@@ -20,11 +20,13 @@
#include <unistd.h>
#include <sys/ioctl.h>
#include <errno.h>
+#include <stdarg.h>
#include "utils.h"
#include "kerncompat.h"
#include "ctree.h"
#include "string_list.h"
+#include "string_table.h"
#include "commands.h"
@@ -42,7 +44,14 @@ struct chunk_info {
u64 type;
u64 size;
u64 devid;
- int num_stripes;
+ u64 num_stripes;
+};
+
+/* to store information about the disks */
+struct disk_info {
+ u64 devid;
+ char path[BTRFS_DEVICE_PATH_NAME_MAX];
+ u64 size;
};
/*
@@ -518,3 +527,426 @@ int cmd_filesystem_df(int argc, char **argv)
return 0;
}
+/*
+ * Helper to sort the disk_info structure
+ */
+static int cmp_disk_info(const void *a, const void *b)
+{
+ return strcmp(((struct disk_info *)a)->path,
+ ((struct disk_info *)b)->path);
+}
+
+/*
+ * This function load the disk_info structure and put them in an array
+ */
+static int load_disks_info(int fd,
+ struct disk_info **disks_info_ptr,
+ int *disks_info_count)
+{
+
+ int ret, i, ndevs;
+ struct btrfs_ioctl_fs_info_args fi_args;
+ struct btrfs_ioctl_dev_info_args dev_info;
+ struct disk_info *info;
+
+ *disks_info_count = 0;
+ *disks_info_ptr = 0;
+
+ ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
+ if (ret < 0) {
+ fprintf(stderr, "ERROR: cannot get filesystem info\n");
+ return -1;
+ }
+
+ info = malloc(sizeof(struct disk_info) * fi_args.num_devices);
+ if (!info) {
+ fprintf(stderr, "ERROR: not enough memory\n");
+ return -1;
+ }
+
+ for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) {
+
+ BUG_ON(ndevs >= fi_args.num_devices);
+ ret = get_device_info(fd, i, &dev_info);
+
+ if (ret == -ENODEV)
+ continue;
+ if (ret) {
+ fprintf(stderr,
+ "ERROR: cannot get info about device devid=%d\n",
+ i);
+ free(info);
+ return -1;
+ }
+
+ info[ndevs].devid = dev_info.devid;
+ strcpy(info[ndevs].path, (char *)dev_info.path);
+ info[ndevs].size = get_partition_size((char *)dev_info.path);
+ ++ndevs;
+ }
+
+ BUG_ON(ndevs != fi_args.num_devices);
+ qsort(info, fi_args.num_devices,
+ sizeof(struct disk_info), cmp_disk_info);
+
+ *disks_info_count = fi_args.num_devices;
+ *disks_info_ptr = info;
+
+ return 0;
+
+}
+
+/*
+ * This function computes the size of a chunk in a disk
+ */
+static u64 calc_chunk_size(struct chunk_info *ci)
+{
+ if (ci->type & BTRFS_BLOCK_GROUP_RAID0)
+ return ci->size / ci->num_stripes;
+ else if (ci->type & BTRFS_BLOCK_GROUP_RAID1)
+ return ci->size ;
+ else if (ci->type & BTRFS_BLOCK_GROUP_DUP)
+ return ci->size ;
+ else if (ci->type & BTRFS_BLOCK_GROUP_RAID5)
+ return ci->size / (ci->num_stripes -1);
+ else if (ci->type & BTRFS_BLOCK_GROUP_RAID6)
+ return ci->size / (ci->num_stripes -2);
+ else if (ci->type & BTRFS_BLOCK_GROUP_RAID10)
+ return ci->size / ci->num_stripes;
+ return ci->size;
+}
+
+/*
+ * This function print the results of the command btrfs fi disk-usage
+ * in tabular format
+ */
+static void _cmd_filesystem_disk_usage_tabular(int mode,
+ struct btrfs_ioctl_space_args *sargs,
+ struct chunk_info *chunks_info_ptr,
+ int chunks_info_count,
+ struct disk_info *disks_info_ptr,
+ int disks_info_count)
+{
+ int i;
+ u64 total_unused = 0;
+ struct string_table *matrix = 0;
+ int ncols, nrows;
+
+
+ ncols = sargs->total_spaces + 2;
+ nrows = 2 + 1 + disks_info_count + 1 + 2;
+
+ matrix = table_create(ncols, nrows);
+ if (!matrix) {
+ fprintf(stderr, "ERROR: not enough memory\n");
+ return;
+ }
+
+ /* header */
+ for (i = 0; i < sargs->total_spaces; i++) {
+ const char *description;
+
+ u64 flags = sargs->spaces[i].flags;
+ description = btrfs_flags2description(flags);
+
+ table_printf(matrix, 1+i, 0, "<%s", description);
+ }
+
+ for (i = 0; i < sargs->total_spaces; i++) {
+ const char *r_mode;
+
+ u64 flags = sargs->spaces[i].flags;
+ r_mode = btrfs_flags2profile(flags);
+
+ table_printf(matrix, 1+i, 1, "<%s", r_mode);
+ }
+
+ table_printf(matrix, 1+sargs->total_spaces, 1, "<Unallocated");
+
+ /* body */
+ for (i = 0 ; i < disks_info_count ; i++) {
+ int k, col;
+ char *p;
+
+ u64 total_allocated = 0, unused;
+
+ p = strrchr(disks_info_ptr[i].path, '/');
+ if (!p)
+ p = disks_info_ptr[i].path;
+ else
+ p++;
+
+ table_printf(matrix, 0, i+3, "<%s",
+ disks_info_ptr[i].path);
+
+ for (col = 1, k = 0 ; k < sargs->total_spaces ; k++) {
+ u64 flags = sargs->spaces[k].flags;
+ int j;
+
+ for (j = 0 ; j < chunks_info_count ; j++) {
+ u64 size = calc_chunk_size(chunks_info_ptr+j);
+
+ if (chunks_info_ptr[j].type != flags ||
+ chunks_info_ptr[j].devid !=
+ disks_info_ptr[i].devid)
+ continue;
+
+ table_printf(matrix, col, i+3,
+ ">%s", df_pretty_sizes(size, mode));
+ total_allocated += size;
+ col++;
+ break;
+
+ }
+ if (j == chunks_info_count) {
+ table_printf(matrix, col, i+3, ">-");
+ col++;
+ }
+ }
+
+ unused = get_partition_size(disks_info_ptr[i].path) -
+ total_allocated;
+
+ table_printf(matrix, sargs->total_spaces + 1, i + 3,
+ ">%s", df_pretty_sizes(unused, mode));
+ total_unused += unused;
+
+ }
+
+ for (i = 0; i <= sargs->total_spaces; i++)
+ table_printf(matrix, i + 1, disks_info_count + 3, "=");
+
+
+ /* footer */
+ table_printf(matrix, 0, disks_info_count + 4, "<Total");
+ for (i = 0; i < sargs->total_spaces; i++)
+ table_printf(matrix, 1 + i, disks_info_count + 4,
+ ">%s",
+ df_pretty_sizes(sargs->spaces[i].total_bytes, mode));
+
+ table_printf(matrix, sargs->total_spaces+1, disks_info_count+4,
+ ">%s", df_pretty_sizes(total_unused, mode));
+
+ table_printf(matrix, 0, disks_info_count+5, "<Used");
+ for (i = 0; i < sargs->total_spaces; i++)
+ table_printf(matrix, 1+i, disks_info_count+5, ">%s",
+ df_pretty_sizes(sargs->spaces[i].used_bytes, mode));
+
+
+ table_dump(matrix);
+ table_free(matrix);
+
+}
+
+/*
+ * This function prints the unused space per every disk
+ */
+static void print_unused(struct chunk_info *info_ptr,
+ int info_count,
+ struct disk_info *disks_info_ptr,
+ int disks_info_count,
+ int mode)
+{
+ int i;
+ for (i = 0 ; i < disks_info_count ; i++) {
+
+ int j;
+ u64 total = 0;
+ char *s;
+
+ for (j = 0 ; j < info_count ; j++)
+ if (info_ptr[j].devid == disks_info_ptr[i].devid)
+ total += calc_chunk_size(info_ptr+j);
+
+ s = df_pretty_sizes(disks_info_ptr[i].size - total, mode);
+ printf(" %s\t%10s\n", disks_info_ptr[i].path, s);
+
+ }
+
+}
+
+/*
+ * This function prints the allocated chunk per every disk
+ */
+static void print_chunk_disks(u64 chunk_type,
+ struct chunk_info *chunks_info_ptr,
+ int chunks_info_count,
+ struct disk_info *disks_info_ptr,
+ int disks_info_count,
+ int mode)
+{
+ int i;
+
+ for (i = 0 ; i < disks_info_count ; i++) {
+
+ int j;
+ u64 total = 0;
+ char *s;
+
+ for (j = 0 ; j < chunks_info_count ; j++) {
+
+ if (chunks_info_ptr[j].type != chunk_type)
+ continue;
+ if (chunks_info_ptr[j].devid != disks_info_ptr[i].devid)
+ continue;
+
+ total += calc_chunk_size(&(chunks_info_ptr[j]));
+ //total += chunks_info_ptr[j].size;
+ }
+
+ if (total > 0) {
+ s = df_pretty_sizes(total, mode);
+ printf(" %s\t%10s\n", disks_info_ptr[i].path, s);
+ }
+ }
+}
+
+/*
+ * This function print the results of the command btrfs fi disk-usage
+ * in linear format
+ */
+static void _cmd_filesystem_disk_usage_linear(int mode,
+ struct btrfs_ioctl_space_args *sargs,
+ struct chunk_info *info_ptr,
+ int info_count,
+ struct disk_info *disks_info_ptr,
+ int disks_info_count)
+{
+ int i;
+
+ for (i = 0; i < sargs->total_spaces; i++) {
+ const char *description;
+ const char *r_mode;
+
+ u64 flags = sargs->spaces[i].flags;
+ description= btrfs_flags2description(flags);
+ r_mode = btrfs_flags2profile(flags);
+
+ printf("%s,%s: Size:%s, Used:%s\n",
+ description,
+ r_mode,
+ df_pretty_sizes(sargs->spaces[i].total_bytes ,
+ mode),
+ df_pretty_sizes(sargs->spaces[i].used_bytes,
+ mode));
+
+ print_chunk_disks(flags, info_ptr, info_count,
+ disks_info_ptr, disks_info_count,
+ mode);
+ printf("\n");
+
+ }
+
+ printf("Unallocated:\n");
+ print_unused(info_ptr, info_count,
+ disks_info_ptr, disks_info_count,
+ mode);
+
+
+
+}
+
+static int _cmd_filesystem_disk_usage(int fd, char *path, int mode, int tabular)
+{
+ struct btrfs_ioctl_space_args *sargs = 0;
+ int info_count = 0;
+ struct chunk_info *info_ptr = 0;
+ struct disk_info *disks_info_ptr = 0;
+ int disks_info_count = 0;
+ int ret = 0;
+
+ if (load_chunk_info(fd, &info_ptr, &info_count) ||
+ load_disks_info(fd, &disks_info_ptr, &disks_info_count)) {
+ ret = -1;
+ goto exit;
+ }
+
+ if ((sargs = load_space_info(fd, path)) == NULL) {
+ ret = -1;
+ goto exit;
+ }
+
+ if (tabular)
+ _cmd_filesystem_disk_usage_tabular(mode, sargs,
+ info_ptr, info_count,
+ disks_info_ptr, disks_info_count);
+ else
+ _cmd_filesystem_disk_usage_linear(mode, sargs,
+ info_ptr, info_count,
+ disks_info_ptr, disks_info_count);
+
+exit:
+
+ string_list_free();
+ if (sargs)
+ free(sargs);
+ if (disks_info_ptr)
+ free(disks_info_ptr);
+ if (info_ptr)
+ free(info_ptr);
+
+ return ret;
+}
+
+const char * const cmd_filesystem_disk_usage_usage[] = {
+ "btrfs filesystem disk-usage [-b][-t] <path> [<path>..]",
+ "Show in which disk the chunks are allocated.",
+ "",
+ "-b\tSet byte as unit",
+ "-t\tShow data in tabular format",
+ NULL
+};
+
+int cmd_filesystem_disk_usage(int argc, char **argv)
+{
+
+ int flags = DF_HUMAN_UNIT;
+ int i, more_than_one = 0;
+ int tabular = 0;
+
+ optind = 1;
+ while (1) {
+ char c = getopt(argc, argv, "bt");
+ if (c < 0)
+ break;
+ switch (c) {
+ case 'b':
+ flags &= ~DF_HUMAN_UNIT;
+ break;
+ case 't':
+ tabular = 1;
+ break;
+ default:
+ usage(cmd_filesystem_disk_usage_usage);
+ }
+ }
+
+ if (check_argc_min(argc - optind, 1)) {
+ usage(cmd_filesystem_disk_usage_usage);
+ return 21;
+ }
+
+ for (i = optind; i < argc ; i++) {
+ int r, fd;
+ if (more_than_one)
+ printf("\n");
+
+ fd = open_file_or_dir(argv[i]);
+ if (fd < 0) {
+ fprintf(stderr, "ERROR: can't access to '%s'\n",
+ argv[1]);
+ return 12;
+ }
+ r = _cmd_filesystem_disk_usage(fd, argv[i], flags, tabular);
+ close(fd);
+
+ if (r)
+ return r;
+ more_than_one = 1;
+
+ }
+
+ return 0;
+}
+
+
@@ -21,5 +21,7 @@
extern const char * const cmd_filesystem_df_usage[];
int cmd_filesystem_df(int argc, char **argv);
+extern const char * const cmd_filesystem_disk_usage_usage[];
+int cmd_filesystem_disk_usage(int argc, char **argv);
#endif
@@ -403,6 +403,8 @@ const struct cmd_group filesystem_cmd_group = {
{ "balance", cmd_balance, NULL, &balance_cmd_group, 1 },
{ "resize", cmd_resize, cmd_resize_usage, NULL, 0 },
{ "label", cmd_label, cmd_label_usage, NULL, 0 },
+ { "disk-usage", cmd_filesystem_disk_usage,
+ cmd_filesystem_disk_usage_usage, NULL, 0 },
{ 0, 0, 0, 0, 0 },
}
};
@@ -1400,3 +1400,61 @@ u64 disk_size(char *path)
}
+u64 get_partition_size(char *dev)
+{
+ u64 result;
+ int fd = open(dev, O_RDONLY);
+
+ if (fd < 0)
+ return 0;
+ if (ioctl(fd, BLKGETSIZE64, &result) < 0) {
+ close(fd);
+ return 0;
+ }
+ close(fd);
+
+ return result;
+}
+
+/*
+ * Convert a chunk type to a chunk description
+ */
+const char * btrfs_flags2description(u64 flags)
+{
+ if (flags & BTRFS_BLOCK_GROUP_DATA) {
+ if (flags & BTRFS_BLOCK_GROUP_METADATA)
+ return "Data+Metadata";
+ else
+ return "Data";
+ } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
+ return "System";
+ } else if (flags & BTRFS_BLOCK_GROUP_METADATA) {
+ return "Metadata";
+ } else {
+ return "Unknown";
+ }
+}
+
+/*
+ * Convert a chunk type to a chunk profile description
+ */
+const char * btrfs_flags2profile(u64 flags)
+{
+ if (flags & BTRFS_BLOCK_GROUP_RAID0) {
+ return "RAID0";
+ } else if (flags & BTRFS_BLOCK_GROUP_RAID1) {
+ return "RAID1";
+ } else if (flags & BTRFS_BLOCK_GROUP_RAID5) {
+ return "RAID5";
+ } else if (flags & BTRFS_BLOCK_GROUP_RAID6) {
+ return "RAID6";
+ } else if (flags & BTRFS_BLOCK_GROUP_DUP) {
+ return "DUP";
+ } else if (flags & BTRFS_BLOCK_GROUP_RAID10) {
+ return "RAID10";
+ } else {
+ return "Single";
+ }
+}
+
+
@@ -60,4 +60,7 @@ char *__strncpy__null(char *dest, const char *src, size_t n);
#define strncpy_null(dest, src) __strncpy__null(dest, src, sizeof(dest))
u64 disk_size(char *path);
+u64 get_partition_size(char *dev);
+const char * btrfs_flags2profile(u64 flags);
+const char * btrfs_flags2description(u64 flags);
#endif