Message ID | 20211211022224.3488860-4-caleb@connolly.tech (mailing list archive) |
---|---|
State | Superseded |
Headers | show |
Series | iio: adc: introduce Qualcomm SPMI Round Robin ADC | expand |
On Sat, 11 Dec 2021 02:22:20 +0000 Caleb Connolly <caleb.connolly@linaro.org> wrote: > From: Caleb Connolly <caleb.connolly@linaro.org> > > The Round Robin ADC is responsible for reading data about the rate of > charge from the USB or DC in jacks, it can also read the battery > ID (resistence) and some temperatures. It is found on the PMI8998 and > PM660 Qualcomm PMICs. > > Signed-off-by: Caleb Connolly <caleb.connolly@linaro.org> Hi Caleb, Welcome to IIO. Comments inline, Thanks, Jonathan > --- > drivers/iio/adc/Kconfig | 13 + > drivers/iio/adc/Makefile | 1 + > drivers/iio/adc/qcom-spmi-rradc.c | 1020 +++++++++++++++++++++++++++++ > 3 files changed, 1034 insertions(+) > create mode 100644 drivers/iio/adc/qcom-spmi-rradc.c > > diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig > index 8bf5b62a73f4..d7765b177cd3 100644 > --- a/drivers/iio/adc/Kconfig > +++ b/drivers/iio/adc/Kconfig > @@ -812,6 +812,19 @@ config QCOM_PM8XXX_XOADC > To compile this driver as a module, choose M here: the module > will be called qcom-pm8xxx-xoadc. > > +config QCOM_SPMI_RRADC > + tristate "Qualcomm SPMI RRADC" > + depends on MFD_SPMI_PMIC > + help > + This is for the PMIC Round Robin ADC driver. > + > + This driver exposes the battery ID resistor, battery thermal, PMIC die > + temperature, charger USB in and DC in voltage and current. > + > + To compile this driver as a module, choose M here: the module will > + be called qcom-qpmi-rradc. > + > + > config QCOM_SPMI_IADC > tristate "Qualcomm SPMI PMIC current ADC" > depends on SPMI > diff --git a/drivers/iio/adc/Makefile b/drivers/iio/adc/Makefile > index d3f53549720c..ca8bad549175 100644 > --- a/drivers/iio/adc/Makefile > +++ b/drivers/iio/adc/Makefile > @@ -77,6 +77,7 @@ obj-$(CONFIG_NPCM_ADC) += npcm_adc.o > obj-$(CONFIG_PALMAS_GPADC) += palmas_gpadc.o > obj-$(CONFIG_QCOM_SPMI_ADC5) += qcom-spmi-adc5.o > obj-$(CONFIG_QCOM_SPMI_IADC) += qcom-spmi-iadc.o > +obj-$(CONFIG_QCOM_SPMI_RRADC) += qcom-spmi-rradc.o > obj-$(CONFIG_QCOM_VADC_COMMON) += qcom-vadc-common.o > obj-$(CONFIG_QCOM_SPMI_VADC) += qcom-spmi-vadc.o > obj-$(CONFIG_QCOM_PM8XXX_XOADC) += qcom-pm8xxx-xoadc.o > diff --git a/drivers/iio/adc/qcom-spmi-rradc.c b/drivers/iio/adc/qcom-spmi-rradc.c > new file mode 100644 > index 000000000000..ce2bbb8c5c25 > --- /dev/null > +++ b/drivers/iio/adc/qcom-spmi-rradc.c > @@ -0,0 +1,1020 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (c) 2021 Linaro Limited. > + * Author: Caleb Connolly <caleb.connolly@linaro.org> > + * > + * This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs. > + */ > + > +#include <linux/delay.h> > +#include <linux/iio/iio.h> > +#include <linux/iio/types.h> > +#include <linux/kernel.h> > +#include <linux/math64.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/platform_device.h> > +#include <linux/power_supply.h> ? > +#include <linux/regmap.h> > +#include <linux/spmi.h> > +#include <linux/types.h> > +#include <soc/qcom/qcom-pmic.h> > + > +#define RR_ADC_EN_CTL 0x46 > +#define RR_ADC_SKIN_TEMP_LSB 0x50 > +#define RR_ADC_SKIN_TEMP_MSB 0x51 > +#define RR_ADC_RR_ADC_CTL 0x52 > +#define RR_ADC_ADC_CTL_CONTINUOUS_SEL BIT(3) > +#define RR_ADC_ADC_LOG 0x53 > +#define RR_ADC_ADC_LOG_CLR_CTRL BIT(0) > + > +#define RR_ADC_FAKE_BATT_LOW_LSB 0x58 > +#define RR_ADC_FAKE_BATT_LOW_MSB 0x59 > +#define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A > +#define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B > + > +#define RR_ADC_BATT_ID_CTRL 0x60 > +#define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0) > +#define RR_ADC_BATT_ID_TRIGGER 0x61 > +#define RR_ADC_BATT_ID_TRIGGER_CTL BIT(0) > +#define RR_ADC_BATT_ID_STS 0x62 > +#define RR_ADC_BATT_ID_CFG 0x63 > +#define RR_ADC_BATT_ID_5_LSB 0x66 > +#define RR_ADC_BATT_ID_5_MSB 0x67 > +#define RR_ADC_BATT_ID_15_LSB 0x68 > +#define RR_ADC_BATT_ID_15_MSB 0x69 > +#define RR_ADC_BATT_ID_150_LSB 0x6A > +#define RR_ADC_BATT_ID_150_MSB 0x6B > + > +#define RR_ADC_BATT_THERM_CTRL 0x70 > +#define RR_ADC_BATT_THERM_TRIGGER 0x71 > +#define RR_ADC_BATT_THERM_STS 0x72 > +#define RR_ADC_BATT_THERM_CFG 0x73 > +#define RR_ADC_BATT_THERM_LSB 0x74 > +#define RR_ADC_BATT_THERM_MSB 0x75 > +#define RR_ADC_BATT_THERM_FREQ 0x76 > + > +#define RR_ADC_AUX_THERM_CTRL 0x80 > +#define RR_ADC_AUX_THERM_TRIGGER 0x81 > +#define RR_ADC_AUX_THERM_STS 0x82 > +#define RR_ADC_AUX_THERM_CFG 0x83 > +#define RR_ADC_AUX_THERM_LSB 0x84 > +#define RR_ADC_AUX_THERM_MSB 0x85 > + > +#define RR_ADC_SKIN_HOT 0x86 > +#define RR_ADC_SKIN_TOO_HOT 0x87 > + > +#define RR_ADC_AUX_THERM_C1 0x88 > +#define RR_ADC_AUX_THERM_C2 0x89 > +#define RR_ADC_AUX_THERM_C3 0x8A > +#define RR_ADC_AUX_THERM_HALF_RANGE 0x8B > + > +#define RR_ADC_USB_IN_V_CTRL 0x90 > +#define RR_ADC_USB_IN_V_TRIGGER 0x91 > +#define RR_ADC_USB_IN_V_EVERY_CYCLE BIT(7) > +#define RR_ADC_USB_IN_V_STS 0x92 > +#define RR_ADC_USB_IN_V_LSB 0x94 > +#define RR_ADC_USB_IN_V_MSB 0x95 > +#define RR_ADC_USB_IN_I_CTRL 0x98 > +#define RR_ADC_USB_IN_I_TRIGGER 0x99 > +#define RR_ADC_USB_IN_I_STS 0x9A > +#define RR_ADC_USB_IN_I_LSB 0x9C > +#define RR_ADC_USB_IN_I_MSB 0x9D > + > +#define RR_ADC_DC_IN_V_CTRL 0xA0 > +#define RR_ADC_DC_IN_V_TRIGGER 0xA1 > +#define RR_ADC_DC_IN_V_STS 0xA2 > +#define RR_ADC_DC_IN_V_LSB 0xA4 > +#define RR_ADC_DC_IN_V_MSB 0xA5 > +#define RR_ADC_DC_IN_I_CTRL 0xA8 > +#define RR_ADC_DC_IN_I_TRIGGER 0xA9 > +#define RR_ADC_DC_IN_I_STS 0xAA > +#define RR_ADC_DC_IN_I_LSB 0xAC > +#define RR_ADC_DC_IN_I_MSB 0xAD > + > +#define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0 > +#define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1 > +#define RR_ADC_PMI_DIE_TEMP_STS 0xB2 > +#define RR_ADC_PMI_DIE_TEMP_CFG 0xB3 > +#define RR_ADC_PMI_DIE_TEMP_LSB 0xB4 > +#define RR_ADC_PMI_DIE_TEMP_MSB 0xB5 > + > +#define RR_ADC_CHARGER_TEMP_CTRL 0xB8 > +#define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9 > +#define RR_ADC_CHARGER_TEMP_STS 0xBA > +#define RR_ADC_CHARGER_TEMP_CFG 0xBB > +#define RR_ADC_CHARGER_TEMP_LSB 0xBC > +#define RR_ADC_CHARGER_TEMP_MSB 0xBD > +#define RR_ADC_CHARGER_HOT 0xBE > +#define RR_ADC_CHARGER_TOO_HOT 0xBF > + > +#define RR_ADC_GPIO_CTRL 0xC0 > +#define RR_ADC_GPIO_TRIGGER 0xC1 > +#define RR_ADC_GPIO_STS 0xC2 > +#define RR_ADC_GPIO_LSB 0xC4 > +#define RR_ADC_GPIO_MSB 0xC5 > + > +#define RR_ADC_ATEST_CTRL 0xC8 > +#define RR_ADC_ATEST_TRIGGER 0xC9 > +#define RR_ADC_ATEST_STS 0xCA > +#define RR_ADC_ATEST_LSB 0xCC > +#define RR_ADC_ATEST_MSB 0xCD > +#define RR_ADC_SEC_ACCESS 0xD0 > + > +#define RR_ADC_PERPH_RESET_CTL2 0xD9 > +#define RR_ADC_PERPH_RESET_CTL3 0xDA > +#define RR_ADC_PERPH_RESET_CTL4 0xDB > +#define RR_ADC_INT_TEST1 0xE0 > +#define RR_ADC_INT_TEST_VAL 0xE1 > + > +#define RR_ADC_TM_TRIGGER_CTRLS 0xE2 > +#define RR_ADC_TM_ADC_CTRLS 0xE3 > +#define RR_ADC_TM_CNL_CTRL 0xE4 > +#define RR_ADC_TM_BATT_ID_CTRL 0xE5 > +#define RR_ADC_TM_THERM_CTRL 0xE6 > +#define RR_ADC_TM_CONV_STS 0xE7 > +#define RR_ADC_TM_ADC_READ_LSB 0xE8 > +#define RR_ADC_TM_ADC_READ_MSB 0xE9 > +#define RR_ADC_TM_ATEST_MUX_1 0xEA > +#define RR_ADC_TM_ATEST_MUX_2 0xEB > +#define RR_ADC_TM_REFERENCES 0xED > +#define RR_ADC_TM_MISC_CTL 0xEE > +#define RR_ADC_TM_RR_CTRL 0xEF > + > +#define RR_ADC_BATT_ID_5_MA 5 > +#define RR_ADC_BATT_ID_15_MA 15 > +#define RR_ADC_BATT_ID_150_MA 150 Defines that define from something with the number in it to a number are usually not that helpful. Just use the values and ensure the variable naming makes units etc clear. > +#define RR_ADC_BATT_ID_RANGE 820 > + > +#define RR_ADC_BITS 10 > +#define RR_ADC_MAX_READINGS (1 << RR_ADC_BITS) What is this? I'd expect ADC_MAX_READINGS to be the number of readings, whereas I suspect it's maximum value? > +#define RR_ADC_FS_VOLTAGE_MV 2500 > + > +/* BATT_THERM 0.25K/LSB */ > +#define RR_ADC_BATT_THERM_LSB_K 4 > + > +#define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000 > +#define RR_ADC_TEMP_FS_VOLTAGE_DEN 3 > +#define RR_ADC_DIE_TEMP_OFFSET 601400 > +#define RR_ADC_DIE_TEMP_SLOPE 2 > +#define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000 > + > +#define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168 > +#define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784 > +#define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433 > +#define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655 > +#define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001 > +#define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403 > +#define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898 > +#define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596 > +#define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779 > +#define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496 > +#define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000 > +#define RR_ADC_CHG_THRESHOLD_SCALE 4 > + > +#define RR_ADC_VOLT_INPUT_FACTOR 8 > +#define RR_ADC_CURR_INPUT_FACTOR 2000 > +#define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886 > +#define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9 > +#define RR_ADC_CURR_USBIN_660_UV_VAL 579500 > + > +#define RR_ADC_SCALE_MILLI_FACTOR 1000 There are standard kernel defines for things like this. see linux/units.h > +#define RR_ADC_KELVINMIL_CELSIUSMIL 273150 Also in linux/units.h > + > +#define RR_ADC_GPIO_FS_RANGE 5000 > +#define RR_ADC_COHERENT_CHECK_RETRY 5 > +#define RR_ADC_MAX_CONTINUOUS_BUFFER_LEN 16 > + > +#define RR_ADC_STS_CHANNEL_READING_MASK 0x3 > +#define RR_ADC_STS_CHANNEL_STS 0x2 > + > +#define RR_ADC_CONV_TIME_MIN_US 499 > +#define RR_ADC_CONV_TIME_MAX_US 501 Can't see where these are used. I was wondering why they would make sense so went looking :) > +#define RR_ADC_CONV_MAX_RETRY_CNT 100 Things like retry counts need a comment justifying the value. Maybe you tried smaller values and sometimes it failed or something like that? 100 is a lot of retries. > +#define RR_ADC_TP_REV_VERSION1 21 > +#define RR_ADC_TP_REV_VERSION2 29 > +#define RR_ADC_TP_REV_VERSION3 32 > + > +#define BATT_ID_SETTLE_SHIFT 5 > +#define RRADC_BATT_ID_DELAY_MAX 8 > + > +/* > + * Used to index rradc_chip.chans[] array. Not sure the comment adds much as if anyone cares they can grep :) > + */ > +enum rradc_channel_id { > + RR_ADC_BATT_ID = 0, > + RR_ADC_BATT_THERM, > + RR_ADC_SKIN_TEMP, > + RR_ADC_USBIN_I, > + RR_ADC_USBIN_V, > + RR_ADC_DCIN_I, > + RR_ADC_DCIN_V, > + RR_ADC_DIE_TEMP, > + RR_ADC_CHG_TEMP, > + RR_ADC_GPIO, > + RR_ADC_CHG_HOT_TEMP, > + RR_ADC_CHG_TOO_HOT_TEMP, > + RR_ADC_SKIN_HOT_TEMP, > + RR_ADC_SKIN_TOO_HOT_TEMP, > + RR_ADC_MAX > +}; > + > +struct rradc_chip; > + > +/** > + * struct rradc_channel - rradc channel data > + * @datasheet_name: Name of the channel > + * @type: Channel type > + * @info_mask: Channel mask > + * @enabled: Enable/disable flag > + * @lsb: Channel least significant byte > + * @msb: Channel most significant byte > + * @status: Channel status address > + * @size: number of bytes to read > + * @trigger_addr: Trigger address > + * @trigger_mask: Trigger mask > + * @scale: Channel scale callback > + */ > +struct rradc_channel { > + const char *datasheet_name; > + enum iio_chan_type type; > + long info_mask; > + bool enabled; > + u8 lsb; > + u8 msb; > + u8 status; > + int size; > + int trigger_addr; > + int trigger_mask; > + int (*scale)(struct rradc_chip *chip, u16 adc_code, int *result); > +}; > + > +struct rradc_chip { > + struct device *dev; > + struct qcom_spmi_pmic *pmic; > + struct mutex lock; > + struct regmap *regmap; > + u32 base; > + int batt_id_delay; > + struct iio_chan_spec *iio_chans; > + unsigned int nchannels; > + struct rradc_channel *chans; > + u16 batt_id_data; > +}; > + > +static const int batt_id_delays[] = {0, 1, 4, 12, 20, 40, 60, 80}; > + > +static int rradc_masked_write(struct rradc_chip *chip, u16 addr, u8 mask, > + u8 val) I'm not sure this wrapper adds anything significantly useful. Would prefer you just called regmap_update_bits() inline. > +{ > + int ret; > + > + ret = regmap_update_bits(chip->regmap, chip->base + addr, > + mask, val); > + if (ret) { > + dev_err(chip->dev, "spmi write failed: addr=%03X, ret=%d\n", addr, ret); > + return ret; > + } > + > + return ret; > +} > + > +static int rradc_read(struct rradc_chip *chip, u16 addr, u8 *data, int len) I'm hoping the device will provide atomic reads of single registers? If so, just use a regmap_read() for cases where len = 1. Keep this magic for the more complex cases. > +{ > + int ret = 0, retry_cnt = 0, i = 0; > + u8 data_check[RR_ADC_MAX_CONTINUOUS_BUFFER_LEN]; > + bool coherent_err = false; > + > + if (len > RR_ADC_MAX_CONTINUOUS_BUFFER_LEN) { > + dev_err(chip->dev, "Increase the buffer length\n"); That's not very helpful as a user is going to wonder how to do that and assume there is some control somewhere for it... > + return -EINVAL; > + } > + > + while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) { > + ret = regmap_bulk_read(chip->regmap, chip->base + addr, > + data, len); > + if (ret < 0) { > + dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr, ret); > + return ret; > + } > + > + ret = regmap_bulk_read(chip->regmap, chip->base + addr, > + data_check, len); > + if (ret < 0) { > + dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr, ret); > + return ret; > + } > + > + for (i = 0; i < len; i++) { > + if (data[i] != data_check[i]) > + coherent_err = true; if (memcmp() != 0)? > + } > + > + if (coherent_err) { > + retry_cnt++; > + coherent_err = false; > + dev_dbg(chip->dev, "%s() retry_cnt = %d\n", __func__, retry_cnt); > + } else { I'd flip this if (!coherent_err) break; retry_cnt++; coherent_err = false; //I'd move this before the checking loop above... > + break; > + } > + } > + > + if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY) > + dev_err(chip->dev, "Retry exceeded for coherrency check\n"); > + > + return ret; > +} > + > +static int rradc_get_fab_coeff(struct rradc_chip *chip, > + int64_t *offset, int64_t *slope) > +{ > + if (chip->pmic->subtype == PM660_SUBTYPE) { > + switch (chip->pmic->fab_id) { > + case PM660_FAB_ID_GF: > + *offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV; > + *slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C; > + break; > + case PM660_FAB_ID_TSMC: > + *offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV; > + *slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C; > + break; > + default: > + *offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV; > + *slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C; > + } Indent of this bracket is wrong. > + } else if (chip->pmic->subtype == PMI8998_SUBTYPE) { > + switch (chip->pmic->fab_id) { > + case PMI8998_FAB_ID_GF: > + *offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV; > + *slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C; > + break; > + case PMI8998_FAB_ID_SMIC: > + *offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV; > + *slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C; > + break; > + default: > + return -EINVAL; > + } > + } else { > + return -EINVAL; > + } > + > + return 0; > +} > + > +static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code, > + int *result_ohms) > +{ > + uint32_t current_value; > + int64_t r_id; > + > + current_value = chip->batt_id_data; > + r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV); > + r_id = div64_s64(r_id, (RR_ADC_MAX_READINGS * current_value)); > + *result_ohms = (r_id * RR_ADC_SCALE_MILLI_FACTOR); > + > + return 0; > +} > + > +static int rradc_post_process_therm(struct rradc_chip *chip, u16 adc_code, > + int *result_millidegc) > +{ > + int64_t temp; > + > + /* K = code/4 */ > + temp = ((int64_t)adc_code * RR_ADC_SCALE_MILLI_FACTOR); > + temp = div64_s64(temp, RR_ADC_BATT_THERM_LSB_K); > + *result_millidegc = temp - RR_ADC_KELVINMIL_CELSIUSMIL; > + > + return 0; > +} > + > +static int rradc_post_process_volt(struct rradc_chip *chip, u16 adc_code, > + int *result_uv) > +{ > + int64_t uv = 0; > + > + /* 8x input attenuation; 2.5V ADC full scale */ > + uv = ((int64_t)adc_code * RR_ADC_VOLT_INPUT_FACTOR); > + uv *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); > + uv = div64_s64(uv, RR_ADC_MAX_READINGS); > + *result_uv = uv; > + > + return 0; > +} > + > +static int rradc_post_process_usbin_curr(struct rradc_chip *chip, u16 adc_code, > + int *result_ua) > +{ > + int64_t ua = 0; > + > + /* scale * V/A; 2.5V ADC full scale */ > + ua = ((int64_t)adc_code * RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL); > + ua *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); > + ua = div64_s64(ua, (RR_ADC_MAX_READINGS * 10)); > + *result_ua = ua; > + > + return 0; > +} > + > +static int rradc_post_process_dcin_curr(struct rradc_chip *chip, u16 adc_code, > + int *result_ua) > +{ > + int64_t ua = 0; > + > + /* 0.5 V/A; 2.5V ADC full scale */ > + ua = ((int64_t)adc_code * RR_ADC_CURR_INPUT_FACTOR); > + ua *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); > + ua = div64_s64(ua, (RR_ADC_MAX_READINGS * 1000)); > + *result_ua = ua; > + > + return 0; > +} > + > +static int rradc_post_process_die_temp(struct rradc_chip *chip, u16 adc_code, > + int *result_millidegc) > +{ > + int64_t temp = 0; > + > + temp = ((int64_t)adc_code * RR_ADC_TEMP_FS_VOLTAGE_NUM); > + temp = div64_s64(temp, (RR_ADC_TEMP_FS_VOLTAGE_DEN * > + RR_ADC_MAX_READINGS)); > + temp -= RR_ADC_DIE_TEMP_OFFSET; > + temp = div64_s64(temp, RR_ADC_DIE_TEMP_SLOPE); > + temp += RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC; > + *result_millidegc = temp; > + > + return 0; > +} > + > +static int rradc_post_process_chg_temp_hot(struct rradc_chip *chip, u16 adc_code, > + int *result_millidegc) > +{ > + int64_t uv = 0, offset = 0, slope = 0; > + int ret = 0; > + > + ret = rradc_get_fab_coeff(chip, &offset, &slope); > + if (ret < 0) { > + dev_err(chip->dev, "Unable to get fab id coefficients\n"); > + return -EINVAL; > + } > + > + uv = (int64_t) adc_code * RR_ADC_CHG_THRESHOLD_SCALE; > + uv = uv * RR_ADC_TEMP_FS_VOLTAGE_NUM; > + uv = div64_s64(uv, (RR_ADC_TEMP_FS_VOLTAGE_DEN * > + RR_ADC_MAX_READINGS)); > + uv = offset - uv; > + uv = div64_s64((uv * RR_ADC_SCALE_MILLI_FACTOR), slope); > + uv = uv + RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC; > + *result_millidegc = uv; > + > + return 0; > +} > + > +static int rradc_post_process_skin_temp_hot(struct rradc_chip *chip, u16 adc_code, > + int *result_millidegc) > +{ > + int64_t temp = 0; More initialization that isn't needed I'll not bother raising this again but pleas clear out all instances in v2. > + > + temp = (int64_t) adc_code; > + temp = div64_s64(temp, 2); > + temp = temp - 30; > + temp *= RR_ADC_SCALE_MILLI_FACTOR; There is little benefit in having so many lines here. Combine at least some of them. > + *result_millidegc = temp; > + > + return 0; > +} > + > +static int rradc_post_process_chg_temp(struct rradc_chip *chip, u16 adc_code, > + int *result_millidegc) > +{ > + int64_t uv = 0, offset = 0, slope = 0; > + int ret = 0; > + > + ret = rradc_get_fab_coeff(chip, &offset, &slope); > + if (ret < 0) { > + dev_err(chip->dev, "Unable to get fab id coefficients\n"); > + return -EINVAL; > + } > + > + uv = ((int64_t) adc_code * RR_ADC_TEMP_FS_VOLTAGE_NUM); > + uv = div64_s64(uv, (RR_ADC_TEMP_FS_VOLTAGE_DEN * > + RR_ADC_MAX_READINGS)); > + uv = offset - uv; > + uv = div64_s64((uv * RR_ADC_SCALE_MILLI_FACTOR), slope); > + uv += RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC; > + *result_millidegc = uv; > + > + return 0; > +} > + > +static int rradc_post_process_gpio(struct rradc_chip *chip, u16 adc_code, > + int *result_mv) > +{ > + int64_t mv = 0; > + > + /* 5V ADC full scale, 10 bit */ > + mv = ((int64_t)adc_code * RR_ADC_GPIO_FS_RANGE); > + mv = div64_s64(mv, RR_ADC_MAX_READINGS); this returns an s64, so if you want to be safe you'll need to clamp it to range of the int. It is probably fine, but that doesn't mean the various static analysis tools will be able to tell. > + *result_mv = mv; > + > + return 0; > +} > + > +static int rradc_enable_continuous_mode(struct rradc_chip *chip) > +{ > + int ret = 0; > + > + /* Clear channel log */ > + ret = rradc_masked_write(chip, RR_ADC_ADC_LOG, > + RR_ADC_ADC_LOG_CLR_CTRL, > + RR_ADC_ADC_LOG_CLR_CTRL); > + if (ret < 0) { > + dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret); > + return ret; > + } > + > + ret = rradc_masked_write(chip, RR_ADC_ADC_LOG, > + RR_ADC_ADC_LOG_CLR_CTRL, 0); > + if (ret < 0) { > + dev_err(chip->dev, "log ctrl update to not clear failed:%d\n", ret); > + return ret; > + } > + > + /* Switch to continuous mode */ > + ret = rradc_masked_write(chip, RR_ADC_RR_ADC_CTL, > + RR_ADC_ADC_CTL_CONTINUOUS_SEL, > + RR_ADC_ADC_CTL_CONTINUOUS_SEL); > + if (ret < 0) { > + dev_err(chip->dev, "Update to continuous mode failed:%d\n", ret); > + return ret; > + } > + > + return ret; > +} > + > +static int rradc_disable_continuous_mode(struct rradc_chip *chip) > +{ > + int ret = 0; > + > + /* Switch to non continuous mode */ > + ret = rradc_masked_write(chip, RR_ADC_RR_ADC_CTL, > + RR_ADC_ADC_CTL_CONTINUOUS_SEL, 0); > + if (ret < 0) { > + dev_err(chip->dev, "Update to non-continuous mode failed:%d\n", ret); > + return ret; Drop this as we'll return ret anyway in next line. Do the same for similar cases throughout the driver. > + } > + > + return ret; > +} > + > +static bool rradc_is_ready(struct rradc_chip *chip, > + enum rradc_channel_id chan_id) > +{ > + struct rradc_channel *chan = &chip->chans[chan_id]; > + int ret = 0; > + u8 status = 0, mask; > + > + /* BATT_ID STS bit does not get set initially */ > + switch (chan_id) { > + case RR_ADC_BATT_ID: > + mask = RR_ADC_STS_CHANNEL_STS; > + break; > + default: > + mask = RR_ADC_STS_CHANNEL_READING_MASK; > + break; > + } > + > + ret = rradc_read(chip, chan->status, &status, 1); > + if (ret < 0 || !(status & mask)) { > + dev_dbg(chip->dev, "Chip not ready, ret=%d\n", status); > + return false; > + } > + > + return true; > +} > + > +static int rradc_read_status_in_cont_mode(struct rradc_chip *chip, > + enum rradc_channel_id chan_id) Run checkpatch over this + sparse at very least. One thing you'll get is warnings about parameter alignment which should be aligned with opening brackets. > +{ > + struct rradc_channel *chan = &chip->chans[chan_id]; > + int ret = 0; As below. Nothing should be initialized where the value is unused. > + > + ret = rradc_masked_write(chip, chan->trigger_addr, > + chan->trigger_mask, Don't wrap lines unless they are over 80 chars unwrapped. > + chan->trigger_mask); > + if (ret < 0) { > + dev_err(chip->dev, "Failed to apply trigger for channel '%s' ret=%d\n", > + chan->datasheet_name, ret); > + return ret; > + } > + > + ret = rradc_enable_continuous_mode(chip); > + if (ret < 0) { > + dev_err(chip->dev, "Failed to switch to continuous mode\n"); > + goto disable_trigger; > + } > + > + if (!rradc_is_ready(chip, chan_id)) > + dev_err(chip->dev, "%s() channel isn't ready: %d\n", __func__, ret); > + > + ret = rradc_disable_continuous_mode(chip); > + if (ret < 0) > + dev_err(chip->dev, "Failed to switch to non continuous mode\n"); > + > +disable_trigger: > + ret = rradc_masked_write(chip, chan->trigger_addr, > + chan->trigger_mask, > + 0); > + if (ret < 0) { > + dev_err(chip->dev, "Failed to apply trigger for channel '%s' ret=%d\n", > + chan->datasheet_name, ret); > + } > + > + return ret; > +} > + > +static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip, > + enum rradc_channel_id chan_id, u16 *data) > +{ > + int ret = 0, batt_id_delay; Check for any initializations that aren't needed. > + > + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CTRL, > + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, > + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV); > + if (ret < 0) { > + dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret); > + return ret; > + } > + > + if (chip->batt_id_delay != -EINVAL) { > + batt_id_delay = chip->batt_id_delay << BATT_ID_SETTLE_SHIFT; Using FIELD_PREP() and FIELD_GET() to set up fields within registers. That way you can fully specify the field using just a mask. > + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CFG, > + batt_id_delay, batt_id_delay); > + if (ret < 0) > + dev_err(chip->dev, "BATT_ID settling time config failed:%d\n", ret); Why not error out? > + } > + > + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_TRIGGER, > + RR_ADC_BATT_ID_TRIGGER_CTL, > + RR_ADC_BATT_ID_TRIGGER_CTL); > + if (ret < 0) { > + dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret); > + goto out_disable_batt_id; > + } > + > + ret = rradc_read_status_in_cont_mode(chip, chan_id); > + if (ret < 0) > + dev_err(chip->dev, "Error reading in continuous mode:%d\n", ret); The mixture of error out and continue regardless is inconsistent. If there is a reason for this, then comments needed. > + > + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_TRIGGER, > + RR_ADC_BATT_ID_TRIGGER_CTL, 0); > + if (ret < 0) > + dev_err(chip->dev, "BATT_ID trigger re-set failed:%d\n", ret); > + > +out_disable_batt_id: > + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CTRL, > + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, 0); > + if (ret < 0) > + dev_err(chip->dev, "Disabling BATT ID channel failed:%d\n", ret); > + > + return ret; > +} > + > +static int rradc_do_conversion(struct rradc_chip *chip, enum rradc_channel_id chan_id, u16 *data) > +{ > + struct rradc_channel *chan = &chip->chans[chan_id]; > + int ret = 0; > + u8 buf[6]; > + u16 batt_id_5 = 0, batt_id_15 = 0, batt_id_150 = 0; Push these into the branch where they are used. > + > + mutex_lock(&chip->lock); > + > + /* > + * First we need to do channel specific configuration. As below, no need to talk us through things we can see from the code. > + */ > + switch (chan_id) { > + case RR_ADC_BATT_ID: > + ret = rradc_prepare_batt_id_conversion(chip, chan_id, data); > + if (ret < 0) { > + dev_err(chip->dev, "Battery ID conversion failed:%d\n", ret); > + goto unlock_out; > + } > + break; > + > + case RR_ADC_USBIN_V: > + case RR_ADC_DIE_TEMP: > + ret = rradc_read_status_in_cont_mode(chip, chan_id); > + if (ret < 0) { > + dev_err(chip->dev, "Error reading in continuous mode:%d\n", ret); > + goto unlock_out; > + } > + break; > + case RR_ADC_CHG_HOT_TEMP: > + case RR_ADC_CHG_TOO_HOT_TEMP: > + case RR_ADC_SKIN_HOT_TEMP: > + case RR_ADC_SKIN_TOO_HOT_TEMP: > + break; > + default: > + if (!rradc_is_ready(chip, chan_id)) { > + dev_err(chip->dev, "%s() channel '%s' is not ready\n", __func__, > + chan->datasheet_name); > + ret = -ENODATA; > + goto unlock_out; > + } > + break; > + } > + > + /* > + * Then we can read the data. Check to see if the comments add information. Given function is called rradc_read() I don't think this one does. Comments rot over time, so use them only where they provide significant benefit. > + */ > + ret = rradc_read(chip, chan->lsb, buf, chan->size); > + if (ret) { > + dev_err(chip->dev, "read data failed\n"); > + goto unlock_out; > + } > + > + /* > + * For the battery ID we read the register for every ID ADC and then > + * see which one is actually connected. > + */ > + if (chan_id == RR_ADC_BATT_ID) { > + batt_id_150 = (buf[5] << 8) | buf[4]; get_unaligned_le16() Though given the values always seem to be le16, maybe just change the type of buf so you can access them directly. > + batt_id_15 = (buf[3] << 8) | buf[2]; > + batt_id_5 = (buf[1] << 8) | buf[0]; > + if ((!batt_id_150) && (!batt_id_15) && (!batt_id_5)) { Probably better to drop the excess brackets in here. > + dev_err(chip->dev, "Invalid batt_id values with all zeros\n"); > + ret = -EINVAL; > + goto unlock_out; > + } > + > + if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) { > + *data = batt_id_150; > + chip->batt_id_data = RR_ADC_BATT_ID_150_MA; > + } else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) { > + *data = batt_id_15; > + chip->batt_id_data = RR_ADC_BATT_ID_15_MA; > + } else { > + *data = batt_id_5; > + chip->batt_id_data = RR_ADC_BATT_ID_5_MA; > + } > + } else { > + /* > + * All of the other channels are either 1 or 2 bytes. > + * We can rely on the second byte being 0 for 1-byte channels. > + */ > + *data = (buf[1] << 8) | buf[0]; get_unaligned_le16() > + } > + > +unlock_out: > + mutex_unlock(&chip->lock); > + > + return ret; > +} > + > +static int rradc_read_raw(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan_spec, int *val, int *val2, > + long mask) > +{ > + struct rradc_chip *chip = iio_priv(indio_dev); > + struct rradc_channel *chan; > + int ret; > + u16 adc_code; > + > + if (chan_spec->address >= RR_ADC_MAX) { > + dev_err(chip->dev, "Invalid channel index:%ld\n", chan_spec->address); > + return -EINVAL; > + } > + > + chan = &chip->chans[chan_spec->address]; > + ret = rradc_do_conversion(chip, chan_spec->address, &adc_code); > + if (ret < 0) > + return ret; > + dev_dbg(chip->dev, "channel: %s, raw adc value = %d\n", chan->datasheet_name, adc_code); Consider dropping these dev_dbg() as I'd just count them as noise at this point. > + > + switch (mask) { > + case IIO_CHAN_INFO_RAW: > + *val = (int) adc_code; That cast shouldn't be needed. > + return IIO_VAL_INT; > + case IIO_CHAN_INFO_PROCESSED: > + chan->scale(chip, adc_code, val); > + dev_dbg(chip->dev, "%s() processed chan_id = %ld, data = %d, ret = %d", > + __func__, chan_spec->address, *val, ret); > + return IIO_VAL_INT; > + default: > + return -EINVAL; > + } > +} > + > +static const struct iio_info rradc_info = { > + .read_raw = &rradc_read_raw, Don't use tab alignment in cases like this. It comes back to bite us far too often. .read_raw = &rradc_read_raw, > +}; > + > +#define CHAN_INIT(_name, _type, _mask, _scale, _lsb, _msb, _sts, _bytes, _trig, _trig_mask) \ > + { \ > + .datasheet_name = _name, \ > + .type = _type, \ > + .info_mask = _mask, \ > + .scale = _scale, \ > + .lsb = _lsb, \ > + .msb = _msb, \ > + .status = _sts, \ > + .enabled = true, \ > + .size = _bytes, \ > + .trigger_addr = _trig, \ > + .trigger_mask = _trig_mask, \ > + } > + > +static int rradc_init_channels(struct rradc_chip *chip) > +{ > + int i = 0; > + > + chip->nchannels = RR_ADC_MAX; At least at first glance it looks to me like everything in here is static. If so then I'd much prefer to see this whole thing converted to static const data rather than dynamic allocation and a function filling in the values. > + chip->chans = devm_kcalloc(chip->dev, chip->nchannels, > + sizeof(*chip->chans), GFP_KERNEL); > + if (!chip->chans) > + return -ENOMEM; > + > + chip->iio_chans = devm_kcalloc(chip->dev, chip->nchannels, > + sizeof(*chip->iio_chans), GFP_KERNEL); > + if (!chip->iio_chans) > + return -ENOMEM; > + > + chip->chans[RR_ADC_BATT_ID] = > + (struct rradc_channel) CHAN_INIT("batt_id", IIO_RESISTANCE, > + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_batt_id, > + RR_ADC_BATT_ID_5_LSB, RR_ADC_BATT_ID_5_MSB, RR_ADC_BATT_ID_STS, 6, > + RR_ADC_BATT_ID_TRIGGER, RR_ADC_BATT_ID_TRIGGER_CTL); > + chip->chans[RR_ADC_BATT_THERM] = > + (struct rradc_channel) CHAN_INIT("batt_therm", IIO_TEMP, > + BIT(IIO_CHAN_INFO_RAW), rradc_post_process_therm, > + RR_ADC_BATT_THERM_LSB, RR_ADC_BATT_THERM_MSB, RR_ADC_BATT_THERM_STS, 2, > + RR_ADC_BATT_THERM_TRIGGER, RR_ADC_BATT_THERM_TRIGGER); > + chip->chans[RR_ADC_SKIN_TEMP] = > + (struct rradc_channel) CHAN_INIT("skin_temp", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_therm, > + RR_ADC_SKIN_TEMP_LSB, RR_ADC_SKIN_TEMP_MSB, RR_ADC_AUX_THERM_STS, 2, > + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); > + chip->chans[RR_ADC_USBIN_I] = > + (struct rradc_channel) CHAN_INIT("usbin_i", IIO_CURRENT, > + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_usbin_curr, > + RR_ADC_USB_IN_I_LSB, RR_ADC_USB_IN_I_MSB, RR_ADC_USB_IN_I_STS, 2, > + RR_ADC_USB_IN_I_TRIGGER, RR_ADC_USB_IN_I_TRIGGER); > + chip->chans[RR_ADC_USBIN_V] = > + (struct rradc_channel) CHAN_INIT("usbin_v", IIO_VOLTAGE, > + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_volt, > + RR_ADC_USB_IN_V_LSB, RR_ADC_USB_IN_V_MSB, RR_ADC_USB_IN_V_STS, 2, > + RR_ADC_USB_IN_V_TRIGGER, RR_ADC_USB_IN_V_EVERY_CYCLE); > + chip->chans[RR_ADC_DCIN_I] = > + (struct rradc_channel) CHAN_INIT("dcin_i", IIO_CURRENT, > + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_dcin_curr, > + RR_ADC_DC_IN_I_LSB, RR_ADC_DC_IN_I_MSB, RR_ADC_DC_IN_I_STS, 2, > + RR_ADC_DC_IN_I_TRIGGER, RR_ADC_DC_IN_I_TRIGGER); > + chip->chans[RR_ADC_DCIN_V] = > + (struct rradc_channel) CHAN_INIT("dcin_v", IIO_VOLTAGE, > + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_volt, > + RR_ADC_DC_IN_V_LSB, RR_ADC_DC_IN_V_MSB, RR_ADC_DC_IN_V_STS, 2, > + RR_ADC_DC_IN_V_TRIGGER, RR_ADC_DC_IN_V_TRIGGER); > + chip->chans[RR_ADC_DIE_TEMP] = > + (struct rradc_channel) CHAN_INIT("die_temp", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_die_temp, > + RR_ADC_PMI_DIE_TEMP_LSB, RR_ADC_PMI_DIE_TEMP_MSB, RR_ADC_PMI_DIE_TEMP_STS, > + 2, RR_ADC_PMI_DIE_TEMP_TRIGGER, > + RR_ADC_PMI_DIE_TEMP_TRIGGER); > + chip->chans[RR_ADC_CHG_TEMP] = > + (struct rradc_channel) CHAN_INIT("chg_temp", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_chg_temp, > + RR_ADC_CHARGER_TEMP_LSB, RR_ADC_CHARGER_TEMP_MSB, > + RR_ADC_CHARGER_TEMP_STS, 2, RR_ADC_CHARGER_TEMP_TRIGGER, > + RR_ADC_CHARGER_TEMP_TRIGGER); > + chip->chans[RR_ADC_GPIO] = > + (struct rradc_channel) CHAN_INIT("gpio", IIO_VOLTAGE, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_gpio, > + RR_ADC_GPIO_LSB, RR_ADC_GPIO_MSB, RR_ADC_GPIO_STS, 2, > + RR_ADC_GPIO_TRIGGER, RR_ADC_GPIO_TRIGGER); > + chip->chans[RR_ADC_CHG_HOT_TEMP] = > + (struct rradc_channel) CHAN_INIT("chg_temp_hot", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_chg_temp_hot, > + RR_ADC_CHARGER_HOT, RR_ADC_CHARGER_HOT, RR_ADC_CHARGER_TEMP_STS, 1, > + RR_ADC_CHARGER_TEMP_TRIGGER, RR_ADC_CHARGER_TEMP_TRIGGER); > + chip->chans[RR_ADC_CHG_TOO_HOT_TEMP] = > + (struct rradc_channel) CHAN_INIT("chg_temp_too_hot", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_chg_temp_hot, > + RR_ADC_CHARGER_TOO_HOT, RR_ADC_CHARGER_TOO_HOT, RR_ADC_CHARGER_TEMP_STS, 1, > + RR_ADC_CHARGER_TEMP_TRIGGER, RR_ADC_CHARGER_TEMP_TRIGGER); > + chip->chans[RR_ADC_SKIN_HOT_TEMP] = > + (struct rradc_channel) CHAN_INIT("skin_temp_hot", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_skin_temp_hot, > + RR_ADC_SKIN_HOT, RR_ADC_SKIN_HOT, RR_ADC_AUX_THERM_STS, 1, > + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); > + chip->chans[RR_ADC_SKIN_TOO_HOT_TEMP] = > + (struct rradc_channel) CHAN_INIT("skin_temp_too_hot", IIO_TEMP, > + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), > + rradc_post_process_skin_temp_hot, > + RR_ADC_SKIN_TOO_HOT, RR_ADC_SKIN_TOO_HOT, RR_ADC_AUX_THERM_STS, 1, > + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); > + > + for (i = 0; i < RR_ADC_MAX; i++) { > + chip->iio_chans[i].datasheet_name = chip->chans[i].datasheet_name; I don't get the reason behind having two copies of most of this stuff. Just fill it in directly. As mentioned above - even better if you just have a nice static const array. > + chip->iio_chans[i].extend_name = chip->chans[i].datasheet_name; > + chip->iio_chans[i].info_mask_separate = chip->chans[i].info_mask; > + chip->iio_chans[i].type = chip->chans[i].type; > + chip->iio_chans[i].address = i; > + chip->iio_chans[i].channel = i; > + } > + > + return 0; > +} > + > +static int rradc_probe(struct platform_device *pdev) > +{ > + struct device_node *node = pdev->dev.of_node; > + struct device *dev = &pdev->dev; > + struct iio_dev *indio_dev; > + struct rradc_chip *chip; > + int ret = 0, i; > + > + indio_dev = devm_iio_device_alloc(dev, sizeof(*chip)); > + if (!indio_dev) > + return -ENOMEM; > + > + chip = iio_priv(indio_dev); > + chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); > + if (!chip->regmap) { > + dev_err(dev, "Couldn't get parent's regmap\n"); > + return -EINVAL; > + } > + > + chip->dev = dev; > + mutex_init(&chip->lock); > + > + /* Get the peripheral address */ > + ret = of_property_read_u32(node, "reg", &chip->base); Whilst it's fairly unlikely anyone will use this with firmware other than dt, please use the generic device properties from include/linux/property.h instead of the of specific ones. > + if (ret < 0) { > + dev_err(chip->dev, > + "Couldn't find reg in node = %s ret = %d\n", > + node->name, ret); > + return ret; > + } > + > + chip->batt_id_delay = -EINVAL; > + ret = of_property_read_u32(node, "qcom,batt-id-delay-ms", > + &chip->batt_id_delay); > + if (!ret) { > + for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) { > + if (chip->batt_id_delay == batt_id_delays[i]) > + break; > + } > + if (i == RRADC_BATT_ID_DELAY_MAX) > + chip->batt_id_delay = -EINVAL; > + } > + > + /* Get the PMIC revision ID, we need to handle some varying coefficients */ > + chip->pmic = (struct qcom_spmi_pmic *) > + spmi_device_get_drvdata(to_spmi_device(pdev->dev.parent)); > + qcom_pmic_print_info(chip->dev, chip->pmic); > + > + ret = rradc_init_channels(chip); > + if (ret < 0) { > + dev_err(dev, "Couldn't initialize channels\n"); > + return ret; > + } > + > + indio_dev->dev.parent = dev; > + indio_dev->dev.of_node = node; IIRC the IIO core should set both of these for you. > + indio_dev->name = pdev->name; > + indio_dev->modes = INDIO_DIRECT_MODE; > + indio_dev->info = &rradc_info; > + indio_dev->channels = chip->iio_chans; > + indio_dev->num_channels = chip->nchannels; > + > + ret = devm_iio_device_register(dev, indio_dev); > + return ret; return devm_iio_device_register() > +} > +
diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig index 8bf5b62a73f4..d7765b177cd3 100644 --- a/drivers/iio/adc/Kconfig +++ b/drivers/iio/adc/Kconfig @@ -812,6 +812,19 @@ config QCOM_PM8XXX_XOADC To compile this driver as a module, choose M here: the module will be called qcom-pm8xxx-xoadc. +config QCOM_SPMI_RRADC + tristate "Qualcomm SPMI RRADC" + depends on MFD_SPMI_PMIC + help + This is for the PMIC Round Robin ADC driver. + + This driver exposes the battery ID resistor, battery thermal, PMIC die + temperature, charger USB in and DC in voltage and current. + + To compile this driver as a module, choose M here: the module will + be called qcom-qpmi-rradc. + + config QCOM_SPMI_IADC tristate "Qualcomm SPMI PMIC current ADC" depends on SPMI diff --git a/drivers/iio/adc/Makefile b/drivers/iio/adc/Makefile index d3f53549720c..ca8bad549175 100644 --- a/drivers/iio/adc/Makefile +++ b/drivers/iio/adc/Makefile @@ -77,6 +77,7 @@ obj-$(CONFIG_NPCM_ADC) += npcm_adc.o obj-$(CONFIG_PALMAS_GPADC) += palmas_gpadc.o obj-$(CONFIG_QCOM_SPMI_ADC5) += qcom-spmi-adc5.o obj-$(CONFIG_QCOM_SPMI_IADC) += qcom-spmi-iadc.o +obj-$(CONFIG_QCOM_SPMI_RRADC) += qcom-spmi-rradc.o obj-$(CONFIG_QCOM_VADC_COMMON) += qcom-vadc-common.o obj-$(CONFIG_QCOM_SPMI_VADC) += qcom-spmi-vadc.o obj-$(CONFIG_QCOM_PM8XXX_XOADC) += qcom-pm8xxx-xoadc.o diff --git a/drivers/iio/adc/qcom-spmi-rradc.c b/drivers/iio/adc/qcom-spmi-rradc.c new file mode 100644 index 000000000000..ce2bbb8c5c25 --- /dev/null +++ b/drivers/iio/adc/qcom-spmi-rradc.c @@ -0,0 +1,1020 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2021 Linaro Limited. + * Author: Caleb Connolly <caleb.connolly@linaro.org> + * + * This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs. + */ + +#include <linux/delay.h> +#include <linux/iio/iio.h> +#include <linux/iio/types.h> +#include <linux/kernel.h> +#include <linux/math64.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/power_supply.h> +#include <linux/regmap.h> +#include <linux/spmi.h> +#include <linux/types.h> +#include <soc/qcom/qcom-pmic.h> + +#define RR_ADC_EN_CTL 0x46 +#define RR_ADC_SKIN_TEMP_LSB 0x50 +#define RR_ADC_SKIN_TEMP_MSB 0x51 +#define RR_ADC_RR_ADC_CTL 0x52 +#define RR_ADC_ADC_CTL_CONTINUOUS_SEL BIT(3) +#define RR_ADC_ADC_LOG 0x53 +#define RR_ADC_ADC_LOG_CLR_CTRL BIT(0) + +#define RR_ADC_FAKE_BATT_LOW_LSB 0x58 +#define RR_ADC_FAKE_BATT_LOW_MSB 0x59 +#define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A +#define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B + +#define RR_ADC_BATT_ID_CTRL 0x60 +#define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0) +#define RR_ADC_BATT_ID_TRIGGER 0x61 +#define RR_ADC_BATT_ID_TRIGGER_CTL BIT(0) +#define RR_ADC_BATT_ID_STS 0x62 +#define RR_ADC_BATT_ID_CFG 0x63 +#define RR_ADC_BATT_ID_5_LSB 0x66 +#define RR_ADC_BATT_ID_5_MSB 0x67 +#define RR_ADC_BATT_ID_15_LSB 0x68 +#define RR_ADC_BATT_ID_15_MSB 0x69 +#define RR_ADC_BATT_ID_150_LSB 0x6A +#define RR_ADC_BATT_ID_150_MSB 0x6B + +#define RR_ADC_BATT_THERM_CTRL 0x70 +#define RR_ADC_BATT_THERM_TRIGGER 0x71 +#define RR_ADC_BATT_THERM_STS 0x72 +#define RR_ADC_BATT_THERM_CFG 0x73 +#define RR_ADC_BATT_THERM_LSB 0x74 +#define RR_ADC_BATT_THERM_MSB 0x75 +#define RR_ADC_BATT_THERM_FREQ 0x76 + +#define RR_ADC_AUX_THERM_CTRL 0x80 +#define RR_ADC_AUX_THERM_TRIGGER 0x81 +#define RR_ADC_AUX_THERM_STS 0x82 +#define RR_ADC_AUX_THERM_CFG 0x83 +#define RR_ADC_AUX_THERM_LSB 0x84 +#define RR_ADC_AUX_THERM_MSB 0x85 + +#define RR_ADC_SKIN_HOT 0x86 +#define RR_ADC_SKIN_TOO_HOT 0x87 + +#define RR_ADC_AUX_THERM_C1 0x88 +#define RR_ADC_AUX_THERM_C2 0x89 +#define RR_ADC_AUX_THERM_C3 0x8A +#define RR_ADC_AUX_THERM_HALF_RANGE 0x8B + +#define RR_ADC_USB_IN_V_CTRL 0x90 +#define RR_ADC_USB_IN_V_TRIGGER 0x91 +#define RR_ADC_USB_IN_V_EVERY_CYCLE BIT(7) +#define RR_ADC_USB_IN_V_STS 0x92 +#define RR_ADC_USB_IN_V_LSB 0x94 +#define RR_ADC_USB_IN_V_MSB 0x95 +#define RR_ADC_USB_IN_I_CTRL 0x98 +#define RR_ADC_USB_IN_I_TRIGGER 0x99 +#define RR_ADC_USB_IN_I_STS 0x9A +#define RR_ADC_USB_IN_I_LSB 0x9C +#define RR_ADC_USB_IN_I_MSB 0x9D + +#define RR_ADC_DC_IN_V_CTRL 0xA0 +#define RR_ADC_DC_IN_V_TRIGGER 0xA1 +#define RR_ADC_DC_IN_V_STS 0xA2 +#define RR_ADC_DC_IN_V_LSB 0xA4 +#define RR_ADC_DC_IN_V_MSB 0xA5 +#define RR_ADC_DC_IN_I_CTRL 0xA8 +#define RR_ADC_DC_IN_I_TRIGGER 0xA9 +#define RR_ADC_DC_IN_I_STS 0xAA +#define RR_ADC_DC_IN_I_LSB 0xAC +#define RR_ADC_DC_IN_I_MSB 0xAD + +#define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0 +#define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1 +#define RR_ADC_PMI_DIE_TEMP_STS 0xB2 +#define RR_ADC_PMI_DIE_TEMP_CFG 0xB3 +#define RR_ADC_PMI_DIE_TEMP_LSB 0xB4 +#define RR_ADC_PMI_DIE_TEMP_MSB 0xB5 + +#define RR_ADC_CHARGER_TEMP_CTRL 0xB8 +#define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9 +#define RR_ADC_CHARGER_TEMP_STS 0xBA +#define RR_ADC_CHARGER_TEMP_CFG 0xBB +#define RR_ADC_CHARGER_TEMP_LSB 0xBC +#define RR_ADC_CHARGER_TEMP_MSB 0xBD +#define RR_ADC_CHARGER_HOT 0xBE +#define RR_ADC_CHARGER_TOO_HOT 0xBF + +#define RR_ADC_GPIO_CTRL 0xC0 +#define RR_ADC_GPIO_TRIGGER 0xC1 +#define RR_ADC_GPIO_STS 0xC2 +#define RR_ADC_GPIO_LSB 0xC4 +#define RR_ADC_GPIO_MSB 0xC5 + +#define RR_ADC_ATEST_CTRL 0xC8 +#define RR_ADC_ATEST_TRIGGER 0xC9 +#define RR_ADC_ATEST_STS 0xCA +#define RR_ADC_ATEST_LSB 0xCC +#define RR_ADC_ATEST_MSB 0xCD +#define RR_ADC_SEC_ACCESS 0xD0 + +#define RR_ADC_PERPH_RESET_CTL2 0xD9 +#define RR_ADC_PERPH_RESET_CTL3 0xDA +#define RR_ADC_PERPH_RESET_CTL4 0xDB +#define RR_ADC_INT_TEST1 0xE0 +#define RR_ADC_INT_TEST_VAL 0xE1 + +#define RR_ADC_TM_TRIGGER_CTRLS 0xE2 +#define RR_ADC_TM_ADC_CTRLS 0xE3 +#define RR_ADC_TM_CNL_CTRL 0xE4 +#define RR_ADC_TM_BATT_ID_CTRL 0xE5 +#define RR_ADC_TM_THERM_CTRL 0xE6 +#define RR_ADC_TM_CONV_STS 0xE7 +#define RR_ADC_TM_ADC_READ_LSB 0xE8 +#define RR_ADC_TM_ADC_READ_MSB 0xE9 +#define RR_ADC_TM_ATEST_MUX_1 0xEA +#define RR_ADC_TM_ATEST_MUX_2 0xEB +#define RR_ADC_TM_REFERENCES 0xED +#define RR_ADC_TM_MISC_CTL 0xEE +#define RR_ADC_TM_RR_CTRL 0xEF + +#define RR_ADC_BATT_ID_5_MA 5 +#define RR_ADC_BATT_ID_15_MA 15 +#define RR_ADC_BATT_ID_150_MA 150 +#define RR_ADC_BATT_ID_RANGE 820 + +#define RR_ADC_BITS 10 +#define RR_ADC_MAX_READINGS (1 << RR_ADC_BITS) +#define RR_ADC_FS_VOLTAGE_MV 2500 + +/* BATT_THERM 0.25K/LSB */ +#define RR_ADC_BATT_THERM_LSB_K 4 + +#define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000 +#define RR_ADC_TEMP_FS_VOLTAGE_DEN 3 +#define RR_ADC_DIE_TEMP_OFFSET 601400 +#define RR_ADC_DIE_TEMP_SLOPE 2 +#define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000 + +#define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168 +#define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784 +#define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433 +#define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655 +#define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001 +#define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403 +#define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898 +#define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596 +#define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779 +#define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496 +#define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000 +#define RR_ADC_CHG_THRESHOLD_SCALE 4 + +#define RR_ADC_VOLT_INPUT_FACTOR 8 +#define RR_ADC_CURR_INPUT_FACTOR 2000 +#define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886 +#define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9 +#define RR_ADC_CURR_USBIN_660_UV_VAL 579500 + +#define RR_ADC_SCALE_MILLI_FACTOR 1000 +#define RR_ADC_KELVINMIL_CELSIUSMIL 273150 + +#define RR_ADC_GPIO_FS_RANGE 5000 +#define RR_ADC_COHERENT_CHECK_RETRY 5 +#define RR_ADC_MAX_CONTINUOUS_BUFFER_LEN 16 + +#define RR_ADC_STS_CHANNEL_READING_MASK 0x3 +#define RR_ADC_STS_CHANNEL_STS 0x2 + +#define RR_ADC_CONV_TIME_MIN_US 499 +#define RR_ADC_CONV_TIME_MAX_US 501 +#define RR_ADC_CONV_MAX_RETRY_CNT 100 +#define RR_ADC_TP_REV_VERSION1 21 +#define RR_ADC_TP_REV_VERSION2 29 +#define RR_ADC_TP_REV_VERSION3 32 + +#define BATT_ID_SETTLE_SHIFT 5 +#define RRADC_BATT_ID_DELAY_MAX 8 + +/* + * Used to index rradc_chip.chans[] array. + */ +enum rradc_channel_id { + RR_ADC_BATT_ID = 0, + RR_ADC_BATT_THERM, + RR_ADC_SKIN_TEMP, + RR_ADC_USBIN_I, + RR_ADC_USBIN_V, + RR_ADC_DCIN_I, + RR_ADC_DCIN_V, + RR_ADC_DIE_TEMP, + RR_ADC_CHG_TEMP, + RR_ADC_GPIO, + RR_ADC_CHG_HOT_TEMP, + RR_ADC_CHG_TOO_HOT_TEMP, + RR_ADC_SKIN_HOT_TEMP, + RR_ADC_SKIN_TOO_HOT_TEMP, + RR_ADC_MAX +}; + +struct rradc_chip; + +/** + * struct rradc_channel - rradc channel data + * @datasheet_name: Name of the channel + * @type: Channel type + * @info_mask: Channel mask + * @enabled: Enable/disable flag + * @lsb: Channel least significant byte + * @msb: Channel most significant byte + * @status: Channel status address + * @size: number of bytes to read + * @trigger_addr: Trigger address + * @trigger_mask: Trigger mask + * @scale: Channel scale callback + */ +struct rradc_channel { + const char *datasheet_name; + enum iio_chan_type type; + long info_mask; + bool enabled; + u8 lsb; + u8 msb; + u8 status; + int size; + int trigger_addr; + int trigger_mask; + int (*scale)(struct rradc_chip *chip, u16 adc_code, int *result); +}; + +struct rradc_chip { + struct device *dev; + struct qcom_spmi_pmic *pmic; + struct mutex lock; + struct regmap *regmap; + u32 base; + int batt_id_delay; + struct iio_chan_spec *iio_chans; + unsigned int nchannels; + struct rradc_channel *chans; + u16 batt_id_data; +}; + +static const int batt_id_delays[] = {0, 1, 4, 12, 20, 40, 60, 80}; + +static int rradc_masked_write(struct rradc_chip *chip, u16 addr, u8 mask, + u8 val) +{ + int ret; + + ret = regmap_update_bits(chip->regmap, chip->base + addr, + mask, val); + if (ret) { + dev_err(chip->dev, "spmi write failed: addr=%03X, ret=%d\n", addr, ret); + return ret; + } + + return ret; +} + +static int rradc_read(struct rradc_chip *chip, u16 addr, u8 *data, int len) +{ + int ret = 0, retry_cnt = 0, i = 0; + u8 data_check[RR_ADC_MAX_CONTINUOUS_BUFFER_LEN]; + bool coherent_err = false; + + if (len > RR_ADC_MAX_CONTINUOUS_BUFFER_LEN) { + dev_err(chip->dev, "Increase the buffer length\n"); + return -EINVAL; + } + + while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) { + ret = regmap_bulk_read(chip->regmap, chip->base + addr, + data, len); + if (ret < 0) { + dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr, ret); + return ret; + } + + ret = regmap_bulk_read(chip->regmap, chip->base + addr, + data_check, len); + if (ret < 0) { + dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr, ret); + return ret; + } + + for (i = 0; i < len; i++) { + if (data[i] != data_check[i]) + coherent_err = true; + } + + if (coherent_err) { + retry_cnt++; + coherent_err = false; + dev_dbg(chip->dev, "%s() retry_cnt = %d\n", __func__, retry_cnt); + } else { + break; + } + } + + if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY) + dev_err(chip->dev, "Retry exceeded for coherrency check\n"); + + return ret; +} + +static int rradc_get_fab_coeff(struct rradc_chip *chip, + int64_t *offset, int64_t *slope) +{ + if (chip->pmic->subtype == PM660_SUBTYPE) { + switch (chip->pmic->fab_id) { + case PM660_FAB_ID_GF: + *offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV; + *slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C; + break; + case PM660_FAB_ID_TSMC: + *offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV; + *slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C; + break; + default: + *offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV; + *slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C; + } + } else if (chip->pmic->subtype == PMI8998_SUBTYPE) { + switch (chip->pmic->fab_id) { + case PMI8998_FAB_ID_GF: + *offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV; + *slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C; + break; + case PMI8998_FAB_ID_SMIC: + *offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV; + *slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C; + break; + default: + return -EINVAL; + } + } else { + return -EINVAL; + } + + return 0; +} + +static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code, + int *result_ohms) +{ + uint32_t current_value; + int64_t r_id; + + current_value = chip->batt_id_data; + r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV); + r_id = div64_s64(r_id, (RR_ADC_MAX_READINGS * current_value)); + *result_ohms = (r_id * RR_ADC_SCALE_MILLI_FACTOR); + + return 0; +} + +static int rradc_post_process_therm(struct rradc_chip *chip, u16 adc_code, + int *result_millidegc) +{ + int64_t temp; + + /* K = code/4 */ + temp = ((int64_t)adc_code * RR_ADC_SCALE_MILLI_FACTOR); + temp = div64_s64(temp, RR_ADC_BATT_THERM_LSB_K); + *result_millidegc = temp - RR_ADC_KELVINMIL_CELSIUSMIL; + + return 0; +} + +static int rradc_post_process_volt(struct rradc_chip *chip, u16 adc_code, + int *result_uv) +{ + int64_t uv = 0; + + /* 8x input attenuation; 2.5V ADC full scale */ + uv = ((int64_t)adc_code * RR_ADC_VOLT_INPUT_FACTOR); + uv *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); + uv = div64_s64(uv, RR_ADC_MAX_READINGS); + *result_uv = uv; + + return 0; +} + +static int rradc_post_process_usbin_curr(struct rradc_chip *chip, u16 adc_code, + int *result_ua) +{ + int64_t ua = 0; + + /* scale * V/A; 2.5V ADC full scale */ + ua = ((int64_t)adc_code * RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL); + ua *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); + ua = div64_s64(ua, (RR_ADC_MAX_READINGS * 10)); + *result_ua = ua; + + return 0; +} + +static int rradc_post_process_dcin_curr(struct rradc_chip *chip, u16 adc_code, + int *result_ua) +{ + int64_t ua = 0; + + /* 0.5 V/A; 2.5V ADC full scale */ + ua = ((int64_t)adc_code * RR_ADC_CURR_INPUT_FACTOR); + ua *= (RR_ADC_FS_VOLTAGE_MV * RR_ADC_SCALE_MILLI_FACTOR); + ua = div64_s64(ua, (RR_ADC_MAX_READINGS * 1000)); + *result_ua = ua; + + return 0; +} + +static int rradc_post_process_die_temp(struct rradc_chip *chip, u16 adc_code, + int *result_millidegc) +{ + int64_t temp = 0; + + temp = ((int64_t)adc_code * RR_ADC_TEMP_FS_VOLTAGE_NUM); + temp = div64_s64(temp, (RR_ADC_TEMP_FS_VOLTAGE_DEN * + RR_ADC_MAX_READINGS)); + temp -= RR_ADC_DIE_TEMP_OFFSET; + temp = div64_s64(temp, RR_ADC_DIE_TEMP_SLOPE); + temp += RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC; + *result_millidegc = temp; + + return 0; +} + +static int rradc_post_process_chg_temp_hot(struct rradc_chip *chip, u16 adc_code, + int *result_millidegc) +{ + int64_t uv = 0, offset = 0, slope = 0; + int ret = 0; + + ret = rradc_get_fab_coeff(chip, &offset, &slope); + if (ret < 0) { + dev_err(chip->dev, "Unable to get fab id coefficients\n"); + return -EINVAL; + } + + uv = (int64_t) adc_code * RR_ADC_CHG_THRESHOLD_SCALE; + uv = uv * RR_ADC_TEMP_FS_VOLTAGE_NUM; + uv = div64_s64(uv, (RR_ADC_TEMP_FS_VOLTAGE_DEN * + RR_ADC_MAX_READINGS)); + uv = offset - uv; + uv = div64_s64((uv * RR_ADC_SCALE_MILLI_FACTOR), slope); + uv = uv + RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC; + *result_millidegc = uv; + + return 0; +} + +static int rradc_post_process_skin_temp_hot(struct rradc_chip *chip, u16 adc_code, + int *result_millidegc) +{ + int64_t temp = 0; + + temp = (int64_t) adc_code; + temp = div64_s64(temp, 2); + temp = temp - 30; + temp *= RR_ADC_SCALE_MILLI_FACTOR; + *result_millidegc = temp; + + return 0; +} + +static int rradc_post_process_chg_temp(struct rradc_chip *chip, u16 adc_code, + int *result_millidegc) +{ + int64_t uv = 0, offset = 0, slope = 0; + int ret = 0; + + ret = rradc_get_fab_coeff(chip, &offset, &slope); + if (ret < 0) { + dev_err(chip->dev, "Unable to get fab id coefficients\n"); + return -EINVAL; + } + + uv = ((int64_t) adc_code * RR_ADC_TEMP_FS_VOLTAGE_NUM); + uv = div64_s64(uv, (RR_ADC_TEMP_FS_VOLTAGE_DEN * + RR_ADC_MAX_READINGS)); + uv = offset - uv; + uv = div64_s64((uv * RR_ADC_SCALE_MILLI_FACTOR), slope); + uv += RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC; + *result_millidegc = uv; + + return 0; +} + +static int rradc_post_process_gpio(struct rradc_chip *chip, u16 adc_code, + int *result_mv) +{ + int64_t mv = 0; + + /* 5V ADC full scale, 10 bit */ + mv = ((int64_t)adc_code * RR_ADC_GPIO_FS_RANGE); + mv = div64_s64(mv, RR_ADC_MAX_READINGS); + *result_mv = mv; + + return 0; +} + +static int rradc_enable_continuous_mode(struct rradc_chip *chip) +{ + int ret = 0; + + /* Clear channel log */ + ret = rradc_masked_write(chip, RR_ADC_ADC_LOG, + RR_ADC_ADC_LOG_CLR_CTRL, + RR_ADC_ADC_LOG_CLR_CTRL); + if (ret < 0) { + dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret); + return ret; + } + + ret = rradc_masked_write(chip, RR_ADC_ADC_LOG, + RR_ADC_ADC_LOG_CLR_CTRL, 0); + if (ret < 0) { + dev_err(chip->dev, "log ctrl update to not clear failed:%d\n", ret); + return ret; + } + + /* Switch to continuous mode */ + ret = rradc_masked_write(chip, RR_ADC_RR_ADC_CTL, + RR_ADC_ADC_CTL_CONTINUOUS_SEL, + RR_ADC_ADC_CTL_CONTINUOUS_SEL); + if (ret < 0) { + dev_err(chip->dev, "Update to continuous mode failed:%d\n", ret); + return ret; + } + + return ret; +} + +static int rradc_disable_continuous_mode(struct rradc_chip *chip) +{ + int ret = 0; + + /* Switch to non continuous mode */ + ret = rradc_masked_write(chip, RR_ADC_RR_ADC_CTL, + RR_ADC_ADC_CTL_CONTINUOUS_SEL, 0); + if (ret < 0) { + dev_err(chip->dev, "Update to non-continuous mode failed:%d\n", ret); + return ret; + } + + return ret; +} + +static bool rradc_is_ready(struct rradc_chip *chip, + enum rradc_channel_id chan_id) +{ + struct rradc_channel *chan = &chip->chans[chan_id]; + int ret = 0; + u8 status = 0, mask; + + /* BATT_ID STS bit does not get set initially */ + switch (chan_id) { + case RR_ADC_BATT_ID: + mask = RR_ADC_STS_CHANNEL_STS; + break; + default: + mask = RR_ADC_STS_CHANNEL_READING_MASK; + break; + } + + ret = rradc_read(chip, chan->status, &status, 1); + if (ret < 0 || !(status & mask)) { + dev_dbg(chip->dev, "Chip not ready, ret=%d\n", status); + return false; + } + + return true; +} + +static int rradc_read_status_in_cont_mode(struct rradc_chip *chip, + enum rradc_channel_id chan_id) +{ + struct rradc_channel *chan = &chip->chans[chan_id]; + int ret = 0; + + ret = rradc_masked_write(chip, chan->trigger_addr, + chan->trigger_mask, + chan->trigger_mask); + if (ret < 0) { + dev_err(chip->dev, "Failed to apply trigger for channel '%s' ret=%d\n", + chan->datasheet_name, ret); + return ret; + } + + ret = rradc_enable_continuous_mode(chip); + if (ret < 0) { + dev_err(chip->dev, "Failed to switch to continuous mode\n"); + goto disable_trigger; + } + + if (!rradc_is_ready(chip, chan_id)) + dev_err(chip->dev, "%s() channel isn't ready: %d\n", __func__, ret); + + ret = rradc_disable_continuous_mode(chip); + if (ret < 0) + dev_err(chip->dev, "Failed to switch to non continuous mode\n"); + +disable_trigger: + ret = rradc_masked_write(chip, chan->trigger_addr, + chan->trigger_mask, + 0); + if (ret < 0) { + dev_err(chip->dev, "Failed to apply trigger for channel '%s' ret=%d\n", + chan->datasheet_name, ret); + } + + return ret; +} + +static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip, + enum rradc_channel_id chan_id, u16 *data) +{ + int ret = 0, batt_id_delay; + + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CTRL, + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV); + if (ret < 0) { + dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret); + return ret; + } + + if (chip->batt_id_delay != -EINVAL) { + batt_id_delay = chip->batt_id_delay << BATT_ID_SETTLE_SHIFT; + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CFG, + batt_id_delay, batt_id_delay); + if (ret < 0) + dev_err(chip->dev, "BATT_ID settling time config failed:%d\n", ret); + } + + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_TRIGGER, + RR_ADC_BATT_ID_TRIGGER_CTL, + RR_ADC_BATT_ID_TRIGGER_CTL); + if (ret < 0) { + dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret); + goto out_disable_batt_id; + } + + ret = rradc_read_status_in_cont_mode(chip, chan_id); + if (ret < 0) + dev_err(chip->dev, "Error reading in continuous mode:%d\n", ret); + + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_TRIGGER, + RR_ADC_BATT_ID_TRIGGER_CTL, 0); + if (ret < 0) + dev_err(chip->dev, "BATT_ID trigger re-set failed:%d\n", ret); + +out_disable_batt_id: + ret = rradc_masked_write(chip, RR_ADC_BATT_ID_CTRL, + RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, 0); + if (ret < 0) + dev_err(chip->dev, "Disabling BATT ID channel failed:%d\n", ret); + + return ret; +} + +static int rradc_do_conversion(struct rradc_chip *chip, enum rradc_channel_id chan_id, u16 *data) +{ + struct rradc_channel *chan = &chip->chans[chan_id]; + int ret = 0; + u8 buf[6]; + u16 batt_id_5 = 0, batt_id_15 = 0, batt_id_150 = 0; + + mutex_lock(&chip->lock); + + /* + * First we need to do channel specific configuration. + */ + switch (chan_id) { + case RR_ADC_BATT_ID: + ret = rradc_prepare_batt_id_conversion(chip, chan_id, data); + if (ret < 0) { + dev_err(chip->dev, "Battery ID conversion failed:%d\n", ret); + goto unlock_out; + } + break; + + case RR_ADC_USBIN_V: + case RR_ADC_DIE_TEMP: + ret = rradc_read_status_in_cont_mode(chip, chan_id); + if (ret < 0) { + dev_err(chip->dev, "Error reading in continuous mode:%d\n", ret); + goto unlock_out; + } + break; + case RR_ADC_CHG_HOT_TEMP: + case RR_ADC_CHG_TOO_HOT_TEMP: + case RR_ADC_SKIN_HOT_TEMP: + case RR_ADC_SKIN_TOO_HOT_TEMP: + break; + default: + if (!rradc_is_ready(chip, chan_id)) { + dev_err(chip->dev, "%s() channel '%s' is not ready\n", __func__, + chan->datasheet_name); + ret = -ENODATA; + goto unlock_out; + } + break; + } + + /* + * Then we can read the data. + */ + ret = rradc_read(chip, chan->lsb, buf, chan->size); + if (ret) { + dev_err(chip->dev, "read data failed\n"); + goto unlock_out; + } + + /* + * For the battery ID we read the register for every ID ADC and then + * see which one is actually connected. + */ + if (chan_id == RR_ADC_BATT_ID) { + batt_id_150 = (buf[5] << 8) | buf[4]; + batt_id_15 = (buf[3] << 8) | buf[2]; + batt_id_5 = (buf[1] << 8) | buf[0]; + if ((!batt_id_150) && (!batt_id_15) && (!batt_id_5)) { + dev_err(chip->dev, "Invalid batt_id values with all zeros\n"); + ret = -EINVAL; + goto unlock_out; + } + + if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) { + *data = batt_id_150; + chip->batt_id_data = RR_ADC_BATT_ID_150_MA; + } else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) { + *data = batt_id_15; + chip->batt_id_data = RR_ADC_BATT_ID_15_MA; + } else { + *data = batt_id_5; + chip->batt_id_data = RR_ADC_BATT_ID_5_MA; + } + } else { + /* + * All of the other channels are either 1 or 2 bytes. + * We can rely on the second byte being 0 for 1-byte channels. + */ + *data = (buf[1] << 8) | buf[0]; + } + +unlock_out: + mutex_unlock(&chip->lock); + + return ret; +} + +static int rradc_read_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan_spec, int *val, int *val2, + long mask) +{ + struct rradc_chip *chip = iio_priv(indio_dev); + struct rradc_channel *chan; + int ret; + u16 adc_code; + + if (chan_spec->address >= RR_ADC_MAX) { + dev_err(chip->dev, "Invalid channel index:%ld\n", chan_spec->address); + return -EINVAL; + } + + chan = &chip->chans[chan_spec->address]; + ret = rradc_do_conversion(chip, chan_spec->address, &adc_code); + if (ret < 0) + return ret; + dev_dbg(chip->dev, "channel: %s, raw adc value = %d\n", chan->datasheet_name, adc_code); + + switch (mask) { + case IIO_CHAN_INFO_RAW: + *val = (int) adc_code; + return IIO_VAL_INT; + case IIO_CHAN_INFO_PROCESSED: + chan->scale(chip, adc_code, val); + dev_dbg(chip->dev, "%s() processed chan_id = %ld, data = %d, ret = %d", + __func__, chan_spec->address, *val, ret); + return IIO_VAL_INT; + default: + return -EINVAL; + } +} + +static const struct iio_info rradc_info = { + .read_raw = &rradc_read_raw, +}; + +#define CHAN_INIT(_name, _type, _mask, _scale, _lsb, _msb, _sts, _bytes, _trig, _trig_mask) \ + { \ + .datasheet_name = _name, \ + .type = _type, \ + .info_mask = _mask, \ + .scale = _scale, \ + .lsb = _lsb, \ + .msb = _msb, \ + .status = _sts, \ + .enabled = true, \ + .size = _bytes, \ + .trigger_addr = _trig, \ + .trigger_mask = _trig_mask, \ + } + +static int rradc_init_channels(struct rradc_chip *chip) +{ + int i = 0; + + chip->nchannels = RR_ADC_MAX; + chip->chans = devm_kcalloc(chip->dev, chip->nchannels, + sizeof(*chip->chans), GFP_KERNEL); + if (!chip->chans) + return -ENOMEM; + + chip->iio_chans = devm_kcalloc(chip->dev, chip->nchannels, + sizeof(*chip->iio_chans), GFP_KERNEL); + if (!chip->iio_chans) + return -ENOMEM; + + chip->chans[RR_ADC_BATT_ID] = + (struct rradc_channel) CHAN_INIT("batt_id", IIO_RESISTANCE, + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_batt_id, + RR_ADC_BATT_ID_5_LSB, RR_ADC_BATT_ID_5_MSB, RR_ADC_BATT_ID_STS, 6, + RR_ADC_BATT_ID_TRIGGER, RR_ADC_BATT_ID_TRIGGER_CTL); + chip->chans[RR_ADC_BATT_THERM] = + (struct rradc_channel) CHAN_INIT("batt_therm", IIO_TEMP, + BIT(IIO_CHAN_INFO_RAW), rradc_post_process_therm, + RR_ADC_BATT_THERM_LSB, RR_ADC_BATT_THERM_MSB, RR_ADC_BATT_THERM_STS, 2, + RR_ADC_BATT_THERM_TRIGGER, RR_ADC_BATT_THERM_TRIGGER); + chip->chans[RR_ADC_SKIN_TEMP] = + (struct rradc_channel) CHAN_INIT("skin_temp", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_therm, + RR_ADC_SKIN_TEMP_LSB, RR_ADC_SKIN_TEMP_MSB, RR_ADC_AUX_THERM_STS, 2, + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); + chip->chans[RR_ADC_USBIN_I] = + (struct rradc_channel) CHAN_INIT("usbin_i", IIO_CURRENT, + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_usbin_curr, + RR_ADC_USB_IN_I_LSB, RR_ADC_USB_IN_I_MSB, RR_ADC_USB_IN_I_STS, 2, + RR_ADC_USB_IN_I_TRIGGER, RR_ADC_USB_IN_I_TRIGGER); + chip->chans[RR_ADC_USBIN_V] = + (struct rradc_channel) CHAN_INIT("usbin_v", IIO_VOLTAGE, + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_volt, + RR_ADC_USB_IN_V_LSB, RR_ADC_USB_IN_V_MSB, RR_ADC_USB_IN_V_STS, 2, + RR_ADC_USB_IN_V_TRIGGER, RR_ADC_USB_IN_V_EVERY_CYCLE); + chip->chans[RR_ADC_DCIN_I] = + (struct rradc_channel) CHAN_INIT("dcin_i", IIO_CURRENT, + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_dcin_curr, + RR_ADC_DC_IN_I_LSB, RR_ADC_DC_IN_I_MSB, RR_ADC_DC_IN_I_STS, 2, + RR_ADC_DC_IN_I_TRIGGER, RR_ADC_DC_IN_I_TRIGGER); + chip->chans[RR_ADC_DCIN_V] = + (struct rradc_channel) CHAN_INIT("dcin_v", IIO_VOLTAGE, + BIT(IIO_CHAN_INFO_PROCESSED), rradc_post_process_volt, + RR_ADC_DC_IN_V_LSB, RR_ADC_DC_IN_V_MSB, RR_ADC_DC_IN_V_STS, 2, + RR_ADC_DC_IN_V_TRIGGER, RR_ADC_DC_IN_V_TRIGGER); + chip->chans[RR_ADC_DIE_TEMP] = + (struct rradc_channel) CHAN_INIT("die_temp", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_die_temp, + RR_ADC_PMI_DIE_TEMP_LSB, RR_ADC_PMI_DIE_TEMP_MSB, RR_ADC_PMI_DIE_TEMP_STS, + 2, RR_ADC_PMI_DIE_TEMP_TRIGGER, + RR_ADC_PMI_DIE_TEMP_TRIGGER); + chip->chans[RR_ADC_CHG_TEMP] = + (struct rradc_channel) CHAN_INIT("chg_temp", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_chg_temp, + RR_ADC_CHARGER_TEMP_LSB, RR_ADC_CHARGER_TEMP_MSB, + RR_ADC_CHARGER_TEMP_STS, 2, RR_ADC_CHARGER_TEMP_TRIGGER, + RR_ADC_CHARGER_TEMP_TRIGGER); + chip->chans[RR_ADC_GPIO] = + (struct rradc_channel) CHAN_INIT("gpio", IIO_VOLTAGE, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_gpio, + RR_ADC_GPIO_LSB, RR_ADC_GPIO_MSB, RR_ADC_GPIO_STS, 2, + RR_ADC_GPIO_TRIGGER, RR_ADC_GPIO_TRIGGER); + chip->chans[RR_ADC_CHG_HOT_TEMP] = + (struct rradc_channel) CHAN_INIT("chg_temp_hot", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_chg_temp_hot, + RR_ADC_CHARGER_HOT, RR_ADC_CHARGER_HOT, RR_ADC_CHARGER_TEMP_STS, 1, + RR_ADC_CHARGER_TEMP_TRIGGER, RR_ADC_CHARGER_TEMP_TRIGGER); + chip->chans[RR_ADC_CHG_TOO_HOT_TEMP] = + (struct rradc_channel) CHAN_INIT("chg_temp_too_hot", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_chg_temp_hot, + RR_ADC_CHARGER_TOO_HOT, RR_ADC_CHARGER_TOO_HOT, RR_ADC_CHARGER_TEMP_STS, 1, + RR_ADC_CHARGER_TEMP_TRIGGER, RR_ADC_CHARGER_TEMP_TRIGGER); + chip->chans[RR_ADC_SKIN_HOT_TEMP] = + (struct rradc_channel) CHAN_INIT("skin_temp_hot", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_skin_temp_hot, + RR_ADC_SKIN_HOT, RR_ADC_SKIN_HOT, RR_ADC_AUX_THERM_STS, 1, + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); + chip->chans[RR_ADC_SKIN_TOO_HOT_TEMP] = + (struct rradc_channel) CHAN_INIT("skin_temp_too_hot", IIO_TEMP, + BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_PROCESSED), + rradc_post_process_skin_temp_hot, + RR_ADC_SKIN_TOO_HOT, RR_ADC_SKIN_TOO_HOT, RR_ADC_AUX_THERM_STS, 1, + RR_ADC_AUX_THERM_TRIGGER, RR_ADC_AUX_THERM_TRIGGER); + + for (i = 0; i < RR_ADC_MAX; i++) { + chip->iio_chans[i].datasheet_name = chip->chans[i].datasheet_name; + chip->iio_chans[i].extend_name = chip->chans[i].datasheet_name; + chip->iio_chans[i].info_mask_separate = chip->chans[i].info_mask; + chip->iio_chans[i].type = chip->chans[i].type; + chip->iio_chans[i].address = i; + chip->iio_chans[i].channel = i; + } + + return 0; +} + +static int rradc_probe(struct platform_device *pdev) +{ + struct device_node *node = pdev->dev.of_node; + struct device *dev = &pdev->dev; + struct iio_dev *indio_dev; + struct rradc_chip *chip; + int ret = 0, i; + + indio_dev = devm_iio_device_alloc(dev, sizeof(*chip)); + if (!indio_dev) + return -ENOMEM; + + chip = iio_priv(indio_dev); + chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); + if (!chip->regmap) { + dev_err(dev, "Couldn't get parent's regmap\n"); + return -EINVAL; + } + + chip->dev = dev; + mutex_init(&chip->lock); + + /* Get the peripheral address */ + ret = of_property_read_u32(node, "reg", &chip->base); + if (ret < 0) { + dev_err(chip->dev, + "Couldn't find reg in node = %s ret = %d\n", + node->name, ret); + return ret; + } + + chip->batt_id_delay = -EINVAL; + ret = of_property_read_u32(node, "qcom,batt-id-delay-ms", + &chip->batt_id_delay); + if (!ret) { + for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) { + if (chip->batt_id_delay == batt_id_delays[i]) + break; + } + if (i == RRADC_BATT_ID_DELAY_MAX) + chip->batt_id_delay = -EINVAL; + } + + /* Get the PMIC revision ID, we need to handle some varying coefficients */ + chip->pmic = (struct qcom_spmi_pmic *) + spmi_device_get_drvdata(to_spmi_device(pdev->dev.parent)); + qcom_pmic_print_info(chip->dev, chip->pmic); + + ret = rradc_init_channels(chip); + if (ret < 0) { + dev_err(dev, "Couldn't initialize channels\n"); + return ret; + } + + indio_dev->dev.parent = dev; + indio_dev->dev.of_node = node; + indio_dev->name = pdev->name; + indio_dev->modes = INDIO_DIRECT_MODE; + indio_dev->info = &rradc_info; + indio_dev->channels = chip->iio_chans; + indio_dev->num_channels = chip->nchannels; + + ret = devm_iio_device_register(dev, indio_dev); + return ret; +} + +static const struct of_device_id rradc_match_table[] = { + { .compatible = "qcom,pm660-rradc" }, + { .compatible = "qcom,pmi8998-rradc" }, + { } +}; +MODULE_DEVICE_TABLE(of, rradc_match_table); + +static struct platform_driver rradc_driver = { + .driver = { + .name = "qcom-rradc", + .of_match_table = rradc_match_table, + }, + .probe = rradc_probe, +}; +module_platform_driver(rradc_driver); + +MODULE_DESCRIPTION("QCOM SPMI PMIC RR ADC driver"); +MODULE_AUTHOR("Caleb Connolly <caleb.connolly@linaro.org>"); +MODULE_LICENSE("GPL v2");