (!nfc) >> + return -ENOMEM; >> + >> + nand_controller_init(&nfc->controller); >> + INIT_LIST_HEAD(&nfc->chips); >> + nfc->controller.ops = &rk_nfc_controller_ops; >> + >> + nfc->cfg = of_device_get_match_data(dev); >> + nfc->dev = dev; >> + >> + init_completion(&nfc->done); >> + >> + nfc->regs = devm_platform_ioremap_resource(pdev, 0); >> + if (IS_ERR(nfc->regs)) { >> + ret = PTR_ERR(nfc->regs); >> + goto release_nfc; >> + } >> + >> + nfc->nfc_clk = devm_clk_get(dev, "nfc"); >> + if (IS_ERR(nfc->nfc_clk)) { >> + dev_dbg(dev, "no nfc clk\n"); >> + /* Some earlier models, such as rk3066, have no nfc clk. */ >> + } >> + >> + nfc->ahb_clk = devm_clk_get(dev, "ahb"); >> + if (IS_ERR(nfc->ahb_clk)) { >> + dev_err(dev, "no ahb clk\n"); >> + ret = PTR_ERR(nfc->ahb_clk); >> + goto release_nfc; >> + } >> + >> + ret = rk_nfc_enable_clk(dev, nfc); >> + if (ret) >> + goto release_nfc; >> + >> + irq = platform_get_irq(pdev, 0); >> + if (irq < 0) { >> + dev_err(dev, "no nfc irq resource\n"); >> + ret = -EINVAL; >> + goto clk_disable; >> + } >> + >> + writel(0, nfc->regs + nfc->cfg->int_en_off); >> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); >> + if (ret) { >> + dev_err(dev, "failed to request nfc irq\n"); >> + goto clk_disable; >> + } >> + >> + platform_set_drvdata(pdev, nfc); >> + >> + ret = rk_nfc_nand_chips_init(dev, nfc); >> + if (ret) { >> + dev_err(dev, "failed to init NAND chips\n"); >> + goto clk_disable; >> + } >> + return 0; >> + >> +clk_disable: >> + rk_nfc_disable_clk(nfc); >> +release_nfc: >> + return ret; >> +} >> + >> +static int rk_nfc_remove(struct platform_device *pdev) >> +{ >> + struct rk_nfc *nfc = platform_get_drvdata(pdev); >> + >> + kfree(nfc->buffer); >> + kfree(nfc->oob_buf); >> + rk_nfc_chips_cleanup(nfc); >> + rk_nfc_disable_clk(nfc); >> + >> + return 0; >> +} >> + >> +static int __maybe_unused rk_nfc_suspend(struct device *dev) >> +{ >> + struct rk_nfc *nfc = dev_get_drvdata(dev); >> + >> + rk_nfc_disable_clk(nfc); >> + >> + return 0; >> +} >> + >> +static int __maybe_unused rk_nfc_resume(struct device *dev) >> +{ >> + struct rk_nfc *nfc = dev_get_drvdata(dev); >> + struct rk_nfc_nand_chip *rknand; >> + struct nand_chip *chip; >> + int ret; >> + u32 i; >> + >> + ret = rk_nfc_enable_clk(dev, nfc); >> + if (ret) >> + return ret; >> + >> + /* Reset NAND chip if VCC was powered off. */ >> + list_for_each_entry(rknand, &nfc->chips, node) { >> + chip = &rknand->chip; >> + for (i = 0; i < rknand->nsels; i++) >> + nand_reset(chip, i); >> + } >> + >> + return 0; >> +} >> + >> +static const struct dev_pm_ops rk_nfc_pm_ops = { >> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) >> +}; >> + >> +static struct platform_driver rk_nfc_driver = { >> + .probe = rk_nfc_probe, >> + .remove = rk_nfc_remove, >> + .driver = { >> + .name = "rockchip-nfc", >> + .of_match_table = rk_nfc_id_table, >> + .pm = &rk_nfc_pm_ops, >> + }, >> +}; >> + >> +module_platform_driver(rk_nfc_driver); >> + >> +MODULE_LICENSE("Dual MIT/GPL"); >> +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); >> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); >> +MODULE_ALIAS("platform:rockchip-nand-controller"); >> > > >
Hi, Hope that I have the text and the brackets right now. ;) Let us know if something is in need for improvement. () Parentheses or round brackets {} Braces or curly brackets [] Brackets or square brackets <> Chevrons or angle brackets On 10/23/20 12:11 PM, 赵仪峰 wrote: > Hi Miquèl and Johan, > > I've fixed some comments, but there are still a few points I can`t understand. > >> Hi Yifeng, Miquèl and others, >> >> I've copied some comments from Miquèl from version 8 to this one here >> and added some more. ;) >> >> >> On 10/20/20 5:17 AM, Yifeng Zhao wrote: >>> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, >>> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using >>> 8-bit NAND interface on the ARM based RK3308 platform. >>> >>> Support Rockchip SoCs and NFC versions: >>> - PX30 and RK3326(NFCv900). >>> ECC: 16/40/60/70 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3308 and RV1108(NFCv800). >>> ECC: 16 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3036 and RK3128(NFCv622). >>> ECC: 16/24/40/60 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3066, RK3188 and RK2928(NFCv600). >>> ECC: 16/24/40/60 bits/1KB. >>> CLOCK: ahb. >>> >>> Supported features: >>> - Read full page data by DMA. >>> - Support HW ECC(one step is 1KB). >>> - Support 2 - 32K page size. >>> - Support 8 CS(depend on SoCs) >>> >>> Limitations: >>> - No support for the ecc step size is 512. >>> - Untested on some SoCs. >>> - No support for subpages. >>> - No support for the builtin randomizer. >>> - The original bad block mask is not supported. It is recommended to use >>> the BBT(bad block table). >>> >>> Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com> >>> --- >>> >>> (no changes since v11) >>> >>> Changes in v11: >>> - Fix compile error. >>> >>> Changes in v10: >>> - Fix compile error on master v5.9-rc7. >>> >>> Changes in v9: >>> - The nfc->buffer will realloc while the page size of the second mtd >>> is large than the first one >>> - Fix coding style. >>> - Remove struct rk_nfc_clk. >>> - Prepend some function with rk_nfc_. >>> - Replace function readl_poll_timeout_atomic with >> readl_relaxed_poll_timeout. >>> - Remove function rk_nfc_read_byte and rk_nfc_write_byte. >>> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. >>> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. >>> >>> Changes in v7: >>> - Rebase to linux-next. >>> - Fix coding style. >>> - Reserved 4 bytes at the beginning of the oob area. >>> - Page raw read and write included ecc data. >>> >>> Changes in v6: >>> - The mtd->name set by NAND label property. >>> - Add some comments. >>> - Fix compile error. >>> >>> Changes in v5: >>> - Add boot blocks support with different ECC for bootROM. >>> - Rename rockchip-nand.c to rockchip-nand-controller.c. >>> - Unification of other variable names. >>> - Remove some compatible define. >>> >>> Changes in v4: >>> - Define platform data structure for the register offsets. >>> - The compatible define with rkxx_nfc. >>> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. >>> - Use exec_op instead of legacy hooks. >>> >>> Changes in v2: >>> - Fix compile error. >>> - Include header files sorted by file name. >>> >>> drivers/mtd/nand/raw/Kconfig | 12 + >>> drivers/mtd/nand/raw/Makefile | 1 + >>> .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++ >>> 3 files changed, 1452 insertions(+) >>> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c >>> >>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >>> index 6c46f25b57e2..2cc533e4e239 100644 >>> --- a/drivers/mtd/nand/raw/Kconfig >>> +++ b/drivers/mtd/nand/raw/Kconfig >>> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN >>> Enables the driver for the Arasan NAND flash controller on >>> Zynq Ultrascale+ MPSoC. >>> >>> +config MTD_NAND_ROCKCHIP >>> + tristate "Rockchip NAND controller" >>> + depends on ARCH_ROCKCHIP && HAS_IOMEM >>> + help >>> + Enables support for NAND controller on Rockchip SoCs. >>> + There are four different versions of NAND FLASH Controllers, >>> + including: >>> + NFC v600: RK2928, RK3066, RK3188 >>> + NFC v622: RK3036, RK3128 >>> + NFC v800: RK3308, RV1108 >>> + NFC v900: PX30, RK3326 >>> + >>> comment "Misc" >>> >>> config MTD_SM_COMMON >>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >>> index 2930f5b9015d..960c9be25204 100644 >>> --- a/drivers/mtd/nand/raw/Makefile >>> +++ b/drivers/mtd/nand/raw/Makefile >>> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o >>> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o >>> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o >>> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o >>> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o >>> >>> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o >> nand_ids.o >>> nand-objs += nand_onfi.o >>> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c >> b/drivers/mtd/nand/raw/rockchip-nand-controller.c >>> new file mode 100644 >>> index 000000000000..cf28c5936209 >>> --- /dev/null >>> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c >>> @@ -0,0 +1,1439 @@ >>> +// SPDX-License-Identifier: GPL-2.0 OR MIT >>> +/* >>> + * Rockchip NAND Flash controller driver. >>> + * Copyright (C) 2020 Rockchip Inc. >>> + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> >>> + */ >>> + >>> +#include <linux/clk.h> >>> +#include <linux/delay.h> >>> +#include <linux/dma-mapping.h> >>> +#include <linux/dmaengine.h> >>> +#include <linux/interrupt.h> >>> +#include <linux/iopoll.h> >>> +#include <linux/module.h> >>> +#include <linux/mtd/mtd.h> >>> +#include <linux/mtd/rawnand.h> >>> +#include <linux/of.h> >>> +#include <linux/of_device.h> >>> +#include <linux/platform_device.h> >>> +#include <linux/slab.h> >>> + >>> +/* >>> + * NFC Page Data Layout: >>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >>> + * ...... >>> + * NAND Page Data Layout: >>> + * 1024 * n Data + m Bytes oob >>> + * Original Bad Block Mask Location: >>> + * First byte of oob(spare). >>> + * nand_chip->oob_poi data layout: >>> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data. >>> + */ >>> + >>> +/* NAND controller register definition */ >>> +#define NFC_READ (0) >>> +#define NFC_WRITE (1) >>> + >>> +#define NFC_FMCTL (0x00) >>> +#define FMCTL_CE_SEL_M 0xFF >>> +#define FMCTL_CE_SEL(x) (1 << (x)) >>> +#define FMCTL_WP BIT(8) >>> +#define FMCTL_RDY BIT(9) >>> + >>> +#define NFC_FMWAIT (0x04) >>> +#define FLCTL_RST BIT(0) >>> +#define FLCTL_WR (1) /* 0: read, 1: write */ >>> +#define FLCTL_XFER_ST BIT(2) >>> +#define FLCTL_XFER_EN BIT(3) >>> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ >>> +#define FLCTL_XFER_READY BIT(20) >>> +#define FLCTL_XFER_SECTOR (22) >>> +#define FLCTL_TOG_FIX BIT(29) >>> + >>> +#define BCHCTL_BANK_M (7 << 5) >>> +#define BCHCTL_BANK (5) >>> + >>> +#define DMA_ST BIT(0) >>> +#define DMA_WR (1) /* 0: write, 1: read */ >>> +#define DMA_EN BIT(2) >>> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ >>> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ >>> +#define DMA_INC_NUM (9) /* 1 - 16 */ >>> + >>> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ >>> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) >>> +#define INT_DMA BIT(0) >>> +#define NFC_BANK (0x800) >>> +#define NFC_BANK_STEP (0x100) >>> +#define BANK_DATA (0x00) >>> +#define BANK_ADDR (0x04) >>> +#define BANK_CMD (0x08) >>> +#define NFC_SRAM0 (0x1000) >>> +#define NFC_SRAM1 (0x1400) >>> +#define NFC_SRAM_SIZE (0x400) >>> +#define NFC_TIMEOUT (500000) >>> +#define NFC_MAX_OOB_PER_STEP 128 >>> +#define NFC_MIN_OOB_PER_STEP 64 >>> +#define MAX_DATA_SIZE 0xFFFC >>> +#define MAX_ADDRESS_CYC 6 >>> +#define NFC_ECC_MAX_MODES 4 >>> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ >>> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 >> data.*/ >>> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ >>> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) >>> + >>> +enum nfc_type { >>> + NFC_V6, >>> + NFC_V8, >>> + NFC_V9, >>> +}; >>> + >>> +/** >>> + * struct rk_ecc_cnt_status: represent a ecc status data. >>> + * @err_flag_bit: error flag bit index at register. >>> + * @low: ecc count low bit index at register. >>> + * @low_mask: mask bit. >>> + * @low_bn: ecc count low bit number. >>> + * @high: ecc count high bit index at register. >>> + * @high_mask: mask bit >>> + */ >>> +struct ecc_cnt_status { >>> + u8 err_flag_bit; >>> + u8 low; >>> + u8 low_mask; >>> + u8 low_bn; >>> + u8 high; >>> + u8 high_mask; >>> +}; >>> + >>> +/* >>> + * @type: nfc version >>> + * @ecc_strengths: ecc strengths >>> + * @ecc_cfgs: ecc config values >>> + * @flctl_off: FLCTL register offset >>> + * @bchctl_off: BCHCTL register offset >>> + * @dma_data_buf_off: DMA_DATA_BUF register offset >>> + * @dma_oob_buf_off: DMA_OOB_BUF register offset >>> + * @dma_cfg_off: DMA_CFG register offset >>> + * @dma_st_off: DMA_ST register offset >>> + * @bch_st_off: BCG_ST register offset >>> + * @randmz_off: RANDMZ register offset >>> + * @int_en_off: interrupt enable register offset >>> + * @int_clr_off: interrupt clean register offset >>> + * @int_st_off: interrupt status register offset >>> + * @oob0_off: oob0 register offset >>> + * @oob1_off: oob1 register offset >>> + * @ecc0: represent ECC0 status data >>> + * @ecc1: represent ECC1 status data >>> + */ >>> +struct nfc_cfg { >>> + enum nfc_type type; >>> + u8 ecc_strengths[NFC_ECC_MAX_MODES]; >>> + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; >>> + u32 flctl_off; >>> + u32 bchctl_off; >>> + u32 dma_cfg_off; >>> + u32 dma_data_buf_off; >>> + u32 dma_oob_buf_off; >>> + u32 dma_st_off; >>> + u32 bch_st_off; >>> + u32 randmz_off; >>> + u32 int_en_off; >>> + u32 int_clr_off; >>> + u32 int_st_off; >>> + u32 oob0_off; >>> + u32 oob1_off; >>> + struct ecc_cnt_status ecc0; >>> + struct ecc_cnt_status ecc1; >>> +}; >>> + >>> +struct rk_nfc_nand_chip { >>> + struct list_head node; >>> + struct nand_chip chip; >>> + >>> + u16 spare_per_sector; >>> + u16 oob_buf_per_sector; >>> + u16 boot_blks; >>> + u16 boot_ecc; >>> + u16 metadata_size; >>> + >>> + u8 nsels; >>> + u8 sels[0]; >>> + /* Nothing after this field. */ >>> +}; >>> + >>> +struct rk_nfc { >>> + struct nand_controller controller; >>> + const struct nfc_cfg *cfg; >>> + struct device *dev; >>> + >>> + struct clk *nfc_clk; >>> + struct clk *ahb_clk; >>> + void __iomem *regs; >>> + >>> + u32 selected_bank; >>> + u32 band_offset; >>> + u32 cur_clk; >>> + >>> + struct completion done; >>> + struct list_head chips; >>> + >>> + u8 *buffer; >>> + u8 *page_buf; >>> + u32 *oob_buf; >>> + u32 buffer_size; >>> + >>> + unsigned long assigned_cs; >>> +}; >>> + >>> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip) > Fixed it.,to_rknand -> rk_nfc_to_rknand >>> +{ >>> + return container_of(chip, struct rk_nfc_nand_chip, chip); >>> +} >>> + >>> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, >> int i) >> >> rk_nfc_buf_to_data_ptr ? >> Comment by Miquèl: >> Please prepend all your functions with rk_nfc_ >> >> For the ftrace filters it is needed to have all functions start with >> the same prefix in a module. >> >> >>> +{ >>> + return (u8 *)p + i * chip->ecc.size; >>> +} >>> + >>> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i) >> >> same here >>> +{ >>> + u8 *poi; >>> + >>> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; >>> + >>> + return poi; >>> +} >>> + >>> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i) >> >> same here >>> +{ >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + u8 *poi; >>> + >>> + poi = chip->oob_poi + rknand->metadata_size + >>> + chip->ecc.bytes * i; >>> + >>> + return poi; >>> +} >>> + >>> +static inline int rk_nfc_data_len(struct nand_chip *chip) >>> +{ >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + return chip->ecc.size + rknand->spare_per_sector; >>> +} >>> + >>> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + >>> + return nfc->buffer + i * rk_nfc_data_len(chip); >>> +} >>> + >>> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + >>> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size; >>> +} >>> + >>> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + u32 val; >>> + >>> + if (cs < 0) { >>> + nfc->selected_bank = -1; >>> + /* Deselect the currently selected target. */ >>> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >>> + val &= ~FMCTL_CE_SEL_M; >>> + writel(val, nfc->regs + NFC_FMCTL); >>> + return; >>> + } >>> + >>> + nfc->selected_bank = rknand->sels[cs]; >>> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; >>> + >>> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >>> + val &= ~FMCTL_CE_SEL_M; >>> + val |= FMCTL_CE_SEL(nfc->selected_bank); >>> + >>> + writel(val, nfc->regs + NFC_FMCTL); >>> +} >>> + >>> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) >>> +{ >>> + int rc; >>> + u32 val; >>> + >>> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, >>> + val & FMCTL_RDY, 10, NFC_TIMEOUT); >>> + >>> + return rc; >>> +} >>> + >>> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) >>> +{ >>> + int i; >>> + >>> + for (i = 0; i < len; i++) >>> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + >>> + BANK_DATA); >>> +} >>> + >>> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) >>> +{ >>> + int i; >>> + >>> + for (i = 0; i < len; i++) >>> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); >>> +} >>> + >>> +static int rk_nfc_cmd(struct nand_chip *chip, >>> + const struct nand_subop *subop) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + unsigned int i, j, remaining, start; >>> + int reg_offset = nfc->band_offset; >>> + u8 *inbuf = NULL; >>> + const u8 *outbuf; >>> + u32 cnt = 0; >>> + int ret = 0; >>> + >>> + for (i = 0; i < subop->ninstrs; i++) { >>> + const struct nand_op_instr *instr = &subop->instrs[i]; >>> + >>> + switch (instr->type) { >>> + case NAND_OP_CMD_INSTR: >>> + writeb(instr->ctx.cmd.opcode, >>> + nfc->regs + reg_offset + BANK_CMD); >>> + break; >>> + >>> + case NAND_OP_ADDR_INSTR: >>> + remaining = nand_subop_get_num_addr_cyc(subop, i); >>> + start = nand_subop_get_addr_start_off(subop, i); >>> + >>> + for (j = 0; j < 8 && j + start < remaining; j++) >>> + writeb(instr->ctx.addr.addrs[j + start], >>> + nfc->regs + reg_offset + BANK_ADDR); >>> + break; >>> + >>> + case NAND_OP_DATA_IN_INSTR: >>> + case NAND_OP_DATA_OUT_INSTR: >>> + start = nand_subop_get_data_start_off(subop, i); >>> + cnt = nand_subop_get_data_len(subop, i); >>> + >>> + if (instr->type == NAND_OP_DATA_OUT_INSTR) { >>> + outbuf = instr->ctx.data.buf.out + start; >>> + rk_nfc_write_buf(nfc, outbuf, cnt); >>> + } else { >>> + inbuf = instr->ctx.data.buf.in + start; >>> + rk_nfc_read_buf(nfc, inbuf, cnt); >>> + } >>> + break; >>> + >>> + case NAND_OP_WAITRDY_INSTR: >>> + if (rk_nfc_wait_ioready(nfc) < 0) { >>> + ret = -ETIMEDOUT; >>> + dev_err(nfc->dev, "IO not ready\n"); >>> + } >>> + break; >>> + } >>> + } >>> + >>> + return ret; >>> +} >>> + >>> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( >>> + NAND_OP_PARSER_PATTERN( >>> + rk_nfc_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), >>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), >>> + NAND_OP_PARSER_PATTERN( >>> + rk_nfc_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), >>> +); >>> + >>> +static int rk_nfc_exec_op(struct nand_chip *chip, >>> + const struct nand_operation *op, >>> + bool check_only) >>> +{ >>> + if (!check_only) >>> + rk_nfc_select_chip(chip, op->cs); >>> + >>> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, >>> + check_only); >>> +} >>> + >>> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int >> csline, >>> + const struct nand_interface_config *conf) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + const struct nand_sdr_timings *timings; >>> + u32 rate, tc2rw, trwpw, trw2c; >>> + u32 temp; >>> + >>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >>> + return 0; >>> + >>> + timings = nand_get_sdr_timings(conf); >>> + if (IS_ERR(timings)) >>> + return -EOPNOTSUPP; >>> + >>> + if (IS_ERR(nfc->nfc_clk)) >>> + rate = clk_get_rate(nfc->ahb_clk); >>> + else >>> + rate = clk_get_rate(nfc->nfc_clk); >>> + >>> + /* Turn clock rate into kHz. */ >>> + rate /= 1000; >>> + >>> + tc2rw = 1; >>> + trw2c = 1; >>> + >>> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; >>> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); >>> + >>> + temp = timings->tREA_max / 1000; >>> + temp = DIV_ROUND_UP(temp * rate, 1000000); >>> + >>> + if (trwpw < temp) >>> + trwpw = temp; >>> + >>> + /* >>> + * ACCON: access timing control register >>> + * ------------------------------------- >>> + * 31:18: reserved >>> + * 17:12: csrw, clock cycles from the falling edge of CSn to the >>> + * falling edge of RDn or WRn >>> + * 11:11: reserved >>> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles >>> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the >>> + * rising edge of CSn >>> + */ >>> + temp = ACCTIMING(tc2rw, trwpw, trw2c); >>> + writel(temp, nfc->regs + NFC_FMWAIT); >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, >>> + struct nand_ecc_ctrl *ecc, >>> + uint32_t strength) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + u32 reg, i; >>> + >>> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { >>> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) { >>> + reg = nfc->cfg->ecc_cfgs[i]; >>> + break; >>> + } >>> + } >>> + >>> + if (i >= NFC_ECC_MAX_MODES) >>> + return -EINVAL; >>> + >>> + writel(reg, nfc->regs + nfc->cfg->bchctl_off); >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, >>> + dma_addr_t dma_data, dma_addr_t dma_oob) >>> +{ >>> + u32 dma_reg, fl_reg, bch_reg; >>> + >>> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | >>> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); >>> + >>> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | >>> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; >>> + >>> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { >>> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); >>> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | >>> + (nfc->selected_bank << BCHCTL_BANK); >>> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); >>> + } >>> + >>> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); >>> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); >>> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); >>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >>> + fl_reg |= FLCTL_XFER_ST; >>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >>> +} >>> + >>> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) >>> +{ >>> + void __iomem *ptr; >>> + int ret = 0; >>> + u32 reg; >>> + >>> + ptr = nfc->regs + nfc->cfg->flctl_off; >>> + >>> + ret = readl_relaxed_poll_timeout(ptr, reg, >>> + reg & FLCTL_XFER_READY, >>> + 10, NFC_TIMEOUT); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, >>> + int oob_on, int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + int ret = 0; >>> + u32 i; >>> + >>> + if (!buf) >>> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); >>> + >>> + for (i = 0; i < chip->ecc.steps; i++) { >>> + /* Copy data to nfc buffer. */ >>> + if (buf) >>> + memcpy(rk_nfc_data_ptr(chip, i), >>> + nand_data_ptr(chip, buf, i), >>> + chip->ecc.size); >> >>> + /* >>> + * The first four bytes of OOB are reserved for the >>> + * boot ROM. In some debugging cases, sush as dump >> >> such as >> >>> + * data and write back, the last four bytes stored >>> + * in OOB need to be write back. >> >> such as with a read, erase and write back test >> these 4 bytes stored in OOB also need to be written back.>>> + */ >>> + if (!i) >>> + memcpy(rk_nfc_oob_ptr(chip, i), >>> + nand_oob_ptr(chip, chip->ecc.steps - 1), >>> + NFC_SYS_DATA_SIZE); >>> + else >>> + memcpy(rk_nfc_oob_ptr(chip, i), >>> + nand_oob_ptr(chip, i - 1), >>> + NFC_SYS_DATA_SIZE); >>> + /* Copy ecc data to nfc buffer. */ >> >> Copy ECC data to the NFC buffer. >>> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >>> + nand_oob_ecc_ptr(chip, i), >>> + chip->ecc.bytes); >>> + } >>> + >>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >>> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); >>> + ret = nand_prog_page_end_op(chip); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >> >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_write_oob(struct nand_chip *chip, int page) >>> +{ >>> + return rk_nfc_write_page_raw(chip, NULL, 1, page); >>> +} >>> + >>> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, >>> + int oob_on, int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >>> + NFC_MIN_OOB_PER_STEP; >>> + int pages_per_blk = mtd->erasesize / mtd->writesize; >>> + int ret = 0, i, boot_rom_mode = 0; >>> + dma_addr_t dma_data, dma_oob; >>> + u32 reg; >>> + u8 *oob; >>> + >>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >>> + >>> + memcpy(nfc->page_buf, buf, mtd->writesize); >>> + >>> + /* >>> + * The first blocks (4, 8 or 16 depending on the device) are used >>> + * by the boot ROM and the first 32 bits of oob need to link to >> >> OOB >> >>> + * the next page address in the same block. >> >> Add more explanation why: >> >> We can't copy OOB directly, >> because this page address conflicts with the bad block marker (BBM), >> so we shift all OOB including the BBM with 4 byte positions. >> As consequence the OOB size then is also reduced with 4 bytes. >> >> PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... >> >> If a NAND is not a boot medium the first 4 bytes are left untouched >> by writing 0xFF to them. >> >> 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... >> >> >> Could you include the above layout to make things more clear? >> >>> + * Config the ECC algorithm supported by the boot ROM. >> >> comment by Miquèl: >> >> s/Config/Configure/ > > modified, please check again... > /* > * The first blocks (4, 8 or 16 depending on the device) are used > * by the boot ROM and the first 32 bits of OOB need to link to > * the next page address in the same block. We can't copy OOB > * directly, because this page address conflicts with the bad block > * marker (BBM), so we shift all OOB including the BBM with 4 byte > * positions. As consequence the OOB size then is also reduced with > * 4 bytes. > * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... > * If a NAND is not a boot medium, the first 4 bytes are left untouched > * by writing 0xFF to them. > * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... > */ /* * The first blocks (4, 8 or 16 depending on the device) * are used by the boot ROM and the first 32 bits of OOB need to link to * the next page address in the same block. We can't directly copy * OOB data from the MTD framework, because this page address * conflicts for example with the bad block marker (BBM), * so we shift all OOB data including the BBM with 4 byte positions. * As a consequence the OOB size available to the MTD framework is * also reduced with 4 bytes. * * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... * * If a NAND is not a boot medium or the page is not a boot block, * the first 4 bytes are left untouched by writing 0xFF to them. * * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... * * Configure the ECC algorithm supported by the boot ROM. */ > >> >>> + */ >>> + if ((page < pages_per_blk * rknand->boot_blks) && >>> + (chip->options & NAND_IS_BOOT_MEDIUM)) { >>> + boot_rom_mode = 1; >>> + if (rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, >>> + rknand->boot_ecc); >>> + } >>> + >>> + for (i = 0; i < ecc->steps; i++) { >>> + if (!i) { >>> + reg = 0xFFFFFFFF; >>> + } else { >>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >>> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | >>> + oob[3] << 24; >>> + } >>> + if (!i && boot_rom_mode) >>> + reg = (page & (pages_per_blk - 1)) * 4; >>> + >>> + if (nfc->cfg->type == NFC_V9) >>> + nfc->oob_buf[i] = reg; >>> + else >>> + nfc->oob_buf[i * oob_step / 4] = reg; nfc->oob_buf[i * (oob_step / 4)] = reg; >> >> Please use brackets. > > I don't understand this. Can you give an example of how to modify it? > >>> + } >>> + >>> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, >> >> Do you need this cast? > > Yes, need dma_map_single to get phy_addr and do cache ops. > >>> + mtd->writesize, DMA_TO_DEVICE); >>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >>> + ecc->steps * oob_step, >>> + DMA_TO_DEVICE); >>> + >>> + reinit_completion(&nfc->done); >>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >>> + >>> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, >>> + dma_oob); >>> + ret = wait_for_completion_timeout(&nfc->done, >>> + msecs_to_jiffies(100)); >>> + if (!ret) >>> + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); >>> + /* >>> + * Whether the DMA transfer is completed or not. The driver >>> + * needs to check the NFC`s status register to see if the data >>> + * transfer was completed. >>> + */ >>> + ret = rk_nfc_wait_for_xfer_done(nfc); >>> + >>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >>> + DMA_TO_DEVICE); >>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >>> + DMA_TO_DEVICE); >>> + >>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + if (ret) { >>> + ret = -EIO; >>> + dev_err(nfc->dev, >>> + "write: wait transfer done timeout.\n"); >>> + } >>> + >>> + if (ret) >>> + return ret; >>> + >>> + ret = nand_prog_page_end_op(chip); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int >> oob_on, >>> + int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + int i; >>> + >>> + nand_read_page_op(chip, page, 0, NULL, 0); >>> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + for (i = 0; i < chip->ecc.steps; i++) { >> >>> + /* >>> + * The first four bytes of OOB are reserved for the >>> + * boot ROM. In some debugging cases, sush as dump data >> >> such as >> >>> + * and write back, it`s need to read out this four bytes, >> >> such as with a read, erase and write back test >> these 4 bytes also must be saved somewhere, >> >>> + * otherwise this information will be lost during write back. >> >> otherwise this information will be lost during a write back. >>> + */ >>> + if (!i) >>> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1), >>> + rk_nfc_oob_ptr(chip, i), >>> + NFC_SYS_DATA_SIZE); >>> + else >>> + memcpy(nand_oob_ptr(chip, i - 1), >>> + rk_nfc_oob_ptr(chip, i), >>> + NFC_SYS_DATA_SIZE); >> >>> + /* Copy ecc data form nfc buffer. */ >> >> Copy ECC data from the NFC buffer. >>> + memcpy(nand_oob_ecc_ptr(chip, i), >>> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >>> + chip->ecc.bytes); >> >>> + /* Copy data form nfc buffer. */ >> >> Copy data from the NFC buffer. >>> + if (buf) >>> + memcpy(nand_data_ptr(chip, buf, i), >>> + rk_nfc_data_ptr(chip, i), >>> + chip->ecc.size); >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_read_oob(struct nand_chip *chip, int page) >>> +{ >>> + return rk_nfc_read_page_raw(chip, NULL, 1, page); >>> +} >>> + >>> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, >> int oob_on, >>> + int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >>> + NFC_MIN_OOB_PER_STEP; >>> + int pages_per_blk = mtd->erasesize / mtd->writesize; >>> + dma_addr_t dma_data, dma_oob; >>> + int ret = 0, i, boot_rom_mode = 0; >>> + int bitflips = 0, bch_st; >>> + u8 *oob; >>> + u32 tmp; >>> + >>> + nand_read_page_op(chip, page, 0, NULL, 0); >>> + >>> + dma_data = dma_map_single(nfc->dev, nfc->page_buf, >>> + mtd->writesize, >>> + DMA_FROM_DEVICE); >>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >>> + ecc->steps * oob_step, >>> + DMA_FROM_DEVICE); >>> + >>> + /* >>> + * The first blocks (4, 8 or 16 depending on the device) >>> + * are used by the boot ROM. >>> + * Config the ECC algorithm supported by the boot ROM. s/Config/Configure/ Configure the ECC algorithm supported by the boot ROM. >>> + */ >>> + if ((page < pages_per_blk * rknand->boot_blks) && >>> + (chip->options & NAND_IS_BOOT_MEDIUM)) { >>> + boot_rom_mode = 1; >>> + if (rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, >>> + rknand->boot_ecc); >>> + } >>> + >>> + reinit_completion(&nfc->done); >>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >>> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, >>> + dma_oob); >>> + ret = wait_for_completion_timeout(&nfc->done, >>> + msecs_to_jiffies(100)); >>> + if (!ret) >>> + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); >>> + /* >>> + * Whether the DMA transfer is completed or not. The driver >>> + * needs to check the NFC`s status register to see if the data >>> + * transfer was completed. >>> + */ >>> + ret = rk_nfc_wait_for_xfer_done(nfc); >>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >>> + DMA_FROM_DEVICE); >>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >>> + DMA_FROM_DEVICE); >>> + >>> + if (ret) { >>> + bitflips = -EIO; >>> + dev_err(nfc->dev, >>> + "read: wait transfer done timeout.\n"); >>> + goto out; >>> + } >>> + >>> + for (i = 1; i < ecc->steps; i++) { >>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >>> + if (nfc->cfg->type == NFC_V9) >>> + tmp = nfc->oob_buf[i]; >>> + else >>> + tmp = nfc->oob_buf[i * oob_step / 4]; tmp = nfc->oob_buf[i * (oob_step / 4)]; >>> + *oob++ = (u8)tmp; >>> + *oob++ = (u8)(tmp >> 8); >>> + *oob++ = (u8)(tmp >> 16); >>> + *oob++ = (u8)(tmp >> 24); >>> + } >>> + >>> + for (i = 0; i < ecc->steps / 2; i++) { for (i = 0; i < (ecc->steps / 2); i++) { >> >> Brackets here as well please > > I don't understand this. Can you give an example of how to modify it? > >>> + bch_st = readl_relaxed(nfc->regs + >>> + nfc->cfg->bch_st_off + i * 4); >>> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || >>> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { >>> + mtd->ecc_stats.failed++; >>> + /* ECC failed, return the minimum number of error bits */ >>> + bitflips = ecc->strength + 1; >> >> Could you explain why: >> >> bitflips = -1; >> >> changed to: >> >> bitflips = ecc->strength + 1; >> >> >> Comment by Miquèl: >> >> I think you should return 0. >> >> Then the upper layer will check for failures. >> >>> + } else { >>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); >>> + mtd->ecc_stats.corrected += ret; >>> + bitflips = max_t(u32, bitflips, ret); >>> + >>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); >>> + mtd->ecc_stats.corrected += ret; >>> + bitflips = max_t(u32, bitflips, ret); >>> + } >>> + } >>> +out: >>> + memcpy(buf, nfc->page_buf, mtd->writesize); >>> + >>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + if (bitflips > ecc->strength) >>> + dev_err(nfc->dev, "read page: %x ecc error!\n", page); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >> >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return bitflips; >>> +} >>> + >>> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) >>> +{ >>> + /* Disable flash wp. */ >>> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); >>> + /* Config default timing 40ns at 150 Mhz nfc clock. */ >>> + writel(0x1081, nfc->regs + NFC_FMWAIT); >>> + /* Disable randomizer and DMA. */ >>> + writel(0, nfc->regs + nfc->cfg->randmz_off); >>> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); >>> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); >>> +} >>> + >>> +static irqreturn_t rk_nfc_irq(int irq, void *id) >>> +{ >>> + struct rk_nfc *nfc = id; >>> + u32 sta, ien; >>> + >>> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); >>> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); >>> + >>> + if (!(sta & ien)) >>> + return IRQ_NONE; >>> + >>> + writel(sta, nfc->regs + nfc->cfg->int_clr_off); >>> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); >>> + >>> + complete(&nfc->done); >>> + >>> + return IRQ_HANDLED; >>> +} >>> + >>> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc) >> >> Change function name, because there are 2 clocks. >> >> _clks with an s to inform that there are several of them. >> >> _clk ==>> _clks >> >>> +{ >>> + int ret; >>> + >>> + if (!IS_ERR(nfc->nfc_clk)) { >>> + ret = clk_prepare_enable(nfc->nfc_clk); >>> + if (ret) { >>> + dev_err(dev, "failed to enable nfc clk\n"); >>> + return ret; >>> + } >>> + } >>> + >>> + ret = clk_prepare_enable(nfc->ahb_clk); >>> + if (ret) { >>> + dev_err(dev, "failed to enable ahb clk\n"); >>> + if (!IS_ERR(nfc->nfc_clk)) >>> + clk_disable_unprepare(nfc->nfc_clk); >>> + return ret; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_disable_clk(struct rk_nfc *nfc) >> >> Change function name, because there are 2 clocks. >> >> ditto >> >> _clk ==>> _clks >> >>> +{ >>> + if (!IS_ERR(nfc->nfc_clk)) >>> + clk_disable_unprepare(nfc->nfc_clk); >>> + clk_disable_unprepare(nfc->ahb_clk); >>> +} >>> + >>> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oob_region) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + if (section) >>> + return -ERANGE; >>> + >>> + /* >>> + * The beginning of the oob area stores the reserved data for the NFC, >> >> OOB area >> >>> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. >>> + */ >>> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; >>> + oob_region->offset = NFC_SYS_DATA_SIZE + 2; >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oob_region) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + if (section) >>> + return -ERANGE; >>> + >> >>> + oob_region->offset = rknand->metadata_size; >>> + oob_region->length = mtd->oobsize - oob_region->offset; >> >> oob_region->length = mtd->oobsize - oob_region->offset; >> oob_region->offset = rknand->metadata_size; >> >> Keep length and offset in the same sort order as in rk_nfc_ooblayout_free(). > > modified: > oob_region->length = mtd->oobsize - rknand->metadata_size; > oob_region->offset = rknand->metadata_size; > >>> + >>> + return 0; >>> +} >>> + >>> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { >>> + .free = rk_nfc_ooblayout_free, >>> + .ecc = rk_nfc_ooblayout_ecc, >>> +}; >>> + >>> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + const u8 *strengths = nfc->cfg->ecc_strengths; >>> + u8 max_strength, nfc_max_strength; >>> + int i; >>> + >>> + nfc_max_strength = nfc->cfg->ecc_strengths[0]; >>> + /* If optional dt settings not present. */ >>> + if (!ecc->size || !ecc->strength || >>> + ecc->strength > nfc_max_strength) { >>> + chip->ecc.size = 1024; >>> + ecc->steps = mtd->writesize / ecc->size; >>> + >>> + /* >>> + * HW ECC always requests the number of ECC bytes per 1024 byte >> >>> + * blocks. 4 Bytes is oob for sys data. >> >> The first 4 OOB bytes are reserved for sys data. >>> + */ >>> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / >>> + fls(8 * 1024); >>> + if (max_strength > nfc_max_strength) >>> + max_strength = nfc_max_strength; >>> + >>> + for (i = 0; i < 4; i++) { >>> + if (max_strength >= strengths[i]) >>> + break; >>> + } >>> + >>> + if (i >= 4) { >>> + dev_err(nfc->dev, "Unsupported ECC strength\n"); >>> + return -EOPNOTSUPP; >>> + } >>> + >>> + ecc->strength = strengths[i]; >>> + } >>> + ecc->steps = mtd->writesize / ecc->size; >>> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); >>> + /* HW ECC always work with even numbers of ECC bytes. */ >>> + ecc->bytes = ALIGN(ecc->bytes, 2); >>> + >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_attach_chip(struct nand_chip *chip) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct device *dev = mtd->dev.parent; >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + u8 *temp_buf; >>> + int len, oob_len; >>> + int ret; >>> + >>> + if (chip->options & NAND_BUSWIDTH_16) { >>> + dev_err(dev, "16 bits bus width not supported"); >>> + return -EINVAL; >>> + } >>> + >>> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) >>> + return 0; >>> + >>> + ret = rk_nfc_ecc_init(dev, mtd); >>> + if (ret) >>> + return ret; >>> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; >>> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; >>> + >>> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { >>> + dev_err(dev, >>> + "Driver needs at least %d bytes of meta data\n", >>> + NFC_SYS_DATA_SIZE + 2); >>> + return -EIO; >>> + } >> >>> + len = mtd->writesize + mtd->oobsize; >> >>> + >>> + /* Check buffer first, avoid duplicate alloc buffer. */ >>> + if (nfc->buffer) { >>> + if (len > nfc->buffer_size) { >> >> Check only for buffer_size. >> Maybe split in 2. One size variable per buffer. >> Reorder flow, see example? >> >>> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA); >>> + if (!temp_buf) >>> + return -ENOMEM; >>> + kfree(nfc->buffer); >> >> Is there a realloc for kernels or use helper? >> >>> + nfc->buffer = temp_buf; >>> + nfc->buffer_size = len; >>> + >>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >>> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >>> + if (!temp_buf) >>> + return -ENOMEM; >>> + kfree(nfc->oob_buf); >>> + nfc->oob_buf = (u32 *)temp_buf; >>> + } >>> + return 0; >>> + } >>> + >> >> Example: >> >> // Check and resize existing buffer sizes. >> >> new_len = mtd->writesize + mtd->oobsize; >> >> if (nfc->buffer && new_len > nfc->buffer_size) { >> ret = resize(...); >> if (!ret) >> return -ENOMEM; >> nfc->buffer_size = new_len; >> } >> >> new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >> >> if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) { >> ret = resize(...); >> if (!ret) { >> free(nfc->buffer); >> return -ENOMEM; >> } >> nfc->oob_buffer_size = new_oob_len; >> } >> >> // If no buffers exists then create new buffers. >> >> if (!nfc->buffer) { >> ret = kzalloc(...); >> if (!ret) >> return -ENOMEM; >> nfc->buffer_size = new_len; >> } >> >> if (!nfc->oob_buf) { >> ret = kzalloc(...); >> if (!ret) { >> free(nfc->buffer); >> return -ENOMEM; >> } >> nfc->oob_buffer_size = new_oob_len; >> } >> >> >>> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA); >>> + if (!nfc->buffer) >>> + return -ENOMEM; >> >> >>> + >>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >>> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >>> + if (!nfc->oob_buf) { >>> + kfree(nfc->buffer); >>> + nfc->buffer = NULL; >> >>> + nfc->oob_buf = NULL; >> >> !nfc->oob_buf == (nfc->oob_buf = NULL) >> >> Comment from Miquèl: >> I don't think this is needed >> >> If something is NULL then there's no need to set it to NULL again. >> >>> + return -ENOMEM; >>> + } >>> + >>> + nfc->buffer_size = len; >>> + nfc->page_buf = nfc->buffer; >>> + >>> + chip->ecc.write_page_raw = rk_nfc_write_page_raw; >>> + chip->ecc.write_page = rk_nfc_write_page_hwecc; >>> + chip->ecc.write_oob_raw = rk_nfc_write_oob; >>> + chip->ecc.write_oob = rk_nfc_write_oob; >>> + >>> + chip->ecc.read_page_raw = rk_nfc_read_page_raw; >>> + chip->ecc.read_page = rk_nfc_read_page_hwecc; >>> + chip->ecc.read_oob_raw = rk_nfc_read_oob; >>> + chip->ecc.read_oob = rk_nfc_read_oob; >>> + >>> + return 0; >>> +} >>> + >>> +static const struct nand_controller_ops rk_nfc_controller_ops = { >>> + .attach_chip = rk_nfc_attach_chip, >>> + .exec_op = rk_nfc_exec_op, >>> + .setup_interface = rk_nfc_setup_data_interface, >>> +}; >>> + >>> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, >>> + struct device_node *np) >>> +{ >>> + struct rk_nfc_nand_chip *rknand; >>> + struct nand_chip *chip; >>> + struct mtd_info *mtd; >>> + int nsels; >>> + u32 tmp; >>> + int ret; >>> + int i; >>> + >>> + if (!of_get_property(np, "reg", &nsels)) >>> + return -ENODEV; >>> + nsels /= sizeof(u32); >>> + if (!nsels || nsels > NFC_MAX_NSELS) { >>> + dev_err(dev, "invalid reg property size %d\n", nsels); >>> + return -EINVAL; >>> + } >>> + >>> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), >>> + GFP_KERNEL); >>> + if (!rknand) >>> + return -ENOMEM; >>> + >>> + rknand->nsels = nsels; >>> + for (i = 0; i < nsels; i++) { >>> + ret = of_property_read_u32_index(np, "reg", i, &tmp); >>> + if (ret) { >>> + dev_err(dev, "reg property failure : %d\n", ret); >>> + return ret; >>> + } >>> + >>> + if (tmp >= NFC_MAX_NSELS) { >>> + dev_err(dev, "invalid CS: %u\n", tmp); >>> + return -EINVAL; >>> + } >>> + >>> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { >>> + dev_err(dev, "CS %u already assigned\n", tmp); >>> + return -EINVAL; >>> + } >>> + >>> + rknand->sels[i] = tmp; >>> + } >>> + >>> + chip = &rknand->chip; >>> + chip->controller = &nfc->controller; >>> + >>> + nand_set_flash_node(chip, np); >>> + >>> + nand_set_controller_data(chip, nfc); >>> + >>> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; >>> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; >>> + >>> + /* Set default mode in case dt entry is missing. */ >>> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; >>> + >>> + mtd = nand_to_mtd(chip); >>> + mtd->owner = THIS_MODULE; >>> + mtd->dev.parent = dev; >>> + >>> + if (!mtd->name) { >>> + dev_err(nfc->dev, "NAND label property is mandatory\n"); >>> + return -EINVAL; >>> + } >>> + >>> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); >>> + rk_nfc_hw_init(nfc); >>> + ret = nand_scan(chip, nsels); >>> + if (ret) >>> + return ret; >>> + >>> + if (chip->options & NAND_IS_BOOT_MEDIUM) { >>> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); >>> + rknand->boot_blks = ret ? 0 : tmp; >> >> Comment by Miquèl: >> Can't you guess this entry knowing the IP version/SoC version? >> >> No, "rockchip,boot-blks" depends on the size of multiple partitions >> and is user layout dependent. > > The "rockchip,boot-blks" is not a fixed number, can be configured with different number of blocks to store the pre loader > for the same SoC. > >>> + >>> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", >>> + &tmp); >>> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; >>> + } >>> + >>> + ret = mtd_device_register(mtd, NULL, 0); >>> + if (ret) { >>> + dev_err(dev, "mtd parse partition error\n"); >>> + nand_cleanup(chip); >>> + return ret; >>> + } >>> + >>> + list_add_tail(&rknand->node, &nfc->chips); >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) >>> +{ >>> + struct rk_nfc_nand_chip *rknand, *tmp; >>> + struct nand_chip *chip; >>> + int ret; >>> + >>> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { >>> + chip = &rknand->chip; >>> + ret = mtd_device_unregister(nand_to_mtd(chip)); >>> + WARN_ON(ret); >>> + nand_cleanup(chip); >>> + list_del(&rknand->node); >>> + } >>> +} >>> + >>> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) >>> +{ >>> + struct device_node *np = dev->of_node, *nand_np; >>> + int nchips = of_get_child_count(np); >>> + int ret; >>> + >>> + if (!nchips || nchips > NFC_MAX_NSELS) { >>> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", >>> + nchips); >>> + return -EINVAL; >>> + } >>> + >>> + for_each_child_of_node(np, nand_np) { >>> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); >>> + if (ret) { >>> + of_node_put(nand_np); >>> + rk_nfc_chips_cleanup(nfc); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static struct nfc_cfg nfc_v6_cfg = { >>> + .type = NFC_V6, >>> + .ecc_strengths = {60, 40, 24, 16}, >>> + .ecc_cfgs = { >>> + 0x00040011, 0x00040001, 0x00000011, 0x00000001, >>> + }, >>> + .flctl_off = 0x08, >>> + .bchctl_off = 0x0C, >>> + .dma_cfg_off = 0x10, >>> + .dma_data_buf_off = 0x14, >>> + .dma_oob_buf_off = 0x18, >>> + .dma_st_off = 0x1C, >>> + .bch_st_off = 0x20, >>> + .randmz_off = 0x150, >>> + .int_en_off = 0x16C, >>> + .int_clr_off = 0x170, >>> + .int_st_off = 0x174, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x230, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 27, >>> + .high_mask = 0x1, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 15, >>> + .low = 16, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 29, >>> + .high_mask = 0x1, >>> + }, >>> +}; >>> + >>> +static struct nfc_cfg nfc_v8_cfg = { >>> + .type = NFC_V8, >>> + .ecc_strengths = {16, 16, 16, 16}, >>> + .ecc_cfgs = { >>> + 0x00000001, 0x00000001, 0x00000001, 0x00000001, >>> + }, >>> + .flctl_off = 0x08, >>> + .bchctl_off = 0x0C, >>> + .dma_cfg_off = 0x10, >>> + .dma_data_buf_off = 0x14, >>> + .dma_oob_buf_off = 0x18, >>> + .dma_st_off = 0x1C, >>> + .bch_st_off = 0x20, >>> + .randmz_off = 0x150, >>> + .int_en_off = 0x16C, >>> + .int_clr_off = 0x170, >>> + .int_st_off = 0x174, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x230, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 27, >>> + .high_mask = 0x1, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 15, >>> + .low = 16, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 29, >>> + .high_mask = 0x1, >>> + }, >>> +}; >>> + >>> +static struct nfc_cfg nfc_v9_cfg = { >>> + .type = NFC_V9, >>> + .ecc_strengths = {70, 60, 40, 16}, >>> + .ecc_cfgs = { >>> + 0x00000001, 0x06000001, 0x04000001, 0x02000001, >>> + }, >>> + .flctl_off = 0x10, >>> + .bchctl_off = 0x20, >>> + .dma_cfg_off = 0x30, >>> + .dma_data_buf_off = 0x34, >>> + .dma_oob_buf_off = 0x38, >>> + .dma_st_off = 0x3C, >>> + .bch_st_off = 0x150, >>> + .randmz_off = 0x208, >>> + .int_en_off = 0x120, >>> + .int_clr_off = 0x124, >>> + .int_st_off = 0x128, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x204, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x7F, >>> + .low_bn = 7, >>> + .high = 0, >>> + .high_mask = 0x0, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 18, >>> + .low = 19, >>> + .low_mask = 0x7F, >>> + .low_bn = 7, >>> + .high = 0, >>> + .high_mask = 0x0, >>> + }, >>> +}; >>> + >>> +static const struct of_device_id rk_nfc_id_table[] = { >>> + { >>> + .compatible = "rockchip,px30-nfc", >>> + .data = &nfc_v9_cfg >>> + }, >>> + { >>> + .compatible = "rockchip,rk2928-nfc", >>> + .data = &nfc_v6_cfg >>> + }, >>> + { >>> + .compatible = "rockchip,rv1108-nfc", >>> + .data = &nfc_v8_cfg >>> + }, >>> + { /* sentinel */ } >>> +}; >>> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); >>> + >>> +static int rk_nfc_probe(struct platform_device *pdev) >>> +{ >>> + struct device *dev = &pdev->dev; >>> + struct rk_nfc *nfc; >>> + int ret, irq; >>> + >>> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); >>> + if (!nfc) >>> + return -ENOMEM; >>> + >>> + nand_controller_init(&nfc->controller); >>> + INIT_LIST_HEAD(&nfc->chips); >>> + nfc->controller.ops = &rk_nfc_controller_ops; >>> + >>> + nfc->cfg = of_device_get_match_data(dev); >>> + nfc->dev = dev; >>> + >>> + init_completion(&nfc->done); >>> + >>> + nfc->regs = devm_platform_ioremap_resource(pdev, 0); >>> + if (IS_ERR(nfc->regs)) { >>> + ret = PTR_ERR(nfc->regs); >>> + goto release_nfc; >>> + } >>> + >>> + nfc->nfc_clk = devm_clk_get(dev, "nfc"); >>> + if (IS_ERR(nfc->nfc_clk)) { >>> + dev_dbg(dev, "no nfc clk\n"); >>> + /* Some earlier models, such as rk3066, have no nfc clk. */ >>> + } >>> + >>> + nfc->ahb_clk = devm_clk_get(dev, "ahb"); >>> + if (IS_ERR(nfc->ahb_clk)) { >>> + dev_err(dev, "no ahb clk\n"); >>> + ret = PTR_ERR(nfc->ahb_clk); >>> + goto release_nfc; >>> + } >>> + >>> + ret = rk_nfc_enable_clk(dev, nfc); >>> + if (ret) >>> + goto release_nfc; >>> + >>> + irq = platform_get_irq(pdev, 0); >>> + if (irq < 0) { >>> + dev_err(dev, "no nfc irq resource\n"); >>> + ret = -EINVAL; >>> + goto clk_disable; >>> + } >>> + >>> + writel(0, nfc->regs + nfc->cfg->int_en_off); >>> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); >>> + if (ret) { >>> + dev_err(dev, "failed to request nfc irq\n"); >>> + goto clk_disable; >>> + } >>> + >>> + platform_set_drvdata(pdev, nfc); >>> + >>> + ret = rk_nfc_nand_chips_init(dev, nfc); >>> + if (ret) { >>> + dev_err(dev, "failed to init NAND chips\n"); >>> + goto clk_disable; >>> + } >>> + return 0; >>> + >>> +clk_disable: >>> + rk_nfc_disable_clk(nfc); >>> +release_nfc: >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_remove(struct platform_device *pdev) >>> +{ >>> + struct rk_nfc *nfc = platform_get_drvdata(pdev); >>> + >>> + kfree(nfc->buffer); >>> + kfree(nfc->oob_buf); >>> + rk_nfc_chips_cleanup(nfc); >>> + rk_nfc_disable_clk(nfc); >>> + >>> + return 0; >>> +} >>> + >>> +static int __maybe_unused rk_nfc_suspend(struct device *dev) >>> +{ >>> + struct rk_nfc *nfc = dev_get_drvdata(dev); >>> + >>> + rk_nfc_disable_clk(nfc); >>> + >>> + return 0; >>> +} >>> + >>> +static int __maybe_unused rk_nfc_resume(struct device *dev) >>> +{ >>> + struct rk_nfc *nfc = dev_get_drvdata(dev); >>> + struct rk_nfc_nand_chip *rknand; >>> + struct nand_chip *chip; >>> + int ret; >>> + u32 i; >>> + >>> + ret = rk_nfc_enable_clk(dev, nfc); >>> + if (ret) >>> + return ret; >>> + >>> + /* Reset NAND chip if VCC was powered off. */ >>> + list_for_each_entry(rknand, &nfc->chips, node) { >>> + chip = &rknand->chip; >>> + for (i = 0; i < rknand->nsels; i++) >>> + nand_reset(chip, i); >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static const struct dev_pm_ops rk_nfc_pm_ops = { >>> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) >>> +}; >>> + >>> +static struct platform_driver rk_nfc_driver = { >>> + .probe = rk_nfc_probe, >>> + .remove = rk_nfc_remove, >>> + .driver = { >>> + .name = "rockchip-nfc", >>> + .of_match_table = rk_nfc_id_table, >>> + .pm = &rk_nfc_pm_ops, >>> + }, >>> +}; >>> + >>> +module_platform_driver(rk_nfc_driver); >>> + >>> +MODULE_LICENSE("Dual MIT/GPL"); >>> +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); >>> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); >>> +MODULE_ALIAS("platform:rockchip-nand-controller"); >>> >> >> >> >
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 6c46f25b57e2..2cc533e4e239 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN Enables the driver for the Arasan NAND flash controller on Zynq Ultrascale+ MPSoC. +config MTD_NAND_ROCKCHIP + tristate "Rockchip NAND controller" + depends on ARCH_ROCKCHIP && HAS_IOMEM + help + Enables support for NAND controller on Rockchip SoCs. + There are four different versions of NAND FLASH Controllers, + including: + NFC v600: RK2928, RK3066, RK3188 + NFC v622: RK3036, RK3128 + NFC v800: RK3308, RV1108 + NFC v900: PX30, RK3326 + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2930f5b9015d..960c9be25204 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c new file mode 100644 index 000000000000..cf28c5936209 --- /dev/null +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c @@ -0,0 +1,1439 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Rockchip NAND Flash controller driver. + * Copyright (C) 2020 Rockchip Inc. + * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com> + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* + * NFC Page Data Layout: + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + + * ...... + * NAND Page Data Layout: + * 1024 * n Data + m Bytes oob + * Original Bad Block Mask Location: + * First byte of oob(spare). + * nand_chip->oob_poi data layout: + * 4Bytes sys data + .... + 4Bytes sys data + ecc data. + */ + +/* NAND controller register definition */ +#define NFC_READ (0) +#define NFC_WRITE (1) + +#define NFC_FMCTL (0x00) +#define FMCTL_CE_SEL_M 0xFF +#define FMCTL_CE_SEL(x) (1 << (x)) +#define FMCTL_WP BIT(8) +#define FMCTL_RDY BIT(9) + +#define NFC_FMWAIT (0x04) +#define FLCTL_RST BIT(0) +#define FLCTL_WR (1) /* 0: read, 1: write */ +#define FLCTL_XFER_ST BIT(2) +#define FLCTL_XFER_EN BIT(3) +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ +#define FLCTL_XFER_READY BIT(20) +#define FLCTL_XFER_SECTOR (22) +#define FLCTL_TOG_FIX BIT(29) + +#define BCHCTL_BANK_M (7 << 5) +#define BCHCTL_BANK (5) + +#define DMA_ST BIT(0) +#define DMA_WR (1) /* 0: write, 1: read */ +#define DMA_EN BIT(2) +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ +#define DMA_INC_NUM (9) /* 1 - 16 */ + +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) +#define INT_DMA BIT(0) +#define NFC_BANK (0x800) +#define NFC_BANK_STEP (0x100) +#define BANK_DATA (0x00) +#define BANK_ADDR (0x04) +#define BANK_CMD (0x08) +#define NFC_SRAM0 (0x1000) +#define NFC_SRAM1 (0x1400) +#define NFC_SRAM_SIZE (0x400) +#define NFC_TIMEOUT (500000) +#define NFC_MAX_OOB_PER_STEP 128 +#define NFC_MIN_OOB_PER_STEP 64 +#define MAX_DATA_SIZE 0xFFFC +#define MAX_ADDRESS_CYC 6 +#define NFC_ECC_MAX_MODES 4 +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) + +enum nfc_type { + NFC_V6, + NFC_V8, + NFC_V9, +}; + +/** + * struct rk_ecc_cnt_status: represent a ecc status data. + * @err_flag_bit: error flag bit index at register. + * @low: ecc count low bit index at register. + * @low_mask: mask bit. + * @low_bn: ecc count low bit number. + * @high: ecc count high bit index at register. + * @high_mask: mask bit + */ +struct ecc_cnt_status { + u8 err_flag_bit; + u8 low; + u8 low_mask; + u8 low_bn; + u8 high; + u8 high_mask; +}; + +/* + * @type: nfc version + * @ecc_strengths: ecc strengths + * @ecc_cfgs: ecc config values + * @flctl_off: FLCTL register offset + * @bchctl_off: BCHCTL register offset + * @dma_data_buf_off: DMA_DATA_BUF register offset + * @dma_oob_buf_off: DMA_OOB_BUF register offset + * @dma_cfg_off: DMA_CFG register offset + * @dma_st_off: DMA_ST register offset + * @bch_st_off: BCG_ST register offset + * @randmz_off: RANDMZ register offset + * @int_en_off: interrupt enable register offset + * @int_clr_off: interrupt clean register offset + * @int_st_off: interrupt status register offset + * @oob0_off: oob0 register offset + * @oob1_off: oob1 register offset + * @ecc0: represent ECC0 status data + * @ecc1: represent ECC1 status data + */ +struct nfc_cfg { + enum nfc_type type; + u8 ecc_strengths[NFC_ECC_MAX_MODES]; + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; + u32 flctl_off; + u32 bchctl_off; + u32 dma_cfg_off; + u32 dma_data_buf_off; + u32 dma_oob_buf_off; + u32 dma_st_off; + u32 bch_st_off; + u32 randmz_off; + u32 int_en_off; + u32 int_clr_off; + u32 int_st_off; + u32 oob0_off; + u32 oob1_off; + struct ecc_cnt_status ecc0; + struct ecc_cnt_status ecc1; +}; + +struct rk_nfc_nand_chip { + struct list_head node; + struct nand_chip chip; + + u16 spare_per_sector; + u16 oob_buf_per_sector; + u16 boot_blks; + u16 boot_ecc; + u16 metadata_size; + + u8 nsels; + u8 sels[0]; + /* Nothing after this field. */ +}; + +struct rk_nfc { + struct nand_controller controller; + const struct nfc_cfg *cfg; + struct device *dev; + + struct clk *nfc_clk; + struct clk *ahb_clk; + void __iomem *regs; + + u32 selected_bank; + u32 band_offset; + u32 cur_clk; + + struct completion done; + struct list_head chips; + + u8 *buffer; + u8 *page_buf; + u32 *oob_buf; + u32 buffer_size; + + unsigned long assigned_cs; +}; + +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip) +{ + return container_of(chip, struct rk_nfc_nand_chip, chip); +} + +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i) +{ + u8 *poi; + + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + + return poi; +} + +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + u8 *poi; + + poi = chip->oob_poi + rknand->metadata_size + + chip->ecc.bytes * i; + + return poi; +} + +static inline int rk_nfc_data_len(struct nand_chip *chip) +{ + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + + return chip->ecc.size + rknand->spare_per_sector; +} + +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * rk_nfc_data_len(chip); +} + +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size; +} + +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + u32 val; + + if (cs < 0) { + nfc->selected_bank = -1; + /* Deselect the currently selected target. */ + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + writel(val, nfc->regs + NFC_FMCTL); + return; + } + + nfc->selected_bank = rknand->sels[cs]; + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; + + val = readl_relaxed(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + val |= FMCTL_CE_SEL(nfc->selected_bank); + + writel(val, nfc->regs + NFC_FMCTL); +} + +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) +{ + int rc; + u32 val; + + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, + val & FMCTL_RDY, 10, NFC_TIMEOUT); + + return rc; +} + +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + + BANK_DATA); +} + +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); +} + +static int rk_nfc_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + unsigned int i, j, remaining, start; + int reg_offset = nfc->band_offset; + u8 *inbuf = NULL; + const u8 *outbuf; + u32 cnt = 0; + int ret = 0; + + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb(instr->ctx.cmd.opcode, + nfc->regs + reg_offset + BANK_CMD); + break; + + case NAND_OP_ADDR_INSTR: + remaining = nand_subop_get_num_addr_cyc(subop, i); + start = nand_subop_get_addr_start_off(subop, i); + + for (j = 0; j < 8 && j + start < remaining; j++) + writeb(instr->ctx.addr.addrs[j + start], + nfc->regs + reg_offset + BANK_ADDR); + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + start = nand_subop_get_data_start_off(subop, i); + cnt = nand_subop_get_data_len(subop, i); + + if (instr->type == NAND_OP_DATA_OUT_INSTR) { + outbuf = instr->ctx.data.buf.out + start; + rk_nfc_write_buf(nfc, outbuf, cnt); + } else { + inbuf = instr->ctx.data.buf.in + start; + rk_nfc_read_buf(nfc, inbuf, cnt); + } + break; + + case NAND_OP_WAITRDY_INSTR: + if (rk_nfc_wait_ioready(nfc) < 0) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "IO not ready\n"); + } + break; + } + } + + return ret; +} + +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + rk_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), +); + +static int rk_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + rk_nfc_select_chip(chip, op->cs); + + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, + check_only); +} + +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline, + const struct nand_interface_config *conf) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *timings; + u32 rate, tc2rw, trwpw, trw2c; + u32 temp; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -EOPNOTSUPP; + + if (IS_ERR(nfc->nfc_clk)) + rate = clk_get_rate(nfc->ahb_clk); + else + rate = clk_get_rate(nfc->nfc_clk); + + /* Turn clock rate into kHz. */ + rate /= 1000; + + tc2rw = 1; + trw2c = 1; + + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); + + temp = timings->tREA_max / 1000; + temp = DIV_ROUND_UP(temp * rate, 1000000); + + if (trwpw < temp) + trwpw = temp; + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:18: reserved + * 17:12: csrw, clock cycles from the falling edge of CSn to the + * falling edge of RDn or WRn + * 11:11: reserved + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the + * rising edge of CSn + */ + temp = ACCTIMING(tc2rw, trwpw, trw2c); + writel(temp, nfc->regs + NFC_FMWAIT); + + return 0; +} + +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, + struct nand_ecc_ctrl *ecc, + uint32_t strength) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + u32 reg, i; + + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { + if (ecc->strength == nfc->cfg->ecc_strengths[i]) { + reg = nfc->cfg->ecc_cfgs[i]; + break; + } + } + + if (i >= NFC_ECC_MAX_MODES) + return -EINVAL; + + writel(reg, nfc->regs + nfc->cfg->bchctl_off); + + return 0; +} + +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, + dma_addr_t dma_data, dma_addr_t dma_oob) +{ + u32 dma_reg, fl_reg, bch_reg; + + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); + + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; + + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | + (nfc->selected_bank << BCHCTL_BANK); + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); + } + + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); + fl_reg |= FLCTL_XFER_ST; + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); +} + +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) +{ + void __iomem *ptr; + int ret = 0; + u32 reg; + + ptr = nfc->regs + nfc->cfg->flctl_off; + + ret = readl_relaxed_poll_timeout(ptr, reg, + reg & FLCTL_XFER_READY, + 10, NFC_TIMEOUT); + + return ret; +} + +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + int ret = 0; + u32 i; + + if (!buf) + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Copy data to nfc buffer. */ + if (buf) + memcpy(rk_nfc_data_ptr(chip, i), + nand_data_ptr(chip, buf, i), + chip->ecc.size); + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, sush as dump + * data and write back, the last four bytes stored + * in OOB need to be write back. + */ + if (!i) + memcpy(rk_nfc_oob_ptr(chip, i), + nand_oob_ptr(chip, chip->ecc.steps - 1), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_oob_ptr(chip, i), + nand_oob_ptr(chip, i - 1), + NFC_SYS_DATA_SIZE); + /* Copy ecc data to nfc buffer. */ + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + nand_oob_ecc_ptr(chip, i), + chip->ecc.bytes); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); + ret = nand_prog_page_end_op(chip); + + /* + * Deselect the currently selected target after ops done, + * otherwise the NAND flash will has extra power consumption. + */ + rk_nfc_select_chip(chip, -1); + + return ret; +} + +static int rk_nfc_write_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_write_page_raw(chip, NULL, 1, page); +} + +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + int ret = 0, i, boot_rom_mode = 0; + dma_addr_t dma_data, dma_oob; + u32 reg; + u8 *oob; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + memcpy(nfc->page_buf, buf, mtd->writesize); + + /* + * The first blocks (4, 8 or 16 depending on the device) are used + * by the boot ROM and the first 32 bits of oob need to link to + * the next page address in the same block. + * Config the ECC algorithm supported by the boot ROM. + */ + if ((page < pages_per_blk * rknand->boot_blks) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc, + rknand->boot_ecc); + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) { + reg = 0xFFFFFFFF; + } else { + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | + oob[3] << 24; + } + if (!i && boot_rom_mode) + reg = (page & (pages_per_blk - 1)) * 4; + + if (nfc->cfg->type == NFC_V9) + nfc->oob_buf[i] = reg; + else + nfc->oob_buf[i * oob_step / 4] = reg; + } + + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, + mtd->writesize, DMA_TO_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_TO_DEVICE); + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_TO_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_TO_DEVICE); + + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); + + if (ret) { + ret = -EIO; + dev_err(nfc->dev, + "write: wait transfer done timeout.\n"); + } + + if (ret) + return ret; + + ret = nand_prog_page_end_op(chip); + + /* + * Deselect the currently selected target after ops done, + * otherwise the NAND flash will has extra power consumption. + */ + rk_nfc_select_chip(chip, -1); + + return ret; +} + +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + int i; + + nand_read_page_op(chip, page, 0, NULL, 0); + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize); + + /* + * Deselect the currently selected target after ops done, + * otherwise the NAND flash will has extra power consumption. + */ + rk_nfc_select_chip(chip, -1); + + for (i = 0; i < chip->ecc.steps; i++) { + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, sush as dump data + * and write back, it`s need to read out this four bytes, + * otherwise this information will be lost during write back. + */ + if (!i) + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + else + memcpy(nand_oob_ptr(chip, i - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + /* Copy ecc data form nfc buffer. */ + memcpy(nand_oob_ecc_ptr(chip, i), + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + chip->ecc.bytes); + /* Copy data form nfc buffer. */ + if (buf) + memcpy(nand_data_ptr(chip, buf, i), + rk_nfc_data_ptr(chip, i), + chip->ecc.size); + } + + return 0; +} + +static int rk_nfc_read_oob(struct nand_chip *chip, int page) +{ + return rk_nfc_read_page_raw(chip, NULL, 1, page); +} + +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + dma_addr_t dma_data, dma_oob; + int ret = 0, i, boot_rom_mode = 0; + int bitflips = 0, bch_st; + u8 *oob; + u32 tmp; + + nand_read_page_op(chip, page, 0, NULL, 0); + + dma_data = dma_map_single(nfc->dev, nfc->page_buf, + mtd->writesize, + DMA_FROM_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_FROM_DEVICE); + + /* + * The first blocks (4, 8 or 16 depending on the device) + * are used by the boot ROM. + * Config the ECC algorithm supported by the boot ROM. + */ + if ((page < pages_per_blk * rknand->boot_blks) && + (chip->options & NAND_IS_BOOT_MEDIUM)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc, + rknand->boot_ecc); + } + + reinit_completion(&nfc->done); + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); + /* + * Whether the DMA transfer is completed or not. The driver + * needs to check the NFC`s status register to see if the data + * transfer was completed. + */ + ret = rk_nfc_wait_for_xfer_done(nfc); + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_FROM_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_FROM_DEVICE); + + if (ret) { + bitflips = -EIO; + dev_err(nfc->dev, + "read: wait transfer done timeout.\n"); + goto out; + } + + for (i = 1; i < ecc->steps; i++) { + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + if (nfc->cfg->type == NFC_V9) + tmp = nfc->oob_buf[i]; + else + tmp = nfc->oob_buf[i * oob_step / 4]; + *oob++ = (u8)tmp; + *oob++ = (u8)(tmp >> 8); + *oob++ = (u8)(tmp >> 16); + *oob++ = (u8)(tmp >> 24); + } + + for (i = 0; i < ecc->steps / 2; i++) { + bch_st = readl_relaxed(nfc->regs + + nfc->cfg->bch_st_off + i * 4); + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { + mtd->ecc_stats.failed++; + /* ECC failed, return the minimum number of error bits */ + bitflips = ecc->strength + 1; + } else { + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + } + } +out: + memcpy(buf, nfc->page_buf, mtd->writesize); + + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); + + if (bitflips > ecc->strength) + dev_err(nfc->dev, "read page: %x ecc error!\n", page); + + /* + * Deselect the currently selected target after ops done, + * otherwise the NAND flash will has extra power consumption. + */ + rk_nfc_select_chip(chip, -1); + + return bitflips; +} + +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) +{ + /* Disable flash wp. */ + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); + /* Config default timing 40ns at 150 Mhz nfc clock. */ + writel(0x1081, nfc->regs + NFC_FMWAIT); + /* Disable randomizer and DMA. */ + writel(0, nfc->regs + nfc->cfg->randmz_off); + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); +} + +static irqreturn_t rk_nfc_irq(int irq, void *id) +{ + struct rk_nfc *nfc = id; + u32 sta, ien; + + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); + + if (!(sta & ien)) + return IRQ_NONE; + + writel(sta, nfc->regs + nfc->cfg->int_clr_off); + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); + + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc) +{ + int ret; + + if (!IS_ERR(nfc->nfc_clk)) { + ret = clk_prepare_enable(nfc->nfc_clk); + if (ret) { + dev_err(dev, "failed to enable nfc clk\n"); + return ret; + } + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) { + dev_err(dev, "failed to enable ahb clk\n"); + if (!IS_ERR(nfc->nfc_clk)) + clk_disable_unprepare(nfc->nfc_clk); + return ret; + } + + return 0; +} + +static void rk_nfc_disable_clk(struct rk_nfc *nfc) +{ + if (!IS_ERR(nfc->nfc_clk)) + clk_disable_unprepare(nfc->nfc_clk); + clk_disable_unprepare(nfc->ahb_clk); +} + +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + + if (section) + return -ERANGE; + + /* + * The beginning of the oob area stores the reserved data for the NFC, + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. + */ + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + oob_region->offset = NFC_SYS_DATA_SIZE + 2; + + return 0; +} + +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->offset = rknand->metadata_size; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { + .free = rk_nfc_ooblayout_free, + .ecc = rk_nfc_ooblayout_ecc, +}; + +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + const u8 *strengths = nfc->cfg->ecc_strengths; + u8 max_strength, nfc_max_strength; + int i; + + nfc_max_strength = nfc->cfg->ecc_strengths[0]; + /* If optional dt settings not present. */ + if (!ecc->size || !ecc->strength || + ecc->strength > nfc_max_strength) { + chip->ecc.size = 1024; + ecc->steps = mtd->writesize / ecc->size; + + /* + * HW ECC always requests the number of ECC bytes per 1024 byte + * blocks. 4 Bytes is oob for sys data. + */ + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / + fls(8 * 1024); + if (max_strength > nfc_max_strength) + max_strength = nfc_max_strength; + + for (i = 0; i < 4; i++) { + if (max_strength >= strengths[i]) + break; + } + + if (i >= 4) { + dev_err(nfc->dev, "Unsupported ECC strength\n"); + return -EOPNOTSUPP; + } + + ecc->strength = strengths[i]; + } + ecc->steps = mtd->writesize / ecc->size; + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); + /* HW ECC always work with even numbers of ECC bytes. */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); + + return 0; +} + +static int rk_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = mtd->dev.parent; + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *temp_buf; + int len, oob_len; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16 bits bus width not supported"); + return -EINVAL; + } + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + ret = rk_nfc_ecc_init(dev, mtd); + if (ret) + return ret; + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; + + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { + dev_err(dev, + "Driver needs at least %d bytes of meta data\n", + NFC_SYS_DATA_SIZE + 2); + return -EIO; + } + len = mtd->writesize + mtd->oobsize; + + /* Check buffer first, avoid duplicate alloc buffer. */ + if (nfc->buffer) { + if (len > nfc->buffer_size) { + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA); + if (!temp_buf) + return -ENOMEM; + kfree(nfc->buffer); + nfc->buffer = temp_buf; + nfc->buffer_size = len; + + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); + if (!temp_buf) + return -ENOMEM; + kfree(nfc->oob_buf); + nfc->oob_buf = (u32 *)temp_buf; + } + return 0; + } + + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA); + if (!nfc->buffer) + return -ENOMEM; + + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); + if (!nfc->oob_buf) { + kfree(nfc->buffer); + nfc->buffer = NULL; + nfc->oob_buf = NULL; + return -ENOMEM; + } + + nfc->buffer_size = len; + nfc->page_buf = nfc->buffer; + + chip->ecc.write_page_raw = rk_nfc_write_page_raw; + chip->ecc.write_page = rk_nfc_write_page_hwecc; + chip->ecc.write_oob_raw = rk_nfc_write_oob; + chip->ecc.write_oob = rk_nfc_write_oob; + + chip->ecc.read_page_raw = rk_nfc_read_page_raw; + chip->ecc.read_page = rk_nfc_read_page_hwecc; + chip->ecc.read_oob_raw = rk_nfc_read_oob; + chip->ecc.read_oob = rk_nfc_read_oob; + + return 0; +} + +static const struct nand_controller_ops rk_nfc_controller_ops = { + .attach_chip = rk_nfc_attach_chip, + .exec_op = rk_nfc_exec_op, + .setup_interface = rk_nfc_setup_data_interface, +}; + +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, + struct device_node *np) +{ + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + struct mtd_info *mtd; + int nsels; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + nsels /= sizeof(u32); + if (!nsels || nsels > NFC_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), + GFP_KERNEL); + if (!rknand) + return -ENOMEM; + + rknand->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + + if (tmp >= NFC_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", tmp); + return -EINVAL; + } + + rknand->sels[i] = tmp; + } + + chip = &rknand->chip; + chip->controller = &nfc->controller; + + nand_set_flash_node(chip, np); + + nand_set_controller_data(chip, nfc); + + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + + /* Set default mode in case dt entry is missing. */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + mtd = nand_to_mtd(chip); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); + rk_nfc_hw_init(nfc); + ret = nand_scan(chip, nsels); + if (ret) + return ret; + + if (chip->options & NAND_IS_BOOT_MEDIUM) { + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); + rknand->boot_blks = ret ? 0 : tmp; + + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", + &tmp); + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "mtd parse partition error\n"); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&rknand->node, &nfc->chips); + + return 0; +} + +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) +{ + struct rk_nfc_nand_chip *rknand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { + chip = &rknand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&rknand->node); + } +} + +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) +{ + struct device_node *np = dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > NFC_MAX_NSELS) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + rk_nfc_chips_cleanup(nfc); + return ret; + } + } + + return 0; +} + +static struct nfc_cfg nfc_v6_cfg = { + .type = NFC_V6, + .ecc_strengths = {60, 40, 24, 16}, + .ecc_cfgs = { + 0x00040011, 0x00040001, 0x00000011, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v8_cfg = { + .type = NFC_V8, + .ecc_strengths = {16, 16, 16, 16}, + .ecc_cfgs = { + 0x00000001, 0x00000001, 0x00000001, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v9_cfg = { + .type = NFC_V9, + .ecc_strengths = {70, 60, 40, 16}, + .ecc_cfgs = { + 0x00000001, 0x06000001, 0x04000001, 0x02000001, + }, + .flctl_off = 0x10, + .bchctl_off = 0x20, + .dma_cfg_off = 0x30, + .dma_data_buf_off = 0x34, + .dma_oob_buf_off = 0x38, + .dma_st_off = 0x3C, + .bch_st_off = 0x150, + .randmz_off = 0x208, + .int_en_off = 0x120, + .int_clr_off = 0x124, + .int_st_off = 0x128, + .oob0_off = 0x200, + .oob1_off = 0x204, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, + .ecc1 = { + .err_flag_bit = 18, + .low = 19, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, +}; + +static const struct of_device_id rk_nfc_id_table[] = { + { + .compatible = "rockchip,px30-nfc", + .data = &nfc_v9_cfg + }, + { + .compatible = "rockchip,rk2928-nfc", + .data = &nfc_v6_cfg + }, + { + .compatible = "rockchip,rv1108-nfc", + .data = &nfc_v8_cfg + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); + +static int rk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rk_nfc *nfc; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + nfc->controller.ops = &rk_nfc_controller_ops; + + nfc->cfg = of_device_get_match_data(dev); + nfc->dev = dev; + + init_completion(&nfc->done); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_nfc; + } + + nfc->nfc_clk = devm_clk_get(dev, "nfc"); + if (IS_ERR(nfc->nfc_clk)) { + dev_dbg(dev, "no nfc clk\n"); + /* Some earlier models, such as rk3066, have no nfc clk. */ + } + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "no ahb clk\n"); + ret = PTR_ERR(nfc->ahb_clk); + goto release_nfc; + } + + ret = rk_nfc_enable_clk(dev, nfc); + if (ret) + goto release_nfc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no nfc irq resource\n"); + ret = -EINVAL; + goto clk_disable; + } + + writel(0, nfc->regs + nfc->cfg->int_en_off); + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request nfc irq\n"); + goto clk_disable; + } + + platform_set_drvdata(pdev, nfc); + + ret = rk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init NAND chips\n"); + goto clk_disable; + } + return 0; + +clk_disable: + rk_nfc_disable_clk(nfc); +release_nfc: + return ret; +} + +static int rk_nfc_remove(struct platform_device *pdev) +{ + struct rk_nfc *nfc = platform_get_drvdata(pdev); + + kfree(nfc->buffer); + kfree(nfc->oob_buf); + rk_nfc_chips_cleanup(nfc); + rk_nfc_disable_clk(nfc); + + return 0; +} + +static int __maybe_unused rk_nfc_suspend(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + + rk_nfc_disable_clk(nfc); + + return 0; +} + +static int __maybe_unused rk_nfc_resume(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + struct rk_nfc_nand_chip *rknand; + struct nand_chip *chip; + int ret; + u32 i; + + ret = rk_nfc_enable_clk(dev, nfc); + if (ret) + return ret; + + /* Reset NAND chip if VCC was powered off. */ + list_for_each_entry(rknand, &nfc->chips, node) { + chip = &rknand->chip; + for (i = 0; i < rknand->nsels; i++) + nand_reset(chip, i); + } + + return 0; +} + +static const struct dev_pm_ops rk_nfc_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) +}; + +static struct platform_driver rk_nfc_driver = { + .probe = rk_nfc_probe, + .remove = rk_nfc_remove, + .driver = { + .name = "rockchip-nfc", + .of_match_table = rk_nfc_id_table, + .pm = &rk_nfc_pm_ops, + }, +}; + +module_platform_driver(rk_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>"); +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); +MODULE_ALIAS("platform:rockchip-nand-controller");
This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using 8-bit NAND interface on the ARM based RK3308 platform. Support Rockchip SoCs and NFC versions: - PX30 and RK3326(NFCv900). ECC: 16/40/60/70 bits/1KB. CLOCK: ahb and nfc. - RK3308 and RV1108(NFCv800). ECC: 16 bits/1KB. CLOCK: ahb and nfc. - RK3036 and RK3128(NFCv622). ECC: 16/24/40/60 bits/1KB. CLOCK: ahb and nfc. - RK3066, RK3188 and RK2928(NFCv600). ECC: 16/24/40/60 bits/1KB. CLOCK: ahb. Supported features: - Read full page data by DMA. - Support HW ECC(one step is 1KB). - Support 2 - 32K page size. - Support 8 CS(depend on SoCs) Limitations: - No support for the ecc step size is 512. - Untested on some SoCs. - No support for subpages. - No support for the builtin randomizer. - The original bad block mask is not supported. It is recommended to use the BBT(bad block table). Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com> --- (no changes since v11) Changes in v11: - Fix compile error. Changes in v10: - Fix compile error on master v5.9-rc7. Changes in v9: - The nfc->buffer will realloc while the page size of the second mtd is large than the first one - Fix coding style. - Remove struct rk_nfc_clk. - Prepend some function with rk_nfc_. - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout. - Remove function rk_nfc_read_byte and rk_nfc_write_byte. - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. Changes in v7: - Rebase to linux-next. - Fix coding style. - Reserved 4 bytes at the beginning of the oob area. - Page raw read and write included ecc data. Changes in v6: - The mtd->name set by NAND label property. - Add some comments. - Fix compile error. Changes in v5: - Add boot blocks support with different ECC for bootROM. - Rename rockchip-nand.c to rockchip-nand-controller.c. - Unification of other variable names. - Remove some compatible define. Changes in v4: - Define platform data structure for the register offsets. - The compatible define with rkxx_nfc. - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. - Use exec_op instead of legacy hooks. Changes in v2: - Fix compile error. - Include header files sorted by file name. drivers/mtd/nand/raw/Kconfig | 12 + drivers/mtd/nand/raw/Makefile | 1 + .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++ 3 files changed, 1452 insertions(+) create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c