@@ -1609,6 +1609,22 @@ static inline void __run_timers(struct t
raw_spin_lock_irq(&base->lock);
+ /*
+ * timer_base::must_forward_clk must be cleared before running
+ * timers so that any timer functions that call mod_timer() will
+ * not try to forward the base. Idle tracking / clock forwarding
+ * logic is only used with BASE_STD timers.
+ *
+ * The must_forward_clk flag is cleared unconditionally also for
+ * the deferrable base. The deferrable base is not affected by idle
+ * tracking and never forwarded, so clearing the flag is a NOOP.
+ *
+ * The fact that the deferrable base is never forwarded can cause
+ * large variations in granularity for deferrable timers, but they
+ * can be deferred for long periods due to idle anyway.
+ */
+ base->must_forward_clk = false;
+
while (time_after_eq(jiffies, base->clk)) {
levels = collect_expired_timers(base, heads);
@@ -1628,19 +1644,6 @@ static __latent_entropy void run_timer_s
{
struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- /*
- * must_forward_clk must be cleared before running timers so that any
- * timer functions that call mod_timer will not try to forward the
- * base. idle trcking / clock forwarding logic is only used with
- * BASE_STD timers.
- *
- * The deferrable base does not do idle tracking at all, so we do
- * not forward it. This can result in very large variations in
- * granularity for deferrable timers, but they can be deferred for
- * long periods due to idle.
- */
- base->must_forward_clk = false;
-
__run_timers(base);
if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));