@@ -84,6 +84,17 @@ config SND_SOC_FSL_MICFIL
Say Y if you want to add Pulse Density Modulation microphone
interface (MICFIL) support for NXP.
+config SND_SOC_FSL_EASRC
+ tristate "Enhanced Asynchronous Sample Rate Converter (EASRC) module support"
+ depends on SND_SOC_FSL_ASRC
+ select REGMAP_MMIO
+ select SND_SOC_GENERIC_DMAENGINE_PCM
+ help
+ Say Y if you want to add Enhanced ASRC support for NXP. The ASRC is
+ a digital module that converts audio from a source sample rate to a
+ destination sample rate. It is a new design module compare with the
+ old ASRC.
+
config SND_SOC_FSL_UTILS
tristate
@@ -24,6 +24,7 @@ snd-soc-fsl-micfil-objs := fsl_micfil.o
snd-soc-fsl-utils-objs := fsl_utils.o
snd-soc-fsl-dma-objs := fsl_dma.o
snd-soc-fsl-mqs-objs := fsl_mqs.o
+snd-soc-fsl-easrc-objs := fsl_easrc.o
obj-$(CONFIG_SND_SOC_FSL_AUDMIX) += snd-soc-fsl-audmix.o
obj-$(CONFIG_SND_SOC_FSL_ASOC_CARD) += snd-soc-fsl-asoc-card.o
@@ -35,6 +36,7 @@ obj-$(CONFIG_SND_SOC_FSL_ESAI) += snd-soc-fsl-esai.o
obj-$(CONFIG_SND_SOC_FSL_MICFIL) += snd-soc-fsl-micfil.o
obj-$(CONFIG_SND_SOC_FSL_UTILS) += snd-soc-fsl-utils.o
obj-$(CONFIG_SND_SOC_FSL_MQS) += snd-soc-fsl-mqs.o
+obj-$(CONFIG_SND_SOC_FSL_EASRC) += snd-soc-fsl-easrc.o
obj-$(CONFIG_SND_SOC_POWERPC_DMA) += snd-soc-fsl-dma.o
# MPC5200 Platform Support
new file mode 100644
@@ -0,0 +1,2111 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright 2019 NXP
+
+#include <linux/atomic.h>
+#include <linux/clk.h>
+#include <linux/device.h>
+#include <linux/dma-mapping.h>
+#include <linux/firmware.h>
+#include <linux/interrupt.h>
+#include <linux/kobject.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/miscdevice.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/pm_runtime.h>
+#include <linux/regmap.h>
+#include <linux/sched/signal.h>
+#include <linux/sysfs.h>
+#include <linux/types.h>
+#include <linux/gcd.h>
+#include <sound/dmaengine_pcm.h>
+#include <sound/pcm.h>
+#include <sound/pcm_params.h>
+#include <sound/soc.h>
+#include <sound/tlv.h>
+#include <sound/core.h>
+
+#include "fsl_easrc.h"
+#include "imx-pcm.h"
+
+#define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
+ SNDRV_PCM_FMTBIT_U16_LE | \
+ SNDRV_PCM_FMTBIT_S24_LE | \
+ SNDRV_PCM_FMTBIT_S24_3LE | \
+ SNDRV_PCM_FMTBIT_U24_LE | \
+ SNDRV_PCM_FMTBIT_U24_3LE | \
+ SNDRV_PCM_FMTBIT_S32_LE | \
+ SNDRV_PCM_FMTBIT_U32_LE | \
+ SNDRV_PCM_FMTBIT_S20_3LE | \
+ SNDRV_PCM_FMTBIT_U20_3LE | \
+ SNDRV_PCM_FMTBIT_FLOAT_LE)
+
+static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
+ struct snd_ctl_elem_value *ucontrol)
+{
+ struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
+ struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct soc_mreg_control *mc =
+ (struct soc_mreg_control *)kcontrol->private_value;
+ unsigned int regval = ucontrol->value.integer.value[0];
+
+ easrc_priv->bps_iec958[mc->regbase] = regval;
+
+ return 0;
+}
+
+static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
+ struct snd_ctl_elem_value *ucontrol)
+{
+ struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
+ struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct soc_mreg_control *mc =
+ (struct soc_mreg_control *)kcontrol->private_value;
+
+ ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
+
+ return 0;
+}
+
+static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
+ struct snd_ctl_elem_value *ucontrol)
+{
+ struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
+ struct soc_mreg_control *mc =
+ (struct soc_mreg_control *)kcontrol->private_value;
+ unsigned int regval;
+ int ret;
+
+ ret = snd_soc_component_read(component, mc->regbase, ®val);
+ if (ret < 0)
+ return ret;
+
+ ucontrol->value.integer.value[0] = regval;
+
+ return 0;
+}
+
+static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
+ struct snd_ctl_elem_value *ucontrol)
+{
+ struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
+ struct soc_mreg_control *mc =
+ (struct soc_mreg_control *)kcontrol->private_value;
+ unsigned int regval = ucontrol->value.integer.value[0];
+ int ret;
+
+ ret = snd_soc_component_write(component, mc->regbase, regval);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+#define SOC_SINGLE_REG_RW(xname, xreg) \
+{ .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
+ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
+ .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
+ .put = fsl_easrc_set_reg, \
+ .private_value = (unsigned long)&(struct soc_mreg_control) \
+ { .regbase = xreg, .regcount = 1, .nbits = 32, \
+ .invert = 0, .min = 0, .max = 0xffffffff, } }
+
+#define SOC_SINGLE_VAL_RW(xname, xreg) \
+{ .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
+ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
+ .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
+ .put = fsl_easrc_iec958_put_bits, \
+ .private_value = (unsigned long)&(struct soc_mreg_control) \
+ { .regbase = xreg, .regcount = 1, .nbits = 32, \
+ .invert = 0, .min = 0, .max = 2, } }
+
+static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
+ SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
+ SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
+ SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
+ SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
+
+ SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
+ SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
+ SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
+ SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
+
+ SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
+ SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
+ SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
+ SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
+
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
+ SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
+ SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
+ SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
+ SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
+};
+
+/*
+ * fsl_easrc_set_rs_ratio
+ *
+ * According to the resample taps, calculate the resample ratio
+ * ratio = in_rate / out_rate
+ */
+static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+ unsigned int in_rate = ctx_priv->in_params.norm_rate;
+ unsigned int out_rate = ctx_priv->out_params.norm_rate;
+ unsigned int int_bits;
+ unsigned int frac_bits;
+ u64 val;
+ u32 *r;
+
+ switch (easrc_priv->rs_num_taps) {
+ case EASRC_RS_32_TAPS:
+ int_bits = 5;
+ frac_bits = 39;
+ break;
+ case EASRC_RS_64_TAPS:
+ int_bits = 6;
+ frac_bits = 38;
+ break;
+ case EASRC_RS_128_TAPS:
+ int_bits = 7;
+ frac_bits = 37;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ val = (u64)in_rate << frac_bits;
+ do_div(val, out_rate);
+ r = (uint32_t *)&val;
+ regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
+ EASRC_RRL_RS_RL(r[0]));
+ regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
+ EASRC_RRH_RS_RH(r[1]));
+
+ return 0;
+}
+
+/* Normalize input and output sample rates */
+static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
+{
+ struct fsl_easrc_ctx_priv *ctx_priv;
+ int a, b;
+
+ if (!ctx)
+ return;
+
+ ctx_priv = ctx->private;
+
+ a = ctx_priv->in_params.sample_rate;
+ b = ctx_priv->out_params.sample_rate;
+
+ a = gcd(a, b);
+
+ /* Divide by gcd to normalize the rate */
+ ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
+ ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
+}
+
+/* Resets the pointer of the coeff memory pointers */
+static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
+ unsigned int ctx_id, int mem_type)
+{
+ struct device *dev;
+ u32 reg, mask, val;
+
+ if (!easrc)
+ return -ENODEV;
+
+ dev = &easrc->pdev->dev;
+
+ switch (mem_type) {
+ case EASRC_PF_COEFF_MEM:
+ /* This resets the prefilter memory pointer addr */
+ if (ctx_id >= EASRC_CTX_MAX_NUM) {
+ dev_err(dev, "Invalid context id[%d]\n", ctx_id);
+ return -EINVAL;
+ }
+
+ reg = REG_EASRC_CCE1(ctx_id);
+ mask = EASRC_CCE1_COEF_MEM_RST_MASK;
+ val = EASRC_CCE1_COEF_MEM_RST;
+ break;
+ case EASRC_RS_COEFF_MEM:
+ /* This resets the resampling memory pointer addr */
+ reg = REG_EASRC_CRCC;
+ mask = EASRC_CRCC_RS_CPR_MASK;
+ val = EASRC_CRCC_RS_CPR;
+ break;
+ default:
+ dev_err(dev, "Unknown memory type\n");
+ return -EINVAL;
+ }
+
+ /*
+ * To reset the write pointer back to zero, the register field
+ * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
+ * 0x0 to 0x1 to 0x0.
+ */
+ regmap_update_bits(easrc->regmap, reg, mask, 0);
+ regmap_update_bits(easrc->regmap, reg, mask, val);
+ regmap_update_bits(easrc->regmap, reg, mask, 0);
+
+ return 0;
+}
+
+static inline uint32_t bits_taps_to_val(unsigned int t)
+{
+ switch (t) {
+ case EASRC_RS_32_TAPS:
+ return 32;
+ case EASRC_RS_64_TAPS:
+ return 64;
+ case EASRC_RS_128_TAPS:
+ return 128;
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
+{
+ struct device *dev = &easrc->pdev->dev;
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr;
+ struct interp_params *interp = easrc_priv->interp;
+ struct interp_params *selected_interp = NULL;
+ unsigned int num_coeff;
+ unsigned int i;
+ u64 *arr;
+ u32 *r;
+ int ret;
+
+ if (!hdr) {
+ dev_err(dev, "firmware not loaded!\n");
+ return -ENODEV;
+ }
+
+ for (i = 0; i < hdr->interp_scen; i++) {
+ if ((interp[i].num_taps - 1) ==
+ bits_taps_to_val(easrc_priv->rs_num_taps)) {
+ arr = interp[i].coeff;
+ selected_interp = &interp[i];
+ dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
+ selected_interp->num_taps,
+ selected_interp->num_phases);
+ break;
+ }
+ }
+
+ if (!selected_interp) {
+ dev_err(dev, "failed to get interpreter configuration\n");
+ return -EINVAL;
+ }
+
+ /*
+ * RS_LOW - first half of center tap of the sinc function
+ * RS_HIGH - second half of center tap of the sinc function
+ * This is due to the fact the resampling function must be
+ * symetrical - i.e. odd number of taps
+ */
+ r = (uint32_t *)&selected_interp->center_tap;
+ regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
+ regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
+
+ /*
+ * Write Number of Resampling Coefficient Taps
+ * 00b - 32-Tap Resampling Filter
+ * 01b - 64-Tap Resampling Filter
+ * 10b - 128-Tap Resampling Filter
+ * 11b - N/A
+ */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
+ EASRC_CRCC_RS_TAPS_MASK,
+ EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
+
+ /* Reset prefilter coefficient pointer back to 0 */
+ ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
+ if (ret)
+ return ret;
+
+ /*
+ * When the filter is programmed to run in:
+ * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
+ * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
+ * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
+ * This means the number of writes is constant no matter
+ * the mode we are using
+ */
+ num_coeff = 16 * 128 * 4;
+
+ for (i = 0; i < num_coeff; i++) {
+ r = (uint32_t *)&arr[i];
+ regmap_write(easrc->regmap, REG_EASRC_CRCM,
+ EASRC_CRCM_RS_CWD(r[0]));
+ regmap_write(easrc->regmap, REG_EASRC_CRCM,
+ EASRC_CRCM_RS_CWD(r[1]));
+ }
+
+ return 0;
+}
+
+/**
+ * Scale filter coefficients (64 bits float)
+ * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
+ * scale it by multiplying filter coefficients by 2^31
+ * For input int[16, 24, 32] -> output float32
+ * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
+ * input:
+ * asrc: Structure pointer of fsl_asrc
+ * infilter : Pointer to non-scaled input filter
+ * shift: The multiply factor
+ * output:
+ * outfilter: scaled filter
+ */
+static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
+ u64 *infilter,
+ u64 *outfilter,
+ int shift)
+{
+ struct device *dev = &easrc->pdev->dev;
+ u64 coef = *infilter;
+ s64 exp = (coef & 0x7ff0000000000000ll) >> 52;
+ u64 outcoef;
+
+ /*
+ * If exponent is zero (value == 0), or 7ff (value == NaNs)
+ * dont touch the content
+ */
+ if (((coef & 0x7ff0000000000000ll) == 0) ||
+ ((coef & 0x7ff0000000000000ll) == ((u64)0x7ff << 52))) {
+ *outfilter = coef;
+ } else {
+ if ((shift > 0 && (shift + exp) >= 2047) ||
+ (shift < 0 && (exp + shift) <= 0)) {
+ dev_err(dev, "coef error\n");
+ return -EINVAL;
+ }
+
+ /* coefficient * 2^shift ==> coefficient_exp + shift */
+ exp += shift;
+ outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) +
+ ((u64)exp << 52);
+ *outfilter = outcoef;
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
+ u64 *arr, int n_taps, int shift)
+{
+ struct device *dev = &easrc->pdev->dev;
+ int ret = 0;
+ int i;
+ u32 *r;
+ u64 tmp;
+
+ /* If STx_NUM_TAPS is set to 0x0 then return */
+ if (!n_taps)
+ return 0;
+
+ if (!arr) {
+ dev_err(dev, "NULL buffer\n");
+ return -EINVAL;
+ }
+
+ /*
+ * When switching between stages, the address pointer
+ * should be reset back to 0x0 before performing a write
+ */
+ ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < (n_taps + 1) / 2; i++) {
+ ret = fsl_easrc_normalize_filter(easrc, &arr[i], &tmp, shift);
+ if (ret)
+ return ret;
+
+ r = (uint32_t *)&tmp;
+ regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
+ EASRC_PCF_CD(r[0]));
+ regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
+ EASRC_PCF_CD(r[1]));
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
+ unsigned int ctx_id)
+{
+ struct prefil_params *prefil, *selected_prefil = NULL;
+ struct fsl_easrc_ctx_priv *ctx_priv;
+ struct fsl_easrc_priv *easrc_priv;
+ struct asrc_firmware_hdr *hdr;
+ struct fsl_asrc_pair *ctx;
+ struct device *dev;
+ u32 inrate, outrate, offset = 0;
+ int ret, i;
+
+ if (!easrc)
+ return -ENODEV;
+
+ dev = &easrc->pdev->dev;
+
+ if (ctx_id >= EASRC_CTX_MAX_NUM) {
+ dev_err(dev, "Invalid context id[%d]\n", ctx_id);
+ return -EINVAL;
+ }
+
+ easrc_priv = easrc->private;
+
+ ctx = easrc->pair[ctx_id];
+ ctx_priv = ctx->private;
+
+ ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
+ ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
+ ctx_priv->out_params.sample_rate /
+ ctx_priv->in_params.sample_rate;
+
+ ctx_priv->st1_num_taps = 0;
+ ctx_priv->st2_num_taps = 0;
+
+ regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
+ regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
+
+ /*
+ * The audio float point data range is (-1, 1), the asrc would output
+ * all zero for float point input and integer output case, that is to
+ * drop the fractional part of the data directly.
+ *
+ * In order to support float to int conversion or int to float
+ * conversion we need to do special operation on the coefficient to
+ * enlarge/reduce the data to the expected range.
+ *
+ * For float to int case:
+ * Up sampling:
+ * 1. Create a 1 tap filter with center tap (only tap) of 2^31
+ * in 64 bits floating point.
+ * double value = (double)(((uint64_t)1) << 31)
+ * 2. Program 1 tap prefilter with center tap above.
+ *
+ * Down sampling,
+ * 1. If the filter is single stage filter, add "shift" to the exponent
+ * of stage 1 coefficients.
+ * 2. If the filter is two stage filter , add "shift" to the exponent
+ * of stage 2 coefficients.
+ *
+ * The "shift" is 31, same for int16, int24, int32 case.
+ *
+ * For int to float case:
+ * Up sampling:
+ * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
+ * in 64 bits floating point.
+ * 2. Program 1 tap prefilter with center tap above.
+ *
+ * Down sampling,
+ * 1. If the filter is single stage filter, subtract "shift" to the
+ * exponent of stage 1 coefficients.
+ * 2. If the filter is two stage filter , subtract "shift" to the
+ * exponent of stage 2 coefficients.
+ *
+ * The "shift" is 15,23,31, different for int16, int24, int32 case.
+ *
+ */
+ if (ctx_priv->out_params.sample_rate >= ctx_priv->in_params.sample_rate) {
+ if (ctx_priv->out_params.sample_rate == ctx_priv->in_params.sample_rate)
+ regmap_update_bits(easrc->regmap,
+ REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_RS_BYPASS_MASK,
+ EASRC_CCE1_RS_BYPASS);
+
+ ctx_priv->st1_num_taps = 1;
+ ctx_priv->st1_coeff = &easrc_priv->const_coeff;
+ ctx_priv->st1_num_exp = 1;
+ ctx_priv->st2_num_taps = 0;
+
+ if (ctx_priv->in_params.sample_format == SNDRV_PCM_FORMAT_FLOAT_LE &&
+ ctx_priv->out_params.sample_format != SNDRV_PCM_FORMAT_FLOAT_LE)
+ ctx_priv->st1_addexp = 31;
+ else if (ctx_priv->in_params.sample_format != SNDRV_PCM_FORMAT_FLOAT_LE &&
+ ctx_priv->out_params.sample_format == SNDRV_PCM_FORMAT_FLOAT_LE)
+ ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
+ } else {
+ inrate = ctx_priv->in_params.norm_rate;
+ outrate = ctx_priv->out_params.norm_rate;
+
+ hdr = easrc_priv->firmware_hdr;
+ prefil = easrc_priv->prefil;
+
+ for (i = 0; i < hdr->prefil_scen; i++) {
+ if (inrate == prefil[i].insr &&
+ outrate == prefil[i].outsr) {
+ selected_prefil = &prefil[i];
+ dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
+ selected_prefil->insr,
+ selected_prefil->outsr,
+ selected_prefil->st1_taps,
+ selected_prefil->st2_taps);
+ break;
+ }
+ }
+
+ if (!selected_prefil) {
+ dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
+ ctx_priv->in_params.sample_rate, inrate,
+ ctx_priv->out_params.sample_rate, outrate);
+ return -EINVAL;
+ }
+
+ /*
+ * In prefilter coeff array, first st1_num_taps represent the
+ * stage1 prefilter coefficients followed by next st2_num_taps
+ * representing stage 2 coefficients
+ */
+ ctx_priv->st1_num_taps = selected_prefil->st1_taps;
+ ctx_priv->st1_coeff = selected_prefil->coeff;
+ ctx_priv->st1_num_exp = selected_prefil->st1_exp;
+
+ offset = ((selected_prefil->st1_taps + 1) / 2);
+ ctx_priv->st2_num_taps = selected_prefil->st2_taps;
+ ctx_priv->st2_coeff = selected_prefil->coeff + offset;
+
+ if (ctx_priv->in_params.sample_format == SNDRV_PCM_FORMAT_FLOAT_LE &&
+ ctx_priv->out_params.sample_format != SNDRV_PCM_FORMAT_FLOAT_LE) {
+ /* only change stage2 coefficient for 2 stage case */
+ if (ctx_priv->st2_num_taps > 0)
+ ctx_priv->st2_addexp = 31;
+ else
+ ctx_priv->st1_addexp = 31;
+ } else if (ctx_priv->in_params.sample_format != SNDRV_PCM_FORMAT_FLOAT_LE &&
+ ctx_priv->out_params.sample_format == SNDRV_PCM_FORMAT_FLOAT_LE) {
+ if (ctx_priv->st2_num_taps > 0)
+ ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
+ else
+ ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
+ }
+ }
+
+ ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
+ ctx_priv->st2_num_taps / 2;
+ ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
+ ctx_priv->out_params.sample_rate /
+ ctx_priv->in_params.sample_rate;
+
+ if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate %
+ ctx_priv->in_params.sample_rate != 0)
+ ctx_priv->out_missed_sample += 1;
+ /*
+ * To modify the value of a prefilter coefficient, the user must
+ * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
+ * while the respective context RUN_EN bit is set to 0b0
+ */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
+ EASRC_CC_EN_MASK, 0);
+
+ if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
+ dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
+ ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
+ ret = -EINVAL;
+ goto ctx_error;
+ }
+
+ /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
+ EASRC_CCE2_ST1_TAPS_MASK,
+ EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
+
+ /* Prefilter Coefficient Write Select to write in ST1 coeff */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_COEF_WS_MASK,
+ EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
+
+ ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
+ ctx_priv->st1_coeff,
+ ctx_priv->st1_num_taps,
+ ctx_priv->st1_addexp);
+ if (ret)
+ goto ctx_error;
+
+ if (ctx_priv->st2_num_taps > 0) {
+ if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
+ dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
+ ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
+ ret = -EINVAL;
+ goto ctx_error;
+ }
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_PF_TSEN_MASK,
+ EASRC_CCE1_PF_TSEN);
+ /*
+ * Enable prefilter stage1 writeback floating point
+ * which is used for FLOAT_LE case
+ */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_PF_ST1_WBFP_MASK,
+ EASRC_CCE1_PF_ST1_WBFP);
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_PF_EXP_MASK,
+ EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
+
+ /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
+ EASRC_CCE2_ST2_TAPS_MASK,
+ EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
+
+ /* Prefilter Coefficient Write Select to write in ST2 coeff */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_COEF_WS_MASK,
+ EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
+
+ ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
+ ctx_priv->st2_coeff,
+ ctx_priv->st2_num_taps,
+ ctx_priv->st2_addexp);
+ if (ret)
+ goto ctx_error;
+ }
+
+ return 0;
+
+ctx_error:
+ return ret;
+}
+
+static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
+ struct fsl_easrc_slot *slot)
+{
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+ int st1_mem_alloc = 0, st2_mem_alloc = 0;
+ int pf_mem_alloc = 0;
+ int max_channels = 8 - slot->num_channel;
+ int channels = 0;
+
+ if (ctx_priv->st1_num_taps > 0) {
+ if (ctx_priv->st2_num_taps > 0)
+ st1_mem_alloc =
+ (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
+ else
+ st1_mem_alloc = ctx_priv->st1_num_taps;
+ }
+
+ if (ctx_priv->st2_num_taps > 0)
+ st2_mem_alloc = ctx_priv->st2_num_taps;
+
+ pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
+
+ if (pf_mem_alloc != 0)
+ channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
+ else
+ channels = 8;
+
+ if (channels < max_channels)
+ max_channels = channels;
+
+ return max_channels;
+}
+
+static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
+ struct fsl_easrc_slot *slot,
+ unsigned int slot_ctx_idx,
+ unsigned int *req_channels,
+ unsigned int *start_channel,
+ unsigned int *avail_channel)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+ int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc = 0;
+ unsigned int reg0, reg1, reg2, reg3;
+ unsigned int addr;
+
+ if (slot->slot_index == 0) {
+ reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
+ reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
+ reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
+ reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
+ } else {
+ reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
+ reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
+ reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
+ reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
+ }
+
+ if (*req_channels <= *avail_channel) {
+ slot->num_channel = *req_channels;
+ *req_channels = 0;
+ } else {
+ slot->num_channel = *avail_channel;
+ *req_channels -= *avail_channel;
+ }
+
+ slot->min_channel = *start_channel;
+ slot->max_channel = *start_channel + slot->num_channel - 1;
+ slot->ctx_index = ctx->index;
+ slot->busy = true;
+ *start_channel += slot->num_channel;
+
+ regmap_update_bits(easrc->regmap, reg0,
+ EASRC_DPCS0R0_MAXCH_MASK,
+ EASRC_DPCS0R0_MAXCH(slot->max_channel));
+
+ regmap_update_bits(easrc->regmap, reg0,
+ EASRC_DPCS0R0_MINCH_MASK,
+ EASRC_DPCS0R0_MINCH(slot->min_channel));
+
+ regmap_update_bits(easrc->regmap, reg0,
+ EASRC_DPCS0R0_NUMCH_MASK,
+ EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
+
+ regmap_update_bits(easrc->regmap, reg0,
+ EASRC_DPCS0R0_CTXNUM_MASK,
+ EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
+
+ if (ctx_priv->st1_num_taps > 0) {
+ if (ctx_priv->st2_num_taps > 0)
+ st1_mem_alloc =
+ (ctx_priv->st1_num_taps - 1) * slot->num_channel *
+ ctx_priv->st1_num_exp + slot->num_channel;
+ else
+ st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
+
+ slot->pf_mem_used = st1_mem_alloc;
+ regmap_update_bits(easrc->regmap, reg2,
+ EASRC_DPCS0R2_ST1_MA_MASK,
+ EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
+
+ if (slot->slot_index == 1)
+ addr = PREFILTER_MEM_LEN - st1_mem_alloc;
+ else
+ addr = 0;
+
+ regmap_update_bits(easrc->regmap, reg2,
+ EASRC_DPCS0R2_ST1_SA_MASK,
+ EASRC_DPCS0R2_ST1_SA(addr));
+ }
+
+ if (ctx_priv->st2_num_taps > 0) {
+ st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
+
+ regmap_update_bits(easrc->regmap, reg1,
+ EASRC_DPCS0R1_ST1_EXP_MASK,
+ EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
+
+ st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
+ slot->pf_mem_used += st2_mem_alloc;
+ regmap_update_bits(easrc->regmap, reg3,
+ EASRC_DPCS0R3_ST2_MA_MASK,
+ EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
+
+ if (slot->slot_index == 1)
+ addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
+ else
+ addr = st1_mem_alloc;
+
+ regmap_update_bits(easrc->regmap, reg3,
+ EASRC_DPCS0R3_ST2_SA_MASK,
+ EASRC_DPCS0R3_ST2_SA(addr));
+ }
+
+ regmap_update_bits(easrc->regmap, reg0,
+ EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
+
+ return 0;
+}
+
+/*
+ * fsl_easrc_config_slot
+ *
+ * A single context can be split amongst any of the 4 context processing pipes
+ * in the design.
+ * The total number of channels consumed within the context processor must be
+ * less than or equal to 8. if a single context is configured to contain more
+ * than 8 channels then it must be distributed across multiple context
+ * processing pipe slots.
+ *
+ */
+static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
+{
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
+ int req_channels = ctx->channels;
+ int start_channel = 0, avail_channel;
+ struct fsl_easrc_slot *slot0, *slot1;
+ int i, ret;
+
+ if (req_channels <= 0)
+ return -EINVAL;
+
+ for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
+ slot0 = &easrc_priv->slot[i][0];
+ slot1 = &easrc_priv->slot[i][1];
+
+ if (slot0->busy && slot1->busy)
+ continue;
+
+ if (!slot0->busy) {
+ if (slot1->busy && slot1->ctx_index == ctx->index)
+ continue;
+
+ avail_channel = fsl_easrc_max_ch_for_slot(ctx, slot1);
+ if (avail_channel <= 0)
+ continue;
+
+ slot0->slot_index = 0;
+
+ ret = fsl_easrc_config_one_slot(ctx,
+ slot0, i,
+ &req_channels,
+ &start_channel,
+ &avail_channel);
+ if (ret)
+ return ret;
+
+ if (req_channels > 0)
+ continue;
+ else
+ break;
+ }
+
+ if (slot0->busy && !slot1->busy) {
+ if (slot0->ctx_index == ctx->index)
+ continue;
+
+ avail_channel = fsl_easrc_max_ch_for_slot(ctx, slot0);
+ if (avail_channel <= 0)
+ continue;
+
+ slot1->slot_index = 1;
+
+ ret = fsl_easrc_config_one_slot(ctx,
+ slot1, i,
+ &req_channels,
+ &start_channel,
+ &avail_channel);
+ if (ret)
+ return ret;
+
+ if (req_channels > 0)
+ continue;
+ else
+ break;
+ }
+ }
+
+ if (req_channels > 0) {
+ dev_err(&easrc->pdev->dev, "no avail slot.\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * fsl_easrc_release_slot
+ *
+ * Clear the slot configuration
+ */
+static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
+{
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
+ int i;
+
+ for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
+ if (easrc_priv->slot[i][0].busy &&
+ easrc_priv->slot[i][0].ctx_index == ctx->index) {
+ easrc_priv->slot[i][0].busy = false;
+ easrc_priv->slot[i][0].num_channel = 0;
+ easrc_priv->slot[i][0].pf_mem_used = 0;
+ /* set registers */
+ regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
+ }
+
+ if (easrc_priv->slot[i][1].busy &&
+ easrc_priv->slot[i][1].ctx_index == ctx->index) {
+ easrc_priv->slot[i][1].busy = false;
+ easrc_priv->slot[i][1].num_channel = 0;
+ easrc_priv->slot[i][1].pf_mem_used = 0;
+ /* set registers */
+ regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
+ regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * fsl_easrc_config_context
+ *
+ * Configure the register relate with context.
+ */
+int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
+{
+ struct fsl_easrc_ctx_priv *ctx_priv;
+ struct fsl_asrc_pair *ctx;
+ struct device *dev;
+ unsigned long lock_flags;
+ int ret;
+
+ if (!easrc)
+ return -ENODEV;
+
+ dev = &easrc->pdev->dev;
+
+ if (ctx_id >= EASRC_CTX_MAX_NUM) {
+ dev_err(dev, "Invalid context id[%d]\n", ctx_id);
+ return -EINVAL;
+ }
+
+ ctx = easrc->pair[ctx_id];
+
+ ctx_priv = ctx->private;
+
+ fsl_easrc_normalize_rates(ctx);
+
+ ret = fsl_easrc_set_rs_ratio(ctx);
+ if (ret)
+ return ret;
+
+ /* Initialize the context coeficients */
+ ret = fsl_easrc_prefilter_config(easrc, ctx->index);
+ if (ret)
+ return ret;
+
+ spin_lock_irqsave(&easrc->lock, lock_flags);
+ ret = fsl_easrc_config_slot(easrc, ctx->index);
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+ if (ret)
+ return ret;
+
+ /*
+ * Both prefilter and resampling filters can use following
+ * initialization modes:
+ * 2 - zero-fil mode
+ * 1 - replication mode
+ * 0 - software control
+ */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_RS_INIT_MASK,
+ EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
+ EASRC_CCE1_PF_INIT_MASK,
+ EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
+
+ /* Context Input FIFO Watermark */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
+ EASRC_CC_FIFO_WTMK_MASK,
+ EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
+
+ /* Context Output FIFO Watermark */
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
+ EASRC_COC_FIFO_WTMK_MASK,
+ EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
+
+ /* Number of channels */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
+ EASRC_CC_CHEN_MASK,
+ EASRC_CC_CHEN(ctx->channels - 1));
+ return 0;
+}
+
+static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
+ struct fsl_easrc_data_fmt *fmt,
+ snd_pcm_format_t raw_fmt)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ int ret;
+
+ if (!fmt)
+ return -EINVAL;
+
+ /*
+ * Context Input Floating Point Format
+ * 0 - Integer Format
+ * 1 - Single Precision FP Format
+ */
+ fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
+ fmt->sample_pos = 0;
+ fmt->iec958 = 0;
+
+ /* Get the data width */
+ switch (snd_pcm_format_width(raw_fmt)) {
+ case 16:
+ fmt->width = EASRC_WIDTH_16_BIT;
+ fmt->addexp = 15;
+ break;
+ case 20:
+ fmt->width = EASRC_WIDTH_20_BIT;
+ fmt->addexp = 19;
+ break;
+ case 24:
+ fmt->width = EASRC_WIDTH_24_BIT;
+ fmt->addexp = 23;
+ break;
+ case 32:
+ fmt->width = EASRC_WIDTH_32_BIT;
+ fmt->addexp = 31;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ switch (raw_fmt) {
+ case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
+ fmt->width = easrc_priv->bps_iec958[ctx->index];
+ fmt->iec958 = 1;
+ fmt->floating_point = 0;
+ if (fmt->width == EASRC_WIDTH_16_BIT) {
+ fmt->sample_pos = 12;
+ fmt->addexp = 15;
+ } else if (fmt->width == EASRC_WIDTH_20_BIT) {
+ fmt->sample_pos = 8;
+ fmt->addexp = 19;
+ } else if (fmt->width == EASRC_WIDTH_24_BIT) {
+ fmt->sample_pos = 4;
+ fmt->addexp = 23;
+ }
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Data Endianness
+ * 0 - Little-Endian
+ * 1 - Big-Endian
+ */
+ ret = snd_pcm_format_big_endian(raw_fmt);
+ if (ret < 0)
+ return ret;
+
+ fmt->endianness = ret;
+
+ /*
+ * Input Data sign
+ * 0b - Signed Format
+ * 1b - Unsigned Format
+ */
+ fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
+
+ return 0;
+}
+
+int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
+ snd_pcm_format_t *in_raw_format,
+ snd_pcm_format_t *out_raw_format)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+ struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
+ struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
+ int ret;
+
+ /* Get the bitfield values for input data format */
+ if (in_raw_format && out_raw_format) {
+ ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
+ if (ret)
+ return ret;
+ }
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_BPS_MASK,
+ EASRC_CC_BPS(in_fmt->width));
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_ENDIANNESS_MASK,
+ in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_FMT_MASK,
+ in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_INSIGN_MASK,
+ in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
+
+ /* In Sample Position */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_SAMPLE_POS_MASK,
+ EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
+
+ /* Get the bitfield values for input data format */
+ if (in_raw_format && out_raw_format) {
+ ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
+ if (ret)
+ return ret;
+ }
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_BPS_MASK,
+ EASRC_COC_BPS(out_fmt->width));
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_ENDIANNESS_MASK,
+ out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_FMT_MASK,
+ out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_OUTSIGN_MASK,
+ out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
+
+ /* Out Sample Position */
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_SAMPLE_POS_MASK,
+ EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_IEC_EN_MASK,
+ out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
+
+ return ret;
+}
+
+/*
+ * The ASRC provides interleaving support in hardware to ensure that a
+ * variety of sample sources can be internally combined
+ * to conform with this format. Interleaving parameters are accessed
+ * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
+ */
+int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
+{
+ struct fsl_easrc_ctx_priv *ctx_priv;
+ struct device *dev;
+ struct fsl_asrc *easrc;
+
+ if (!ctx)
+ return -ENODEV;
+
+ easrc = ctx->asrc;
+ ctx_priv = ctx->private;
+ dev = &easrc->pdev->dev;
+
+ /* input interleaving parameters */
+ regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
+ EASRC_CIA_ITER_MASK,
+ EASRC_CIA_ITER(ctx_priv->in_params.iterations));
+ regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
+ EASRC_CIA_GRLEN_MASK,
+ EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
+ regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
+ EASRC_CIA_ACCLEN_MASK,
+ EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
+
+ /* output interleaving parameters */
+ regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
+ EASRC_COA_ITER_MASK,
+ EASRC_COA_ITER(ctx_priv->out_params.iterations));
+ regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
+ EASRC_COA_GRLEN_MASK,
+ EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
+ regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
+ EASRC_COA_ACCLEN_MASK,
+ EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
+
+ return 0;
+}
+
+/*
+ * Request one of the available contexts
+ *
+ * Returns a negative number on error and >=0 as context id
+ * on success
+ */
+int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
+{
+ enum asrc_pair_index index = ASRC_INVALID_PAIR;
+ struct fsl_asrc *easrc = ctx->asrc;
+ struct device *dev;
+ unsigned long lock_flags;
+ int ret = 0;
+ int i;
+
+ dev = &easrc->pdev->dev;
+
+ spin_lock_irqsave(&easrc->lock, lock_flags);
+
+ for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
+ if (easrc->pair[i])
+ continue;
+
+ index = i;
+ break;
+ }
+
+ if (index == ASRC_INVALID_PAIR) {
+ dev_err(dev, "all contexts are busy\n");
+ ret = -EBUSY;
+ } else if (channels > easrc->channel_avail) {
+ dev_err(dev, "can't give the required channels: %d\n",
+ channels);
+ ret = -EINVAL;
+ } else {
+ ctx->index = index;
+ ctx->channels = channels;
+ easrc->pair[index] = ctx;
+ easrc->channel_avail -= channels;
+ }
+
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+
+ return ret;
+}
+
+/*
+ * Release the context
+ *
+ * This funciton is mainly doing the revert thing in request context
+ */
+void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
+{
+ unsigned long lock_flags;
+ struct fsl_asrc *easrc;
+ struct device *dev;
+ int ret;
+
+ if (!ctx)
+ return;
+
+ easrc = ctx->asrc;
+ dev = &easrc->pdev->dev;
+
+ spin_lock_irqsave(&easrc->lock, lock_flags);
+
+ ret = fsl_easrc_release_slot(easrc, ctx->index);
+
+ easrc->channel_avail += ctx->channels;
+ easrc->pair[ctx->index] = NULL;
+
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+}
+
+/*
+ * Start the context
+ *
+ * Enable the DMA request and context
+ */
+int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_EN_MASK, EASRC_CC_EN);
+ return 0;
+}
+
+/*
+ * Stop the context
+ *
+ * Disable the DMA request and context
+ */
+int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ int val, i;
+ int size = 0;
+ int retry = 200;
+
+ regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
+
+ if (val & EASRC_CC_EN_MASK) {
+ regmap_update_bits(easrc->regmap,
+ REG_EASRC_CC(ctx->index),
+ EASRC_CC_STOP_MASK, EASRC_CC_STOP);
+ do {
+ regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
+ val &= EASRC_SFS_NSGO_MASK;
+ size = val >> EASRC_SFS_NSGO_SHIFT;
+
+ /* Read FIFO, drop the data */
+ for (i = 0; i < size * ctx->channels; i++)
+ regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
+ /* Check RUN_STOP_DONE */
+ regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
+ if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
+ /*Clear RUN_STOP_DONE*/
+ regmap_write_bits(easrc->regmap,
+ REG_EASRC_IRQF,
+ EASRC_IRQF_RSD(1 << ctx->index),
+ EASRC_IRQF_RSD(1 << ctx->index));
+ break;
+ }
+ udelay(100);
+ } while (--retry);
+
+ if (retry == 0)
+ dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
+ }
+
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
+ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
+ EASRC_CC_FWMDE_MASK, 0);
+ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
+ EASRC_COC_FWMDE_MASK, 0);
+ return 0;
+}
+
+struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
+ bool dir)
+{
+ struct fsl_asrc *easrc = ctx->asrc;
+ enum asrc_pair_index index = ctx->index;
+ char name[8];
+
+ /* Example of dma name: ctx0_rx */
+ sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
+
+ return dma_request_slave_channel(&easrc->pdev->dev, name);
+};
+EXPORT_SYMBOL_GPL(fsl_easrc_get_dma_channel);
+
+static const unsigned int easrc_rates[] = {
+ 8000, 11025, 12000, 16000,
+ 22050, 24000, 32000, 44100,
+ 48000, 64000, 88200, 96000,
+ 128000, 176400, 192000, 256000,
+ 352800, 384000, 705600, 768000,
+};
+
+static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
+ .count = ARRAY_SIZE(easrc_rates),
+ .list = easrc_rates,
+};
+
+static int fsl_easrc_startup(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *dai)
+{
+ return snd_pcm_hw_constraint_list(substream->runtime, 0,
+ SNDRV_PCM_HW_PARAM_RATE,
+ &easrc_rate_constraints);
+}
+
+static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
+ int cmd, struct snd_soc_dai *dai)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_asrc_pair *ctx = runtime->private_data;
+ int ret;
+
+ switch (cmd) {
+ case SNDRV_PCM_TRIGGER_START:
+ case SNDRV_PCM_TRIGGER_RESUME:
+ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
+ ret = fsl_easrc_start_context(ctx);
+ if (ret)
+ return ret;
+ break;
+ case SNDRV_PCM_TRIGGER_STOP:
+ case SNDRV_PCM_TRIGGER_SUSPEND:
+ case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
+ ret = fsl_easrc_stop_context(ctx);
+ if (ret)
+ return ret;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *params,
+ struct snd_soc_dai *dai)
+{
+ struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct device *dev = &easrc->pdev->dev;
+ struct fsl_asrc_pair *ctx = runtime->private_data;
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+ unsigned int channels = params_channels(params);
+ unsigned int rate = params_rate(params);
+ snd_pcm_format_t format = params_format(params);
+ int ret;
+
+ ret = fsl_easrc_request_context(channels, ctx);
+ if (ret) {
+ dev_err(dev, "failed to request context\n");
+ return ret;
+ }
+
+ ctx_priv->ctx_streams |= BIT(substream->stream);
+
+ /*
+ * Set the input and output ratio so we can compute
+ * the resampling ratio in RS_LOW/HIGH
+ */
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
+ ctx_priv->in_params.sample_rate = rate;
+ ctx_priv->in_params.sample_format = format;
+ ctx_priv->out_params.sample_rate = easrc->asrc_rate;
+ ctx_priv->out_params.sample_format = easrc->asrc_format;
+ } else {
+ ctx_priv->out_params.sample_rate = rate;
+ ctx_priv->out_params.sample_format = format;
+ ctx_priv->in_params.sample_rate = easrc->asrc_rate;
+ ctx_priv->in_params.sample_format = easrc->asrc_format;
+ }
+
+ ctx->channels = channels;
+ ctx_priv->in_params.fifo_wtmk = 0x20;
+ ctx_priv->out_params.fifo_wtmk = 0x20;
+
+ /*
+ * Do only rate conversion and keep the same format for input
+ * and output data
+ */
+ ret = fsl_easrc_set_ctx_format(ctx,
+ &ctx_priv->in_params.sample_format,
+ &ctx_priv->out_params.sample_format);
+ if (ret) {
+ dev_err(dev, "failed to set format %d", ret);
+ return ret;
+ }
+
+ ret = fsl_easrc_config_context(easrc, ctx->index);
+ if (ret) {
+ dev_err(dev, "failed to config context\n");
+ return ret;
+ }
+
+ ctx_priv->in_params.iterations = 1;
+ ctx_priv->in_params.group_len = ctx->channels;
+ ctx_priv->in_params.access_len = ctx->channels;
+ ctx_priv->out_params.iterations = 1;
+ ctx_priv->out_params.group_len = ctx->channels;
+ ctx_priv->out_params.access_len = ctx->channels;
+
+ ret = fsl_easrc_set_ctx_organziation(ctx);
+ if (ret) {
+ dev_err(dev, "failed to set fifo organization\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
+ struct snd_soc_dai *dai)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_asrc_pair *ctx = runtime->private_data;
+ struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
+
+ if (ctx && (ctx_priv->ctx_streams & BIT(substream->stream))) {
+ ctx_priv->ctx_streams &= ~BIT(substream->stream);
+ fsl_easrc_release_context(ctx);
+ }
+
+ return 0;
+}
+
+static struct snd_soc_dai_ops fsl_easrc_dai_ops = {
+ .startup = fsl_easrc_startup,
+ .trigger = fsl_easrc_trigger,
+ .hw_params = fsl_easrc_hw_params,
+ .hw_free = fsl_easrc_hw_free,
+};
+
+static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
+{
+ struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
+
+ snd_soc_dai_init_dma_data(cpu_dai,
+ &easrc->dma_params_tx,
+ &easrc->dma_params_rx);
+ return 0;
+}
+
+static struct snd_soc_dai_driver fsl_easrc_dai = {
+ .probe = fsl_easrc_dai_probe,
+ .playback = {
+ .stream_name = "ASRC-Playback",
+ .channels_min = 1,
+ .channels_max = 32,
+ .rate_min = 8000,
+ .rate_max = 768000,
+ .rates = SNDRV_PCM_RATE_KNOT,
+ .formats = FSL_EASRC_FORMATS,
+ },
+ .capture = {
+ .stream_name = "ASRC-Capture",
+ .channels_min = 1,
+ .channels_max = 32,
+ .rate_min = 8000,
+ .rate_max = 768000,
+ .rates = SNDRV_PCM_RATE_KNOT,
+ .formats = FSL_EASRC_FORMATS |
+ SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
+ },
+ .ops = &fsl_easrc_dai_ops,
+};
+
+static const struct snd_soc_component_driver fsl_easrc_component = {
+ .name = "fsl-easrc-dai",
+ .controls = fsl_easrc_snd_controls,
+ .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls),
+};
+
+static const struct reg_default fsl_easrc_reg_defaults[] = {
+ {REG_EASRC_WRFIFO(0), 0x00000000},
+ {REG_EASRC_WRFIFO(1), 0x00000000},
+ {REG_EASRC_WRFIFO(2), 0x00000000},
+ {REG_EASRC_WRFIFO(3), 0x00000000},
+ {REG_EASRC_RDFIFO(0), 0x00000000},
+ {REG_EASRC_RDFIFO(1), 0x00000000},
+ {REG_EASRC_RDFIFO(2), 0x00000000},
+ {REG_EASRC_RDFIFO(3), 0x00000000},
+ {REG_EASRC_CC(0), 0x00000000},
+ {REG_EASRC_CC(1), 0x00000000},
+ {REG_EASRC_CC(2), 0x00000000},
+ {REG_EASRC_CC(3), 0x00000000},
+ {REG_EASRC_CCE1(0), 0x00000000},
+ {REG_EASRC_CCE1(1), 0x00000000},
+ {REG_EASRC_CCE1(2), 0x00000000},
+ {REG_EASRC_CCE1(3), 0x00000000},
+ {REG_EASRC_CCE2(0), 0x00000000},
+ {REG_EASRC_CCE2(1), 0x00000000},
+ {REG_EASRC_CCE2(2), 0x00000000},
+ {REG_EASRC_CCE2(3), 0x00000000},
+ {REG_EASRC_CIA(0), 0x00000000},
+ {REG_EASRC_CIA(1), 0x00000000},
+ {REG_EASRC_CIA(2), 0x00000000},
+ {REG_EASRC_CIA(3), 0x00000000},
+ {REG_EASRC_DPCS0R0(0), 0x00000000},
+ {REG_EASRC_DPCS0R0(1), 0x00000000},
+ {REG_EASRC_DPCS0R0(2), 0x00000000},
+ {REG_EASRC_DPCS0R0(3), 0x00000000},
+ {REG_EASRC_DPCS0R1(0), 0x00000000},
+ {REG_EASRC_DPCS0R1(1), 0x00000000},
+ {REG_EASRC_DPCS0R1(2), 0x00000000},
+ {REG_EASRC_DPCS0R1(3), 0x00000000},
+ {REG_EASRC_DPCS0R2(0), 0x00000000},
+ {REG_EASRC_DPCS0R2(1), 0x00000000},
+ {REG_EASRC_DPCS0R2(2), 0x00000000},
+ {REG_EASRC_DPCS0R2(3), 0x00000000},
+ {REG_EASRC_DPCS0R3(0), 0x00000000},
+ {REG_EASRC_DPCS0R3(1), 0x00000000},
+ {REG_EASRC_DPCS0R3(2), 0x00000000},
+ {REG_EASRC_DPCS0R3(3), 0x00000000},
+ {REG_EASRC_DPCS1R0(0), 0x00000000},
+ {REG_EASRC_DPCS1R0(1), 0x00000000},
+ {REG_EASRC_DPCS1R0(2), 0x00000000},
+ {REG_EASRC_DPCS1R0(3), 0x00000000},
+ {REG_EASRC_DPCS1R1(0), 0x00000000},
+ {REG_EASRC_DPCS1R1(1), 0x00000000},
+ {REG_EASRC_DPCS1R1(2), 0x00000000},
+ {REG_EASRC_DPCS1R1(3), 0x00000000},
+ {REG_EASRC_DPCS1R2(0), 0x00000000},
+ {REG_EASRC_DPCS1R2(1), 0x00000000},
+ {REG_EASRC_DPCS1R2(2), 0x00000000},
+ {REG_EASRC_DPCS1R2(3), 0x00000000},
+ {REG_EASRC_DPCS1R3(0), 0x00000000},
+ {REG_EASRC_DPCS1R3(1), 0x00000000},
+ {REG_EASRC_DPCS1R3(2), 0x00000000},
+ {REG_EASRC_DPCS1R3(3), 0x00000000},
+ {REG_EASRC_COC(0), 0x00000000},
+ {REG_EASRC_COC(1), 0x00000000},
+ {REG_EASRC_COC(2), 0x00000000},
+ {REG_EASRC_COC(3), 0x00000000},
+ {REG_EASRC_COA(0), 0x00000000},
+ {REG_EASRC_COA(1), 0x00000000},
+ {REG_EASRC_COA(2), 0x00000000},
+ {REG_EASRC_COA(3), 0x00000000},
+ {REG_EASRC_SFS(0), 0x00000000},
+ {REG_EASRC_SFS(1), 0x00000000},
+ {REG_EASRC_SFS(2), 0x00000000},
+ {REG_EASRC_SFS(3), 0x00000000},
+ {REG_EASRC_RRL(0), 0x00000000},
+ {REG_EASRC_RRL(1), 0x00000000},
+ {REG_EASRC_RRL(2), 0x00000000},
+ {REG_EASRC_RRL(3), 0x00000000},
+ {REG_EASRC_RRH(0), 0x00000000},
+ {REG_EASRC_RRH(1), 0x00000000},
+ {REG_EASRC_RRH(2), 0x00000000},
+ {REG_EASRC_RRH(3), 0x00000000},
+ {REG_EASRC_RUC(0), 0x00000000},
+ {REG_EASRC_RUC(1), 0x00000000},
+ {REG_EASRC_RUC(2), 0x00000000},
+ {REG_EASRC_RUC(3), 0x00000000},
+ {REG_EASRC_RUR(0), 0x7FFFFFFF},
+ {REG_EASRC_RUR(1), 0x7FFFFFFF},
+ {REG_EASRC_RUR(2), 0x7FFFFFFF},
+ {REG_EASRC_RUR(3), 0x7FFFFFFF},
+ {REG_EASRC_RCTCL, 0x00000000},
+ {REG_EASRC_RCTCH, 0x00000000},
+ {REG_EASRC_PCF(0), 0x00000000},
+ {REG_EASRC_PCF(1), 0x00000000},
+ {REG_EASRC_PCF(2), 0x00000000},
+ {REG_EASRC_PCF(3), 0x00000000},
+ {REG_EASRC_CRCM, 0x00000000},
+ {REG_EASRC_CRCC, 0x00000000},
+ {REG_EASRC_IRQC, 0x00000FFF},
+ {REG_EASRC_IRQF, 0x00000000},
+ {REG_EASRC_CS0(0), 0x00000000},
+ {REG_EASRC_CS0(1), 0x00000000},
+ {REG_EASRC_CS0(2), 0x00000000},
+ {REG_EASRC_CS0(3), 0x00000000},
+ {REG_EASRC_CS1(0), 0x00000000},
+ {REG_EASRC_CS1(1), 0x00000000},
+ {REG_EASRC_CS1(2), 0x00000000},
+ {REG_EASRC_CS1(3), 0x00000000},
+ {REG_EASRC_CS2(0), 0x00000000},
+ {REG_EASRC_CS2(1), 0x00000000},
+ {REG_EASRC_CS2(2), 0x00000000},
+ {REG_EASRC_CS2(3), 0x00000000},
+ {REG_EASRC_CS3(0), 0x00000000},
+ {REG_EASRC_CS3(1), 0x00000000},
+ {REG_EASRC_CS3(2), 0x00000000},
+ {REG_EASRC_CS3(3), 0x00000000},
+ {REG_EASRC_CS4(0), 0x00000000},
+ {REG_EASRC_CS4(1), 0x00000000},
+ {REG_EASRC_CS4(2), 0x00000000},
+ {REG_EASRC_CS4(3), 0x00000000},
+ {REG_EASRC_CS5(0), 0x00000000},
+ {REG_EASRC_CS5(1), 0x00000000},
+ {REG_EASRC_CS5(2), 0x00000000},
+ {REG_EASRC_CS5(3), 0x00000000},
+ {REG_EASRC_DBGC, 0x00000000},
+ {REG_EASRC_DBGS, 0x00000000},
+};
+
+static const struct regmap_range fsl_easrc_readable_ranges[] = {
+ regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
+ regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
+ regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
+};
+
+static const struct regmap_access_table fsl_easrc_readable_table = {
+ .yes_ranges = fsl_easrc_readable_ranges,
+ .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
+};
+
+static const struct regmap_range fsl_easrc_writeable_ranges[] = {
+ regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
+ regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
+ regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
+ regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
+};
+
+static const struct regmap_access_table fsl_easrc_writeable_table = {
+ .yes_ranges = fsl_easrc_writeable_ranges,
+ .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
+};
+
+static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
+ regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
+ regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
+ regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
+ regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
+};
+
+static const struct regmap_access_table fsl_easrc_volatileable_table = {
+ .yes_ranges = fsl_easrc_volatileable_ranges,
+ .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
+};
+
+static const struct regmap_config fsl_easrc_regmap_config = {
+ .reg_bits = 32,
+ .reg_stride = 4,
+ .val_bits = 32,
+
+ .max_register = REG_EASRC_DBGS,
+ .reg_defaults = fsl_easrc_reg_defaults,
+ .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
+ .rd_table = &fsl_easrc_readable_table,
+ .wr_table = &fsl_easrc_writeable_table,
+ .volatile_table = &fsl_easrc_volatileable_table,
+ .cache_type = REGCACHE_RBTREE,
+};
+
+void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
+{
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
+ struct interp_params *interp = easrc_priv->interp;
+ struct prefil_params *prefil = easrc_priv->prefil;
+ struct device *dev = &easrc->pdev->dev;
+ int i;
+
+ if (firm->magic != FIRMWARE_MAGIC) {
+ dev_err(dev, "Wrong magic. Something went wrong!");
+ return;
+ }
+
+ dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
+ dev_dbg(dev, "Num prefitler scenarios: %u\n", firm->prefil_scen);
+ dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
+ dev_dbg(dev, "\nInterpolation scenarios:\n");
+
+ for (i = 0; i < firm->interp_scen; i++) {
+ if (interp[i].magic != FIRMWARE_MAGIC) {
+ dev_dbg(dev, "%d. wrong interp magic: %x\n",
+ i, interp[i].magic);
+ continue;
+ }
+ dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
+ interp[i].num_taps, interp[i].num_phases,
+ interp[i].center_tap);
+ }
+
+ for (i = 0; i < firm->prefil_scen; i++) {
+ if (prefil[i].magic != FIRMWARE_MAGIC) {
+ dev_dbg(dev, "%d. wrong prefil magic: %x\n",
+ i, prefil[i].magic);
+ continue;
+ }
+ dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
+ prefil[i].insr, prefil[i].outsr,
+ prefil[i].st1_taps, prefil[i].st2_taps);
+ }
+
+ dev_dbg(dev, "end of firmware dump\n");
+}
+
+int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
+{
+ struct fsl_easrc_priv *easrc_priv;
+ u32 pnum, inum, offset;
+ int ret;
+
+ if (!easrc)
+ return -EINVAL;
+
+ easrc_priv = easrc->private;
+
+ ret = request_firmware(&easrc_priv->fw, easrc_priv->fw_name,
+ &easrc->pdev->dev);
+ if (ret)
+ return ret;
+
+ easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)easrc_priv->fw->data;
+ pnum = easrc_priv->firmware_hdr->prefil_scen;
+ inum = easrc_priv->firmware_hdr->interp_scen;
+
+ if (inum) {
+ offset = sizeof(struct asrc_firmware_hdr);
+ easrc_priv->interp =
+ (struct interp_params *)(easrc_priv->fw->data + offset);
+ }
+
+ if (pnum) {
+ offset = sizeof(struct asrc_firmware_hdr) +
+ inum * sizeof(struct interp_params);
+ easrc_priv->prefil =
+ (struct prefil_params *)(easrc_priv->fw->data + offset);
+ }
+
+ return 0;
+}
+
+static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
+{
+ struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
+ struct device *dev = &easrc->pdev->dev;
+ int val;
+
+ regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
+
+ if (val & EASRC_IRQF_OER_MASK)
+ dev_dbg(dev, "output FIFO underflow\n");
+
+ if (val & EASRC_IRQF_IFO_MASK)
+ dev_dbg(dev, "input FIFO overflow\n");
+
+ return IRQ_HANDLED;
+}
+
+static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
+{
+ return REG_EASRC_FIFO(dir, index);
+}
+
+static const struct of_device_id fsl_easrc_dt_ids[] = {
+ { .compatible = "fsl,imx8mn-easrc",},
+ {}
+};
+MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
+
+static int fsl_easrc_probe(struct platform_device *pdev)
+{
+ struct fsl_asrc *easrc;
+ struct fsl_easrc_priv *easrc_priv;
+ struct resource *res;
+ struct device_node *np;
+ void __iomem *regs;
+ int ret, irq;
+
+ easrc = devm_kzalloc(&pdev->dev, sizeof(*easrc), GFP_KERNEL);
+ if (!easrc)
+ return -ENOMEM;
+
+ easrc_priv = devm_kzalloc(&pdev->dev, sizeof(*easrc_priv), GFP_KERNEL);
+ if (!easrc_priv)
+ return -ENOMEM;
+
+ easrc->pdev = pdev;
+ easrc->private = easrc_priv;
+ np = pdev->dev.of_node;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ regs = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(regs)) {
+ dev_err(&pdev->dev, "failed ioremap\n");
+ return PTR_ERR(regs);
+ }
+
+ easrc->paddr = res->start;
+
+ easrc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "mem", regs,
+ &fsl_easrc_regmap_config);
+ if (IS_ERR(easrc->regmap)) {
+ dev_err(&pdev->dev, "failed to init regmap");
+ return PTR_ERR(easrc->regmap);
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(&pdev->dev, "no irq for node %s\n",
+ dev_name(&pdev->dev));
+ return irq;
+ }
+
+ ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
+ dev_name(&pdev->dev), easrc);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to claim irq %u: %d\n", irq, ret);
+ return ret;
+ }
+
+ easrc->mem_clk = devm_clk_get(&pdev->dev, "mem");
+ if (IS_ERR(easrc->mem_clk)) {
+ dev_err(&pdev->dev, "failed to get mem clock\n");
+ return PTR_ERR(easrc->mem_clk);
+ }
+
+ /* Set default value */
+ easrc->channel_avail = 32;
+ easrc->get_dma_channel = fsl_easrc_get_dma_channel;
+ easrc->request_pair = fsl_easrc_request_context;
+ easrc->release_pair = fsl_easrc_release_context;
+ easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
+
+ easrc_priv->rs_num_taps = EASRC_RS_128_TAPS;
+ easrc_priv->const_coeff = 0x3FF0000000000000;
+
+ ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to asrc rate\n");
+ return ret;
+ }
+
+ ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to asrc format\n");
+ return ret;
+ }
+
+ if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) {
+ dev_warn(&pdev->dev, "unsupported format, switching to S24_LE\n");
+ easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
+ }
+
+ platform_set_drvdata(pdev, easrc);
+ pm_runtime_enable(&pdev->dev);
+
+ spin_lock_init(&easrc->lock);
+
+ regcache_cache_only(easrc->regmap, true);
+
+ ret = devm_snd_soc_register_component(&pdev->dev, &fsl_easrc_component,
+ &fsl_easrc_dai, 1);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to register ASoC DAI\n");
+ return ret;
+ }
+
+ ret = devm_snd_soc_register_component(&pdev->dev,
+ &fsl_asrc_component,
+ NULL, 0);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to register ASoC platform\n");
+ return ret;
+ }
+
+ ret = of_property_read_string(np,
+ "fsl,easrc-ram-script-name",
+ &easrc_priv->fw_name);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to get firmware name\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int fsl_easrc_remove(struct platform_device *pdev)
+{
+ pm_runtime_disable(&pdev->dev);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int fsl_easrc_runtime_suspend(struct device *dev)
+{
+ struct fsl_asrc *easrc = dev_get_drvdata(dev);
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ unsigned long lock_flags;
+
+ regcache_cache_only(easrc->regmap, true);
+
+ clk_disable_unprepare(easrc->mem_clk);
+
+ spin_lock_irqsave(&easrc->lock, lock_flags);
+ easrc_priv->firmware_loaded = 0;
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+
+ return 0;
+}
+
+static int fsl_easrc_runtime_resume(struct device *dev)
+{
+ struct fsl_asrc *easrc = dev_get_drvdata(dev);
+ struct fsl_easrc_priv *easrc_priv = easrc->private;
+ struct fsl_easrc_ctx_priv *ctx_priv;
+ struct fsl_asrc_pair *ctx;
+ unsigned long lock_flags;
+ int ret;
+ int i;
+
+ ret = clk_prepare_enable(easrc->mem_clk);
+ if (ret)
+ return ret;
+
+ regcache_cache_only(easrc->regmap, false);
+ regcache_mark_dirty(easrc->regmap);
+ regcache_sync(easrc->regmap);
+
+ spin_lock_irqsave(&easrc->lock, lock_flags);
+ if (easrc_priv->firmware_loaded) {
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+ goto skip_load;
+ }
+ easrc_priv->firmware_loaded = 1;
+ spin_unlock_irqrestore(&easrc->lock, lock_flags);
+
+ ret = fsl_easrc_get_firmware(easrc);
+ if (ret) {
+ dev_err(dev, "failed to get firmware\n");
+ goto disable_mem_clk;
+ }
+
+ /*
+ * Write Resampling Coefficients
+ * The coefficient RAM must be configured prior to beginning of
+ * any context processing within the ASRC
+ */
+ ret = fsl_easrc_resampler_config(easrc);
+ if (ret) {
+ dev_err(dev, "resampler config failed\n");
+ goto disable_mem_clk;
+ }
+
+ for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
+ ctx = easrc->pair[i];
+ if (ctx) {
+ ctx_priv = ctx->private;
+ fsl_easrc_set_rs_ratio(ctx);
+ ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
+ ctx_priv->out_params.sample_rate /
+ ctx_priv->in_params.sample_rate;
+ if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
+ % ctx_priv->in_params.sample_rate != 0)
+ ctx_priv->out_missed_sample += 1;
+
+ ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
+ ctx_priv->st1_coeff,
+ ctx_priv->st1_num_taps,
+ ctx_priv->st1_addexp);
+ if (ret)
+ goto disable_mem_clk;
+
+ ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
+ ctx_priv->st2_coeff,
+ ctx_priv->st2_num_taps,
+ ctx_priv->st2_addexp);
+ if (ret)
+ goto disable_mem_clk;
+ }
+ }
+
+skip_load:
+ return 0;
+
+disable_mem_clk:
+ clk_disable_unprepare(easrc->mem_clk);
+ return ret;
+}
+#endif /* CONFIG_PM */
+
+static const struct dev_pm_ops fsl_easrc_pm_ops = {
+ SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
+ fsl_easrc_runtime_resume,
+ NULL)
+ SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
+ pm_runtime_force_resume)
+};
+
+static struct platform_driver fsl_easrc_driver = {
+ .probe = fsl_easrc_probe,
+ .remove = fsl_easrc_remove,
+ .driver = {
+ .name = "fsl-easrc",
+ .pm = &fsl_easrc_pm_ops,
+ .of_match_table = fsl_easrc_dt_ids,
+ },
+};
+module_platform_driver(fsl_easrc_driver);
+
+MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
+MODULE_LICENSE("GPL v2");
new file mode 100644
@@ -0,0 +1,651 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (C) 2019 NXP
+ */
+
+#ifndef _FSL_EASRC_H
+#define _FSL_EASRC_H
+
+#include <sound/asound.h>
+#include <linux/platform_data/dma-imx.h>
+
+#include "fsl_asrc_common.h"
+
+/* EASRC Register Map */
+
+/* ASRC Input Write FIFO */
+#define REG_EASRC_WRFIFO(ctx) (0x000 + 4 * (ctx))
+/* ASRC Output Read FIFO */
+#define REG_EASRC_RDFIFO(ctx) (0x010 + 4 * (ctx))
+/* ASRC Context Control */
+#define REG_EASRC_CC(ctx) (0x020 + 4 * (ctx))
+/* ASRC Context Control Extended 1 */
+#define REG_EASRC_CCE1(ctx) (0x030 + 4 * (ctx))
+/* ASRC Context Control Extended 2 */
+#define REG_EASRC_CCE2(ctx) (0x040 + 4 * (ctx))
+/* ASRC Control Input Access */
+#define REG_EASRC_CIA(ctx) (0x050 + 4 * (ctx))
+/* ASRC Datapath Processor Control Slot0 */
+#define REG_EASRC_DPCS0R0(ctx) (0x060 + 4 * (ctx))
+#define REG_EASRC_DPCS0R1(ctx) (0x070 + 4 * (ctx))
+#define REG_EASRC_DPCS0R2(ctx) (0x080 + 4 * (ctx))
+#define REG_EASRC_DPCS0R3(ctx) (0x090 + 4 * (ctx))
+/* ASRC Datapath Processor Control Slot1 */
+#define REG_EASRC_DPCS1R0(ctx) (0x0A0 + 4 * (ctx))
+#define REG_EASRC_DPCS1R1(ctx) (0x0B0 + 4 * (ctx))
+#define REG_EASRC_DPCS1R2(ctx) (0x0C0 + 4 * (ctx))
+#define REG_EASRC_DPCS1R3(ctx) (0x0D0 + 4 * (ctx))
+/* ASRC Context Output Control */
+#define REG_EASRC_COC(ctx) (0x0E0 + 4 * (ctx))
+/* ASRC Control Output Access */
+#define REG_EASRC_COA(ctx) (0x0F0 + 4 * (ctx))
+/* ASRC Sample FIFO Status */
+#define REG_EASRC_SFS(ctx) (0x100 + 4 * (ctx))
+/* ASRC Resampling Ratio Low */
+#define REG_EASRC_RRL(ctx) (0x110 + 8 * (ctx))
+/* ASRC Resampling Ratio High */
+#define REG_EASRC_RRH(ctx) (0x114 + 8 * (ctx))
+/* ASRC Resampling Ratio Update Control */
+#define REG_EASRC_RUC(ctx) (0x130 + 4 * (ctx))
+/* ASRC Resampling Ratio Update Rate */
+#define REG_EASRC_RUR(ctx) (0x140 + 4 * (ctx))
+/* ASRC Resampling Center Tap Coefficient Low */
+#define REG_EASRC_RCTCL (0x150)
+/* ASRC Resampling Center Tap Coefficient High */
+#define REG_EASRC_RCTCH (0x154)
+/* ASRC Prefilter Coefficient FIFO */
+#define REG_EASRC_PCF(ctx) (0x160 + 4 * (ctx))
+/* ASRC Context Resampling Coefficient Memory */
+#define REG_EASRC_CRCM 0x170
+/* ASRC Context Resampling Coefficient Control*/
+#define REG_EASRC_CRCC 0x174
+/* ASRC Interrupt Control */
+#define REG_EASRC_IRQC 0x178
+/* ASRC Interrupt Status Flags */
+#define REG_EASRC_IRQF 0x17C
+/* ASRC Channel Status 0 */
+#define REG_EASRC_CS0(ctx) (0x180 + 4 * (ctx))
+/* ASRC Channel Status 1 */
+#define REG_EASRC_CS1(ctx) (0x190 + 4 * (ctx))
+/* ASRC Channel Status 2 */
+#define REG_EASRC_CS2(ctx) (0x1A0 + 4 * (ctx))
+/* ASRC Channel Status 3 */
+#define REG_EASRC_CS3(ctx) (0x1B0 + 4 * (ctx))
+/* ASRC Channel Status 4 */
+#define REG_EASRC_CS4(ctx) (0x1C0 + 4 * (ctx))
+/* ASRC Channel Status 5 */
+#define REG_EASRC_CS5(ctx) (0x1D0 + 4 * (ctx))
+/* ASRC Debug Control Register */
+#define REG_EASRC_DBGC 0x1E0
+/* ASRC Debug Status Register */
+#define REG_EASRC_DBGS 0x1E4
+
+#define REG_EASRC_FIFO(x, ctx) (x == IN ? REG_EASRC_WRFIFO(ctx) \
+ : REG_EASRC_RDFIFO(ctx))
+
+/* ASRC Context Control (CC) */
+#define EASRC_CC_EN_SHIFT 31
+#define EASRC_CC_EN_MASK BIT(EASRC_CC_EN_SHIFT)
+#define EASRC_CC_EN BIT(EASRC_CC_EN_SHIFT)
+#define EASRC_CC_STOP_SHIFT 29
+#define EASRC_CC_STOP_MASK BIT(EASRC_CC_STOP_SHIFT)
+#define EASRC_CC_STOP BIT(EASRC_CC_STOP_SHIFT)
+#define EASRC_CC_FWMDE_SHIFT 28
+#define EASRC_CC_FWMDE_MASK BIT(EASRC_CC_FWMDE_SHIFT)
+#define EASRC_CC_FWMDE BIT(EASRC_CC_FWMDE_SHIFT)
+#define EASRC_CC_FIFO_WTMK_SHIFT 16
+#define EASRC_CC_FIFO_WTMK_WIDTH 7
+#define EASRC_CC_FIFO_WTMK_MASK ((BIT(EASRC_CC_FIFO_WTMK_WIDTH) - 1) \
+ << EASRC_CC_FIFO_WTMK_SHIFT)
+#define EASRC_CC_FIFO_WTMK(v) (((v) << EASRC_CC_FIFO_WTMK_SHIFT) \
+ & EASRC_CC_FIFO_WTMK_MASK)
+#define EASRC_CC_SAMPLE_POS_SHIFT 11
+#define EASRC_CC_SAMPLE_POS_WIDTH 5
+#define EASRC_CC_SAMPLE_POS_MASK ((BIT(EASRC_CC_SAMPLE_POS_WIDTH) - 1) \
+ << EASRC_CC_SAMPLE_POS_SHIFT)
+#define EASRC_CC_SAMPLE_POS(v) (((v) << EASRC_CC_SAMPLE_POS_SHIFT) \
+ & EASRC_CC_SAMPLE_POS_MASK)
+#define EASRC_CC_ENDIANNESS_SHIFT 10
+#define EASRC_CC_ENDIANNESS_MASK BIT(EASRC_CC_ENDIANNESS_SHIFT)
+#define EASRC_CC_ENDIANNESS BIT(EASRC_CC_ENDIANNESS_SHIFT)
+#define EASRC_CC_BPS_SHIFT 8
+#define EASRC_CC_BPS_WIDTH 2
+#define EASRC_CC_BPS_MASK ((BIT(EASRC_CC_BPS_WIDTH) - 1) \
+ << EASRC_CC_BPS_SHIFT)
+#define EASRC_CC_BPS(v) (((v) << EASRC_CC_BPS_SHIFT) \
+ & EASRC_CC_BPS_MASK)
+#define EASRC_CC_FMT_SHIFT 7
+#define EASRC_CC_FMT_MASK BIT(EASRC_CC_FMT_SHIFT)
+#define EASRC_CC_FMT BIT(EASRC_CC_FMT_SHIFT)
+#define EASRC_CC_INSIGN_SHIFT 6
+#define EASRC_CC_INSIGN_MASK BIT(EASRC_CC_INSIGN_SHIFT)
+#define EASRC_CC_INSIGN BIT(EASRC_CC_INSIGN_SHIFT)
+#define EASRC_CC_CHEN_SHIFT 0
+#define EASRC_CC_CHEN_WIDTH 5
+#define EASRC_CC_CHEN_MASK ((BIT(EASRC_CC_CHEN_WIDTH) - 1) \
+ << EASRC_CC_CHEN_SHIFT)
+#define EASRC_CC_CHEN(v) (((v) << EASRC_CC_CHEN_SHIFT) \
+ & EASRC_CC_CHEN_MASK)
+
+/* ASRC Context Control Extended 1 (CCE1) */
+#define EASRC_CCE1_COEF_WS_SHIFT 25
+#define EASRC_CCE1_COEF_WS_MASK BIT(EASRC_CCE1_COEF_WS_SHIFT)
+#define EASRC_CCE1_COEF_WS BIT(EASRC_CCE1_COEF_WS_SHIFT)
+#define EASRC_CCE1_COEF_MEM_RST_SHIFT 24
+#define EASRC_CCE1_COEF_MEM_RST_MASK BIT(EASRC_CCE1_COEF_MEM_RST_SHIFT)
+#define EASRC_CCE1_COEF_MEM_RST BIT(EASRC_CCE1_COEF_MEM_RST_SHIFT)
+#define EASRC_CCE1_PF_EXP_SHIFT 16
+#define EASRC_CCE1_PF_EXP_WIDTH 8
+#define EASRC_CCE1_PF_EXP_MASK ((BIT(EASRC_CCE1_PF_EXP_WIDTH) - 1) \
+ << EASRC_CCE1_PF_EXP_SHIFT)
+#define EASRC_CCE1_PF_EXP(v) (((v) << EASRC_CCE1_PF_EXP_SHIFT) \
+ & EASRC_CCE1_PF_EXP_MASK)
+#define EASRC_CCE1_PF_ST1_WBFP_SHIFT 9
+#define EASRC_CCE1_PF_ST1_WBFP_MASK BIT(EASRC_CCE1_PF_ST1_WBFP_SHIFT)
+#define EASRC_CCE1_PF_ST1_WBFP BIT(EASRC_CCE1_PF_ST1_WBFP_SHIFT)
+#define EASRC_CCE1_PF_TSEN_SHIFT 8
+#define EASRC_CCE1_PF_TSEN_MASK BIT(EASRC_CCE1_PF_TSEN_SHIFT)
+#define EASRC_CCE1_PF_TSEN BIT(EASRC_CCE1_PF_TSEN_SHIFT)
+#define EASRC_CCE1_RS_BYPASS_SHIFT 7
+#define EASRC_CCE1_RS_BYPASS_MASK BIT(EASRC_CCE1_RS_BYPASS_SHIFT)
+#define EASRC_CCE1_RS_BYPASS BIT(EASRC_CCE1_RS_BYPASS_SHIFT)
+#define EASRC_CCE1_PF_BYPASS_SHIFT 6
+#define EASRC_CCE1_PF_BYPASS_MASK BIT(EASRC_CCE1_PF_BYPASS_SHIFT)
+#define EASRC_CCE1_PF_BYPASS BIT(EASRC_CCE1_PF_BYPASS_SHIFT)
+#define EASRC_CCE1_RS_STOP_SHIFT 5
+#define EASRC_CCE1_RS_STOP_MASK BIT(EASRC_CCE1_RS_STOP_SHIFT)
+#define EASRC_CCE1_RS_STOP BIT(EASRC_CCE1_RS_STOP_SHIFT)
+#define EASRC_CCE1_PF_STOP_SHIFT 4
+#define EASRC_CCE1_PF_STOP_MASK BIT(EASRC_CCE1_PF_STOP_SHIFT)
+#define EASRC_CCE1_PF_STOP BIT(EASRC_CCE1_PF_STOP_SHIFT)
+#define EASRC_CCE1_RS_INIT_SHIFT 2
+#define EASRC_CCE1_RS_INIT_WIDTH 2
+#define EASRC_CCE1_RS_INIT_MASK ((BIT(EASRC_CCE1_RS_INIT_WIDTH) - 1) \
+ << EASRC_CCE1_RS_INIT_SHIFT)
+#define EASRC_CCE1_RS_INIT(v) (((v) << EASRC_CCE1_RS_INIT_SHIFT) \
+ & EASRC_CCE1_RS_INIT_MASK)
+#define EASRC_CCE1_PF_INIT_SHIFT 0
+#define EASRC_CCE1_PF_INIT_WIDTH 2
+#define EASRC_CCE1_PF_INIT_MASK ((BIT(EASRC_CCE1_PF_INIT_WIDTH) - 1) \
+ << EASRC_CCE1_PF_INIT_SHIFT)
+#define EASRC_CCE1_PF_INIT(v) (((v) << EASRC_CCE1_PF_INIT_SHIFT) \
+ & EASRC_CCE1_PF_INIT_MASK)
+
+/* ASRC Context Control Extended 2 (CCE2) */
+#define EASRC_CCE2_ST2_TAPS_SHIFT 16
+#define EASRC_CCE2_ST2_TAPS_WIDTH 9
+#define EASRC_CCE2_ST2_TAPS_MASK ((BIT(EASRC_CCE2_ST2_TAPS_WIDTH) - 1) \
+ << EASRC_CCE2_ST2_TAPS_SHIFT)
+#define EASRC_CCE2_ST2_TAPS(v) (((v) << EASRC_CCE2_ST2_TAPS_SHIFT) \
+ & EASRC_CCE2_ST2_TAPS_MASK)
+#define EASRC_CCE2_ST1_TAPS_SHIFT 0
+#define EASRC_CCE2_ST1_TAPS_WIDTH 9
+#define EASRC_CCE2_ST1_TAPS_MASK ((BIT(EASRC_CCE2_ST1_TAPS_WIDTH) - 1) \
+ << EASRC_CCE2_ST1_TAPS_SHIFT)
+#define EASRC_CCE2_ST1_TAPS(v) (((v) << EASRC_CCE2_ST1_TAPS_SHIFT) \
+ & EASRC_CCE2_ST1_TAPS_MASK)
+
+/* ASRC Control Input Access (CIA) */
+#define EASRC_CIA_ITER_SHIFT 16
+#define EASRC_CIA_ITER_WIDTH 6
+#define EASRC_CIA_ITER_MASK ((BIT(EASRC_CIA_ITER_WIDTH) - 1) \
+ << EASRC_CIA_ITER_SHIFT)
+#define EASRC_CIA_ITER(v) (((v) << EASRC_CIA_ITER_SHIFT) \
+ & EASRC_CIA_ITER_MASK)
+#define EASRC_CIA_GRLEN_SHIFT 8
+#define EASRC_CIA_GRLEN_WIDTH 6
+#define EASRC_CIA_GRLEN_MASK ((BIT(EASRC_CIA_GRLEN_WIDTH) - 1) \
+ << EASRC_CIA_GRLEN_SHIFT)
+#define EASRC_CIA_GRLEN(v) (((v) << EASRC_CIA_GRLEN_SHIFT) \
+ & EASRC_CIA_GRLEN_MASK)
+#define EASRC_CIA_ACCLEN_SHIFT 0
+#define EASRC_CIA_ACCLEN_WIDTH 6
+#define EASRC_CIA_ACCLEN_MASK ((BIT(EASRC_CIA_ACCLEN_WIDTH) - 1) \
+ << EASRC_CIA_ACCLEN_SHIFT)
+#define EASRC_CIA_ACCLEN(v) (((v) << EASRC_CIA_ACCLEN_SHIFT) \
+ & EASRC_CIA_ACCLEN_MASK)
+
+/* ASRC Datapath Processor Control Slot0 Register0 (DPCS0R0) */
+#define EASRC_DPCS0R0_MAXCH_SHIFT 24
+#define EASRC_DPCS0R0_MAXCH_WIDTH 5
+#define EASRC_DPCS0R0_MAXCH_MASK ((BIT(EASRC_DPCS0R0_MAXCH_WIDTH) - 1) \
+ << EASRC_DPCS0R0_MAXCH_SHIFT)
+#define EASRC_DPCS0R0_MAXCH(v) (((v) << EASRC_DPCS0R0_MAXCH_SHIFT) \
+ & EASRC_DPCS0R0_MAXCH_MASK)
+#define EASRC_DPCS0R0_MINCH_SHIFT 16
+#define EASRC_DPCS0R0_MINCH_WIDTH 5
+#define EASRC_DPCS0R0_MINCH_MASK ((BIT(EASRC_DPCS0R0_MINCH_WIDTH) - 1) \
+ << EASRC_DPCS0R0_MINCH_SHIFT)
+#define EASRC_DPCS0R0_MINCH(v) (((v) << EASRC_DPCS0R0_MINCH_SHIFT) \
+ & EASRC_DPCS0R0_MINCH_MASK)
+#define EASRC_DPCS0R0_NUMCH_SHIFT 8
+#define EASRC_DPCS0R0_NUMCH_WIDTH 5
+#define EASRC_DPCS0R0_NUMCH_MASK ((BIT(EASRC_DPCS0R0_NUMCH_WIDTH) - 1) \
+ << EASRC_DPCS0R0_NUMCH_SHIFT)
+#define EASRC_DPCS0R0_NUMCH(v) (((v) << EASRC_DPCS0R0_NUMCH_SHIFT) \
+ & EASRC_DPCS0R0_NUMCH_MASK)
+#define EASRC_DPCS0R0_CTXNUM_SHIFT 1
+#define EASRC_DPCS0R0_CTXNUM_WIDTH 2
+#define EASRC_DPCS0R0_CTXNUM_MASK ((BIT(EASRC_DPCS0R0_CTXNUM_WIDTH) - 1) \
+ << EASRC_DPCS0R0_CTXNUM_SHIFT)
+#define EASRC_DPCS0R0_CTXNUM(v) (((v) << EASRC_DPCS0R0_CTXNUM_SHIFT) \
+ & EASRC_DPCS0R0_CTXNUM_MASK)
+#define EASRC_DPCS0R0_EN_SHIFT 0
+#define EASRC_DPCS0R0_EN_MASK BIT(EASRC_DPCS0R0_EN_SHIFT)
+#define EASRC_DPCS0R0_EN BIT(EASRC_DPCS0R0_EN_SHIFT)
+
+/* ASRC Datapath Processor Control Slot0 Register1 (DPCS0R1) */
+#define EASRC_DPCS0R1_ST1_EXP_SHIFT 0
+#define EASRC_DPCS0R1_ST1_EXP_WIDTH 13
+#define EASRC_DPCS0R1_ST1_EXP_MASK ((BIT(EASRC_DPCS0R1_ST1_EXP_WIDTH) - 1) \
+ << EASRC_DPCS0R1_ST1_EXP_SHIFT)
+#define EASRC_DPCS0R1_ST1_EXP(v) (((v) << EASRC_DPCS0R1_ST1_EXP_SHIFT) \
+ & EASRC_DPCS0R1_ST1_EXP_MASK)
+
+/* ASRC Datapath Processor Control Slot0 Register2 (DPCS0R2) */
+#define EASRC_DPCS0R2_ST1_MA_SHIFT 16
+#define EASRC_DPCS0R2_ST1_MA_WIDTH 13
+#define EASRC_DPCS0R2_ST1_MA_MASK ((BIT(EASRC_DPCS0R2_ST1_MA_WIDTH) - 1) \
+ << EASRC_DPCS0R2_ST1_MA_SHIFT)
+#define EASRC_DPCS0R2_ST1_MA(v) (((v) << EASRC_DPCS0R2_ST1_MA_SHIFT) \
+ & EASRC_DPCS0R2_ST1_MA_MASK)
+#define EASRC_DPCS0R2_ST1_SA_SHIFT 0
+#define EASRC_DPCS0R2_ST1_SA_WIDTH 13
+#define EASRC_DPCS0R2_ST1_SA_MASK ((BIT(EASRC_DPCS0R2_ST1_SA_WIDTH) - 1) \
+ << EASRC_DPCS0R2_ST1_SA_SHIFT)
+#define EASRC_DPCS0R2_ST1_SA(v) (((v) << EASRC_DPCS0R2_ST1_SA_SHIFT) \
+ & EASRC_DPCS0R2_ST1_SA_MASK)
+
+/* ASRC Datapath Processor Control Slot0 Register3 (DPCS0R3) */
+#define EASRC_DPCS0R3_ST2_MA_SHIFT 16
+#define EASRC_DPCS0R3_ST2_MA_WIDTH 13
+#define EASRC_DPCS0R3_ST2_MA_MASK ((BIT(EASRC_DPCS0R3_ST2_MA_WIDTH) - 1) \
+ << EASRC_DPCS0R3_ST2_MA_SHIFT)
+#define EASRC_DPCS0R3_ST2_MA(v) (((v) << EASRC_DPCS0R3_ST2_MA_SHIFT) \
+ & EASRC_DPCS0R3_ST2_MA_MASK)
+#define EASRC_DPCS0R3_ST2_SA_SHIFT 0
+#define EASRC_DPCS0R3_ST2_SA_WIDTH 13
+#define EASRC_DPCS0R3_ST2_SA_MASK ((BIT(EASRC_DPCS0R3_ST2_SA_WIDTH) - 1) \
+ << EASRC_DPCS0R3_ST2_SA_SHIFT)
+#define EASRC_DPCS0R3_ST2_SA(v) (((v) << EASRC_DPCS0R3_ST2_SA_SHIFT) \
+ & EASRC_DPCS0R3_ST2_SA_MASK)
+
+/* ASRC Context Output Control (COC) */
+#define EASRC_COC_FWMDE_SHIFT 28
+#define EASRC_COC_FWMDE_MASK BIT(EASRC_COC_FWMDE_SHIFT)
+#define EASRC_COC_FWMDE BIT(EASRC_COC_FWMDE_SHIFT)
+#define EASRC_COC_FIFO_WTMK_SHIFT 16
+#define EASRC_COC_FIFO_WTMK_WIDTH 7
+#define EASRC_COC_FIFO_WTMK_MASK ((BIT(EASRC_COC_FIFO_WTMK_WIDTH) - 1) \
+ << EASRC_COC_FIFO_WTMK_SHIFT)
+#define EASRC_COC_FIFO_WTMK(v) (((v) << EASRC_COC_FIFO_WTMK_SHIFT) \
+ & EASRC_COC_FIFO_WTMK_MASK)
+#define EASRC_COC_SAMPLE_POS_SHIFT 11
+#define EASRC_COC_SAMPLE_POS_WIDTH 5
+#define EASRC_COC_SAMPLE_POS_MASK ((BIT(EASRC_COC_SAMPLE_POS_WIDTH) - 1) \
+ << EASRC_COC_SAMPLE_POS_SHIFT)
+#define EASRC_COC_SAMPLE_POS(v) (((v) << EASRC_COC_SAMPLE_POS_SHIFT) \
+ & EASRC_COC_SAMPLE_POS_MASK)
+#define EASRC_COC_ENDIANNESS_SHIFT 10
+#define EASRC_COC_ENDIANNESS_MASK BIT(EASRC_COC_ENDIANNESS_SHIFT)
+#define EASRC_COC_ENDIANNESS BIT(EASRC_COC_ENDIANNESS_SHIFT)
+#define EASRC_COC_BPS_SHIFT 8
+#define EASRC_COC_BPS_WIDTH 2
+#define EASRC_COC_BPS_MASK ((BIT(EASRC_COC_BPS_WIDTH) - 1) \
+ << EASRC_COC_BPS_SHIFT)
+#define EASRC_COC_BPS(v) (((v) << EASRC_COC_BPS_SHIFT) \
+ & EASRC_COC_BPS_MASK)
+#define EASRC_COC_FMT_SHIFT 7
+#define EASRC_COC_FMT_MASK BIT(EASRC_COC_FMT_SHIFT)
+#define EASRC_COC_FMT BIT(EASRC_COC_FMT_SHIFT)
+#define EASRC_COC_OUTSIGN_SHIFT 6
+#define EASRC_COC_OUTSIGN_MASK BIT(EASRC_COC_OUTSIGN_SHIFT)
+#define EASRC_COC_OUTSIGN_OUT BIT(EASRC_COC_OUTSIGN_SHIFT)
+#define EASRC_COC_IEC_VDATA_SHIFT 2
+#define EASRC_COC_IEC_VDATA_MASK BIT(EASRC_COC_IEC_VDATA_SHIFT)
+#define EASRC_COC_IEC_VDATA BIT(EASRC_COC_IEC_VDATA_SHIFT)
+#define EASRC_COC_IEC_EN_SHIFT 1
+#define EASRC_COC_IEC_EN_MASK BIT(EASRC_COC_IEC_EN_SHIFT)
+#define EASRC_COC_IEC_EN BIT(EASRC_COC_IEC_EN_SHIFT)
+#define EASRC_COC_DITHER_EN_SHIFT 0
+#define EASRC_COC_DITHER_EN_MASK BIT(EASRC_COC_DITHER_EN_SHIFT)
+#define EASRC_COC_DITHER_EN BIT(EASRC_COC_DITHER_EN_SHIFT)
+
+/* ASRC Control Output Access (COA) */
+#define EASRC_COA_ITER_SHIFT 16
+#define EASRC_COA_ITER_WIDTH 6
+#define EASRC_COA_ITER_MASK ((BIT(EASRC_COA_ITER_WIDTH) - 1) \
+ << EASRC_COA_ITER_SHIFT)
+#define EASRC_COA_ITER(v) (((v) << EASRC_COA_ITER_SHIFT) \
+ & EASRC_COA_ITER_MASK)
+#define EASRC_COA_GRLEN_SHIFT 8
+#define EASRC_COA_GRLEN_WIDTH 6
+#define EASRC_COA_GRLEN_MASK ((BIT(EASRC_COA_GRLEN_WIDTH) - 1) \
+ << EASRC_COA_GRLEN_SHIFT)
+#define EASRC_COA_GRLEN(v) (((v) << EASRC_COA_GRLEN_SHIFT) \
+ & EASRC_COA_GRLEN_MASK)
+#define EASRC_COA_ACCLEN_SHIFT 0
+#define EASRC_COA_ACCLEN_WIDTH 6
+#define EASRC_COA_ACCLEN_MASK ((BIT(EASRC_COA_ACCLEN_WIDTH) - 1) \
+ << EASRC_COA_ACCLEN_SHIFT)
+#define EASRC_COA_ACCLEN(v) (((v) << EASRC_COA_ACCLEN_SHIFT) \
+ & EASRC_COA_ACCLEN_MASK)
+
+/* ASRC Sample FIFO Status (SFS) */
+#define EASRC_SFS_IWTMK_SHIFT 23
+#define EASRC_SFS_IWTMK_MASK BIT(EASRC_SFS_IWTMK_SHIFT)
+#define EASRC_SFS_IWTMK BIT(EASRC_SFS_IWTMK_SHIFT)
+#define EASRC_SFS_NSGI_SHIFT 16
+#define EASRC_SFS_NSGI_WIDTH 7
+#define EASRC_SFS_NSGI_MASK ((BIT(EASRC_SFS_NSGI_WIDTH) - 1) \
+ << EASRC_SFS_NSGI_SHIFT)
+#define EASRC_SFS_NSGI(v) (((v) << EASRC_SFS_NSGI_SHIFT) \
+ & EASRC_SFS_NSGI_MASK)
+#define EASRC_SFS_OWTMK_SHIFT 7
+#define EASRC_SFS_OWTMK_MASK BIT(EASRC_SFS_OWTMK_SHIFT)
+#define EASRC_SFS_OWTMK BIT(EASRC_SFS_OWTMK_SHIFT)
+#define EASRC_SFS_NSGO_SHIFT 0
+#define EASRC_SFS_NSGO_WIDTH 7
+#define EASRC_SFS_NSGO_MASK ((BIT(EASRC_SFS_NSGO_WIDTH) - 1) \
+ << EASRC_SFS_NSGO_SHIFT)
+#define EASRC_SFS_NSGO(v) (((v) << EASRC_SFS_NSGO_SHIFT) \
+ & EASRC_SFS_NSGO_MASK)
+
+/* ASRC Resampling Ratio Low (RRL) */
+#define EASRC_RRL_RS_RL_SHIFT 0
+#define EASRC_RRL_RS_RL_WIDTH 32
+#define EASRC_RRL_RS_RL(v) ((v) << EASRC_RRL_RS_RL_SHIFT)
+
+/* ASRC Resampling Ratio High (RRH) */
+#define EASRC_RRH_RS_VLD_SHIFT 31
+#define EASRC_RRH_RS_VLD_MASK BIT(EASRC_RRH_RS_VLD_SHIFT)
+#define EASRC_RRH_RS_VLD BIT(EASRC_RRH_RS_VLD_SHIFT)
+#define EASRC_RRH_RS_RH_SHIFT 0
+#define EASRC_RRH_RS_RH_WIDTH 12
+#define EASRC_RRH_RS_RH_MASK ((BIT(EASRC_RRH_RS_RH_WIDTH) - 1) \
+ << EASRC_RRH_RS_RH_SHIFT)
+#define EASRC_RRH_RS_RH(v) (((v) << EASRC_RRH_RS_RH_SHIFT) \
+ & EASRC_RRH_RS_RH_MASK)
+
+/* ASRC Resampling Ratio Update Control (RSUC) */
+#define EASRC_RSUC_RS_RM_SHIFT 0
+#define EASRC_RSUC_RS_RM_WIDTH 32
+#define EASRC_RSUC_RS_RM(v) ((v) << EASRC_RSUC_RS_RM_SHIFT)
+
+/* ASRC Resampling Ratio Update Rate (RRUR) */
+#define EASRC_RRUR_RRR_SHIFT 0
+#define EASRC_RRUR_RRR_WIDTH 31
+#define EASRC_RRUR_RRR_MASK ((BIT(EASRC_RRUR_RRR_WIDTH) - 1) \
+ << EASRC_RRUR_RRR_SHIFT)
+#define EASRC_RRUR_RRR(v) (((v) << EASRC_RRUR_RRR_SHIFT) \
+ & EASRC_RRUR_RRR_MASK)
+
+/* ASRC Resampling Center Tap Coefficient Low (RCTCL) */
+#define EASRC_RCTCL_RS_CL_SHIFT 0
+#define EASRC_RCTCL_RS_CL_WIDTH 32
+#define EASRC_RCTCL_RS_CL(v) ((v) << EASRC_RCTCL_RS_CL_SHIFT)
+
+/* ASRC Resampling Center Tap Coefficient High (RCTCH) */
+#define EASRC_RCTCH_RS_CH_SHIFT 0
+#define EASRC_RCTCH_RS_CH_WIDTH 32
+#define EASRC_RCTCH_RS_CH(v) ((v) << EASRC_RCTCH_RS_CH_SHIFT)
+
+/* ASRC Prefilter Coefficient FIFO (PCF) */
+#define EASRC_PCF_CD_SHIFT 0
+#define EASRC_PCF_CD_WIDTH 32
+#define EASRC_PCF_CD(v) ((v) << EASRC_PCF_CD_SHIFT)
+
+/* ASRC Context Resampling Coefficient Memory (CRCM) */
+#define EASRC_CRCM_RS_CWD_SHIFT 0
+#define EASRC_CRCM_RS_CWD_WIDTH 32
+#define EASRC_CRCM_RS_CWD(v) ((v) << EASRC_CRCM_RS_CWD_SHIFT)
+
+/* ASRC Context Resampling Coefficient Control (CRCC) */
+#define EASRC_CRCC_RS_CA_SHIFT 16
+#define EASRC_CRCC_RS_CA_WIDTH 11
+#define EASRC_CRCC_RS_CA_MASK ((BIT(EASRC_CRCC_RS_CA_WIDTH) - 1) \
+ << EASRC_CRCC_RS_CA_SHIFT)
+#define EASRC_CRCC_RS_CA(v) (((v) << EASRC_CRCC_RS_CA_SHIFT) \
+ & EASRC_CRCC_RS_CA_MASK)
+#define EASRC_CRCC_RS_TAPS_SHIFT 1
+#define EASRC_CRCC_RS_TAPS_WIDTH 2
+#define EASRC_CRCC_RS_TAPS_MASK ((BIT(EASRC_CRCC_RS_TAPS_WIDTH) - 1) \
+ << EASRC_CRCC_RS_TAPS_SHIFT)
+#define EASRC_CRCC_RS_TAPS(v) (((v) << EASRC_CRCC_RS_TAPS_SHIFT) \
+ & EASRC_CRCC_RS_TAPS_MASK)
+#define EASRC_CRCC_RS_CPR_SHIFT 0
+#define EASRC_CRCC_RS_CPR_MASK BIT(EASRC_CRCC_RS_CPR_SHIFT)
+#define EASRC_CRCC_RS_CPR BIT(EASRC_CRCC_RS_CPR_SHIFT)
+
+/* ASRC Interrupt_Control (IC) */
+#define EASRC_IRQC_RSDM_SHIFT 8
+#define EASRC_IRQC_RSDM_WIDTH 4
+#define EASRC_IRQC_RSDM_MASK ((BIT(EASRC_IRQC_RSDM_WIDTH) - 1) \
+ << EASRC_IRQC_RSDM_SHIFT)
+#define EASRC_IRQC_RSDM(v) (((v) << EASRC_IRQC_RSDM_SHIFT) \
+ & EASRC_IRQC_RSDM_MASK)
+#define EASRC_IRQC_OERM_SHIFT 4
+#define EASRC_IRQC_OERM_WIDTH 4
+#define EASRC_IRQC_OERM_MASK ((BIT(EASRC_IRQC_OERM_WIDTH) - 1) \
+ << EASRC_IRQC_OERM_SHIFT)
+#define EASRC_IRQC_OERM(v) (((v) << EASRC_IRQC_OERM_SHIFT) \
+ & EASRC_IEQC_OERM_MASK)
+#define EASRC_IRQC_IOM_SHIFT 0
+#define EASRC_IRQC_IOM_WIDTH 4
+#define EASRC_IRQC_IOM_MASK ((BIT(EASRC_IRQC_IOM_WIDTH) - 1) \
+ << EASRC_IRQC_IOM_SHIFT)
+#define EASRC_IRQC_IOM(v) (((v) << EASRC_IRQC_IOM_SHIFT) \
+ & EASRC_IRQC_IOM_MASK)
+
+/* ASRC Interrupt Status Flags (ISF) */
+#define EASRC_IRQF_RSD_SHIFT 8
+#define EASRC_IRQF_RSD_WIDTH 4
+#define EASRC_IRQF_RSD_MASK ((BIT(EASRC_IRQF_RSD_WIDTH) - 1) \
+ << EASRC_IRQF_RSD_SHIFT)
+#define EASRC_IRQF_RSD(v) (((v) << EASRC_IRQF_RSD_SHIFT) \
+ & EASRC_IRQF_RSD_MASK)
+#define EASRC_IRQF_OER_SHIFT 4
+#define EASRC_IRQF_OER_WIDTH 4
+#define EASRC_IRQF_OER_MASK ((BIT(EASRC_IRQF_OER_WIDTH) - 1) \
+ << EASRC_IRQF_OER_SHIFT)
+#define EASRC_IRQF_OER(v) (((v) << EASRC_IRQF_OER_SHIFT) \
+ & EASRC_IRQF_OER_MASK)
+#define EASRC_IRQF_IFO_SHIFT 0
+#define EASRC_IRQF_IFO_WIDTH 4
+#define EASRC_IRQF_IFO_MASK ((BIT(EASRC_IRQF_IFO_WIDTH) - 1) \
+ << EASRC_IRQF_IFO_SHIFT)
+#define EASRC_IRQF_IFO(v) (((v) << EASRC_IRQF_IFO_SHIFT) \
+ & EASRC_IRQF_IFO_MASK)
+
+/* ASRC Context Channel STAT */
+#define EASRC_CSx_CSx_SHIFT 0
+#define EASRC_CSx_CSx_WIDTH 32
+#define EASRC_CSx_CSx(v) ((v) << EASRC_CSx_CSx_SHIFT)
+
+/* ASRC Debug Control Register */
+#define EASRC_DBGC_DMS_SHIFT 0
+#define EASRC_DBGC_DMS_WIDTH 6
+#define EASRC_DBGC_DMS_MASK ((BIT(EASRC_DBGC_DMS_WIDTH) - 1) \
+ << EASRC_DBGC_DMS_SHIFT)
+#define EASRC_DBGC_DMS(v) (((v) << EASRC_DBGC_DMS_SHIFT) \
+ & EASRC_DBGC_DMS_MASK)
+
+/* ASRC Debug Status Register */
+#define EASRC_DBGS_DS_SHIFT 0
+#define EASRC_DBGS_DS_WIDTH 32
+#define EASRC_DBGS_DS(v) ((v) << EASRC_DBGS_DS_SHIFT)
+
+/* General Constants */
+#define EASRC_CTX_MAX_NUM 4
+#define EASRC_RS_COEFF_MEM 0
+#define EASRC_PF_COEFF_MEM 1
+
+/* Prefilter constants */
+#define EASRC_PF_ST1_ONLY 0
+#define EASRC_PF_TWO_STAGE_MODE 1
+#define EASRC_PF_ST1_COEFF_WR 0
+#define EASRC_PF_ST2_COEFF_WR 1
+#define EASRC_MAX_PF_TAPS 384
+
+/* Resampling constants */
+#define EASRC_RS_32_TAPS 0
+#define EASRC_RS_64_TAPS 1
+#define EASRC_RS_128_TAPS 2
+
+/* Initialization mode */
+#define EASRC_INIT_MODE_SW_CONTROL 0
+#define EASRC_INIT_MODE_REPLICATE 1
+#define EASRC_INIT_MODE_ZERO_FILL 2
+
+/* FIFO watermarks */
+#define FSL_EASRC_INPUTFIFO_WML 0x4
+#define FSL_EASRC_OUTPUTFIFO_WML 0x1
+
+#define EASRC_INPUTFIFO_THRESHOLD_MIN 0
+#define EASRC_INPUTFIFO_THRESHOLD_MAX 127
+#define EASRC_OUTPUTFIFO_THRESHOLD_MIN 0
+#define EASRC_OUTPUTFIFO_THRESHOLD_MAX 63
+
+#define EASRC_DMA_BUFFER_SIZE (1024 * 48 * 9)
+#define EASRC_MAX_BUFFER_SIZE (1024 * 48)
+
+#define FIRMWARE_MAGIC 0xDEAD
+#define FIRMWARE_VERSION 1
+
+#define PREFILTER_MEM_LEN 0x1800
+
+enum easrc_word_width {
+ EASRC_WIDTH_16_BIT = 0,
+ EASRC_WIDTH_20_BIT = 1,
+ EASRC_WIDTH_24_BIT = 2,
+ EASRC_WIDTH_32_BIT = 3,
+};
+
+struct __attribute__((__packed__)) asrc_firmware_hdr {
+ u32 magic;
+ u32 interp_scen;
+ u32 prefil_scen;
+ u32 firmware_version;
+};
+
+struct __attribute__((__packed__)) interp_params {
+ u32 magic;
+ u32 num_taps;
+ u32 num_phases;
+ u64 center_tap;
+ u64 coeff[8192];
+};
+
+struct __attribute__((__packed__)) prefil_params {
+ u32 magic;
+ u32 insr;
+ u32 outsr;
+ u32 st1_taps;
+ u32 st2_taps;
+ u32 st1_exp;
+ u64 coeff[256];
+};
+
+struct dma_block {
+ void *dma_vaddr;
+ unsigned int length;
+ unsigned int max_buf_size;
+};
+
+struct fsl_easrc_data_fmt {
+ unsigned int width : 2;
+ unsigned int endianness : 1;
+ unsigned int unsign : 1;
+ unsigned int floating_point : 1;
+ unsigned int iec958: 1;
+ unsigned int sample_pos: 5;
+ unsigned int addexp;
+};
+
+struct fsl_easrc_io_params {
+ struct fsl_easrc_data_fmt fmt;
+ unsigned int group_len;
+ unsigned int iterations;
+ unsigned int access_len;
+ unsigned int fifo_wtmk;
+ unsigned int sample_rate;
+ unsigned int sample_format;
+ unsigned int norm_rate;
+};
+
+struct fsl_easrc_slot {
+ bool busy;
+ int ctx_index;
+ int slot_index;
+ int num_channel; /*maximum is 8*/
+ int min_channel;
+ int max_channel;
+ int pf_mem_used;
+};
+
+/**
+ * fsl_easrc_ctx_priv: EASRC context private data
+ *
+ * @in_params: input parameter
+ * @out_params: output parameter
+ * @st1_num_taps: tap number of stage 1
+ * @st2_num_taps: tap number of stage 2
+ * @st1_num_exp: exponent number of stage 1
+ * @pf_init_mode: prefilter init mode
+ * @rs_init_mode: resample filter init mode
+ * @ctx_streams: stream flag of ctx
+ * @rs_ratio: resampler ratio
+ * @st1_coeff: pointer of stage 1 coeff
+ * @st2_coeff: pointer of stage 2 coeff
+ * @in_filled_sample: input filled sample
+ * @out_missed_sample: sample missed in output
+ * @st1_addexp: exponent added for stage1
+ * @st2_addexp: exponent added for stage2
+ */
+struct fsl_easrc_ctx_priv {
+ struct fsl_easrc_io_params in_params;
+ struct fsl_easrc_io_params out_params;
+ unsigned int st1_num_taps;
+ unsigned int st2_num_taps;
+ unsigned int st1_num_exp;
+ unsigned int pf_init_mode;
+ unsigned int rs_init_mode;
+ unsigned int ctx_streams;
+ u64 rs_ratio;
+ u64 *st1_coeff;
+ u64 *st2_coeff;
+ int in_filled_sample;
+ int out_missed_sample;
+ int st1_addexp;
+ int st2_addexp;
+};
+
+/**
+ * fsl_easrc_priv: EASRC private data
+ *
+ * @slot: slot setting
+ * @firmware_hdr: the header of firmware
+ * @interp: pointer to interpolation filter coeff
+ * @prefil: pointer to prefilter coeff
+ * @fw: firmware of coeff table
+ * @fw_name: firmware name
+ * @rs_num_taps: resample filter taps, 32, 64, or 128
+ * @bps_i2c958: bits per sample of iec958
+ * @rs_coeff: resampler coefficient
+ * @const_coeff: one tap prefilter coefficient
+ * @firmware_loaded: firmware is loaded
+ */
+struct fsl_easrc_priv {
+ struct fsl_easrc_slot slot[EASRC_CTX_MAX_NUM][2];
+ struct asrc_firmware_hdr *firmware_hdr;
+ struct interp_params *interp;
+ struct prefil_params *prefil;
+ const struct firmware *fw;
+ const char *fw_name;
+ unsigned int rs_num_taps;
+ unsigned int bps_iec958[EASRC_CTX_MAX_NUM];
+ u64 *rs_coeff;
+ u64 const_coeff;
+ int firmware_loaded;
+};
+#endif /* _FSL_EASRC_H */