@@ -261,9 +261,9 @@ DIRECT_KEY policies
The Adiantum encryption mode (see `Encryption modes and usage`_) is
suitable for both contents and filenames encryption, and it accepts
-long IVs --- long enough to hold both an 8-byte logical block number
-and a 16-byte per-file nonce. Also, the overhead of each Adiantum key
-is greater than that of an AES-256-XTS key.
+long IVs --- long enough to hold both an 8-byte data unit index and a
+16-byte per-file nonce. Also, the overhead of each Adiantum key is
+greater than that of an AES-256-XTS key.
Therefore, to improve performance and save memory, for Adiantum a
"direct key" configuration is supported. When the user has enabled
@@ -300,8 +300,8 @@ IV_INO_LBLK_32 policies
IV_INO_LBLK_32 policies work like IV_INO_LBLK_64, except that for
IV_INO_LBLK_32, the inode number is hashed with SipHash-2-4 (where the
-SipHash key is derived from the master key) and added to the file
-logical block number mod 2^32 to produce a 32-bit IV.
+SipHash key is derived from the master key) and added to the file data
+unit index mod 2^32 to produce a 32-bit IV.
This format is optimized for use with inline encryption hardware
compliant with the eMMC v5.2 standard, which supports only 32 IV bits
@@ -451,31 +451,62 @@ acceleration is recommended:
Contents encryption
-------------------
-For file contents, each filesystem block is encrypted independently.
-Starting from Linux kernel 5.5, encryption of filesystems with block
-size less than system's page size is supported.
-
-Each block's IV is set to the logical block number within the file as
-a little endian number, except that:
-
-- With CBC mode encryption, ESSIV is also used. Specifically, each IV
- is encrypted with AES-256 where the AES-256 key is the SHA-256 hash
- of the file's data encryption key.
-
-- With `DIRECT_KEY policies`_, the file's nonce is appended to the IV.
- Currently this is only allowed with the Adiantum encryption mode.
-
-- With `IV_INO_LBLK_64 policies`_, the logical block number is limited
- to 32 bits and is placed in bits 0-31 of the IV. The inode number
- (which is also limited to 32 bits) is placed in bits 32-63.
-
-- With `IV_INO_LBLK_32 policies`_, the logical block number is limited
- to 32 bits and is placed in bits 0-31 of the IV. The inode number
- is then hashed and added mod 2^32.
-
-Note that because file logical block numbers are included in the IVs,
-filesystems must enforce that blocks are never shifted around within
-encrypted files, e.g. via "collapse range" or "insert range".
+For contents encryption, each file's contents is divided into "data
+units". Each data unit is encrypted independently. The IV for each
+data unit incorporates the zero-based index of the data unit within
+the file. This ensures that each data unit within a file is encrypted
+differently, which is essential to prevent leaking information.
+
+Note: the encryption depending on the offset into the file means that
+operations like "collapse range" and "insert range" that rearrange the
+extent mapping of files are not supported on encrypted files.
+
+There are two cases for the sizes of the data units:
+
+* Fixed-size data units. This is how all filesystems other than UBIFS
+ work. A file's data units are all the same size; the last data unit
+ is zero-padded if needed. By default, the data unit size is equal
+ to the filesystem block size. On some filesystems, users can select
+ a sub-block data unit size via the ``log2_data_unit_size`` field of
+ the encryption policy; see `FS_IOC_SET_ENCRYPTION_POLICY`_.
+
+* Variable-size data units. This is what UBIFS does. Each "UBIFS
+ data node" is treated as a crypto data unit. Each contains variable
+ length, possibly compressed data, zero-padded to the next 16-byte
+ boundary. Users cannot select a sub-block data unit size on UBIFS.
+
+In the case of compression + encryption, the compressed data is
+encrypted. UBIFS compression works as described above. f2fs
+compression works a bit differently; it compresses a number of
+filesystem blocks into a smaller number of filesystem blocks.
+Therefore a f2fs-compressed file still uses fixed-size data units, and
+it is encrypted in a similar way to a file containing holes.
+
+As mentioned in `Key hierarchy`_, the default encryption setting uses
+per-file keys. In this case, the IV for each data unit is simply the
+index of the data unit in the file. However, users can select an
+encryption setting that does not use per-file keys. For these, some
+kind of file identifier is incorporated into the IVs as follows:
+
+- With `DIRECT_KEY policies`_, the data unit index is placed in bits
+ 0-63 of the IV, and the file's nonce is placed in bits 64-191.
+
+- With `IV_INO_LBLK_64 policies`_, the data unit index is placed in
+ bits 0-31 of the IV, and the file's inode number is placed in bits
+ 32-63. This setting is only allowed when data unit indices and
+ inode numbers fit in 32 bits.
+
+- With `IV_INO_LBLK_32 policies`_, the file's inode number is hashed
+ and added to the data unit index. The resulting value is truncated
+ to 32 bits and placed in bits 0-31 of the IV. This setting is only
+ allowed when data unit indices and inode numbers fit in 32 bits.
+
+The byte order of the IV is always little endian.
+
+If the user selects FSCRYPT_MODE_AES_128_CBC for the contents mode, an
+ESSIV layer is automatically included. In this case, before the IV is
+passed to AES-128-CBC, it is encrypted with AES-256 where the AES-256
+key is the SHA-256 hash of the file's contents encryption key.
Filenames encryption
--------------------
@@ -544,7 +575,8 @@ follows::
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 __reserved[4];
+ __u8 log2_data_unit_size;
+ __u8 __reserved[3];
__u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};
@@ -586,6 +618,28 @@ This structure must be initialized as follows:
The DIRECT_KEY, IV_INO_LBLK_64, and IV_INO_LBLK_32 flags are
mutually exclusive.
+- ``log2_data_unit_size`` is the log2 of the data unit size in bytes,
+ or 0 to select the default data unit size. The data unit size is
+ the granularity of file contents encryption. For example, setting
+ ``log2_data_unit_size`` to 12 causes file contents be passed to the
+ underlying encryption algorithm (such as AES-256-XTS) in 4096-byte
+ data units, each with its own IV.
+
+ Not all filesystems support setting ``log2_data_unit_size``. ext4
+ and f2fs support it since Linux v6.7. On filesystems that support
+ it, the supported nonzero values are 9 through the log2 of the
+ filesystem block size, inclusively. The default value of 0 selects
+ the filesystem block size.
+
+ The main use case for ``log2_data_unit_size`` is for selecting a
+ data unit size smaller than the filesystem block size for
+ compatibility with inline encryption hardware that only supports
+ smaller data unit sizes. ``/sys/block/$disk/queue/crypto/`` may be
+ useful for checking which data unit sizes are supported by a
+ particular system's inline encryption hardware.
+
+ Leave this field zeroed unless you are certain you need it.
+
- For v2 encryption policies, ``__reserved`` must be zeroed.
- For v1 encryption policies, ``master_key_descriptor`` specifies how
@@ -111,10 +111,14 @@ static int fscrypt_zeroout_range_inline_crypt(const struct inode *inode,
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
sector_t pblk, unsigned int len)
{
- const unsigned int blockbits = inode->i_blkbits;
- const unsigned int blocksize = 1 << blockbits;
- const unsigned int blocks_per_page_bits = PAGE_SHIFT - blockbits;
- const unsigned int blocks_per_page = 1 << blocks_per_page_bits;
+ const struct fscrypt_info *ci = inode->i_crypt_info;
+ const unsigned int du_bits = ci->ci_data_unit_bits;
+ const unsigned int du_size = 1U << du_bits;
+ const unsigned int du_per_page_bits = PAGE_SHIFT - du_bits;
+ const unsigned int du_per_page = 1U << du_per_page_bits;
+ u64 du_index = (u64)lblk << (inode->i_blkbits - du_bits);
+ u64 du_remaining = (u64)len << (inode->i_blkbits - du_bits);
+ sector_t sector = pblk << (inode->i_blkbits - SECTOR_SHIFT);
struct page *pages[16]; /* write up to 16 pages at a time */
unsigned int nr_pages;
unsigned int i;
@@ -130,8 +134,8 @@ int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
len);
BUILD_BUG_ON(ARRAY_SIZE(pages) > BIO_MAX_VECS);
- nr_pages = min_t(unsigned int, ARRAY_SIZE(pages),
- (len + blocks_per_page - 1) >> blocks_per_page_bits);
+ nr_pages = min_t(u64, ARRAY_SIZE(pages),
+ (du_remaining + du_per_page - 1) >> du_per_page_bits);
/*
* We need at least one page for ciphertext. Allocate the first one
@@ -154,21 +158,22 @@ int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
bio = bio_alloc(inode->i_sb->s_bdev, nr_pages, REQ_OP_WRITE, GFP_NOFS);
do {
- bio->bi_iter.bi_sector = pblk << (blockbits - 9);
+ bio->bi_iter.bi_sector = sector;
i = 0;
offset = 0;
do {
- err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
- ZERO_PAGE(0), pages[i],
- blocksize, offset, GFP_NOFS);
+ err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, du_index,
+ ZERO_PAGE(0), pages[i],
+ du_size, offset,
+ GFP_NOFS);
if (err)
goto out;
- lblk++;
- pblk++;
- len--;
- offset += blocksize;
- if (offset == PAGE_SIZE || len == 0) {
+ du_index++;
+ sector += 1U << (du_bits - SECTOR_SHIFT);
+ du_remaining--;
+ offset += du_size;
+ if (offset == PAGE_SIZE || du_remaining == 0) {
ret = bio_add_page(bio, pages[i++], offset, 0);
if (WARN_ON_ONCE(ret != offset)) {
err = -EIO;
@@ -176,13 +181,13 @@ int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
}
offset = 0;
}
- } while (i != nr_pages && len != 0);
+ } while (i != nr_pages && du_remaining != 0);
err = submit_bio_wait(bio);
if (err)
goto out;
bio_reset(bio, inode->i_sb->s_bdev, REQ_OP_WRITE);
- } while (len != 0);
+ } while (du_remaining != 0);
err = 0;
out:
bio_put(bio);
@@ -77,14 +77,14 @@ void fscrypt_free_bounce_page(struct page *bounce_page)
EXPORT_SYMBOL(fscrypt_free_bounce_page);
/*
- * Generate the IV for the given logical block number within the given file.
- * For filenames encryption, lblk_num == 0.
+ * Generate the IV for the given data unit index within the given file.
+ * For filenames encryption, index == 0.
*
* Keep this in sync with fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks()
* needs to know about any IV generation methods where the low bits of IV don't
- * simply contain the lblk_num (e.g., IV_INO_LBLK_32).
+ * simply contain the data unit index (e.g., IV_INO_LBLK_32).
*/
-void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
const struct fscrypt_info *ci)
{
u8 flags = fscrypt_policy_flags(&ci->ci_policy);
@@ -92,29 +92,29 @@ void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
memset(iv, 0, ci->ci_mode->ivsize);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
- WARN_ON_ONCE(lblk_num > U32_MAX);
+ WARN_ON_ONCE(index > U32_MAX);
WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
- lblk_num |= (u64)ci->ci_inode->i_ino << 32;
+ index |= (u64)ci->ci_inode->i_ino << 32;
} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
- WARN_ON_ONCE(lblk_num > U32_MAX);
- lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
+ WARN_ON_ONCE(index > U32_MAX);
+ index = (u32)(ci->ci_hashed_ino + index);
} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
}
- iv->lblk_num = cpu_to_le64(lblk_num);
+ iv->index = cpu_to_le64(index);
}
-/* Encrypt or decrypt a single filesystem block of file contents */
-int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
- u64 lblk_num, struct page *src_page,
- struct page *dest_page, unsigned int len,
- unsigned int offs, gfp_t gfp_flags)
+/* Encrypt or decrypt a single "data unit" of file contents. */
+int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
+ fscrypt_direction_t rw, u64 index,
+ struct page *src_page, struct page *dest_page,
+ unsigned int len, unsigned int offs,
+ gfp_t gfp_flags)
{
union fscrypt_iv iv;
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist dst, src;
- struct fscrypt_info *ci = inode->i_crypt_info;
struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
int res = 0;
@@ -123,7 +123,7 @@ int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
return -EINVAL;
- fscrypt_generate_iv(&iv, lblk_num, ci);
+ fscrypt_generate_iv(&iv, index, ci);
req = skcipher_request_alloc(tfm, gfp_flags);
if (!req)
@@ -144,28 +144,29 @@ int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
skcipher_request_free(req);
if (res) {
- fscrypt_err(inode, "%scryption failed for block %llu: %d",
- (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
+ fscrypt_err(ci->ci_inode,
+ "%scryption failed for data unit %llu: %d",
+ (rw == FS_DECRYPT ? "De" : "En"), index, res);
return res;
}
return 0;
}
/**
- * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
- * pagecache page
- * @page: The locked pagecache page containing the block(s) to encrypt
- * @len: Total size of the block(s) to encrypt. Must be a nonzero
- * multiple of the filesystem's block size.
- * @offs: Byte offset within @page of the first block to encrypt. Must be
- * a multiple of the filesystem's block size.
- * @gfp_flags: Memory allocation flags. See details below.
+ * fscrypt_encrypt_pagecache_blocks() - Encrypt data from a pagecache page
+ * @page: the locked pagecache page containing the data to encrypt
+ * @len: size of the data to encrypt, in bytes
+ * @offs: offset within @page of the data to encrypt, in bytes
+ * @gfp_flags: memory allocation flags; see details below
*
- * A new bounce page is allocated, and the specified block(s) are encrypted into
- * it. In the bounce page, the ciphertext block(s) will be located at the same
- * offsets at which the plaintext block(s) were located in the source page; any
- * other parts of the bounce page will be left uninitialized. However, normally
- * blocksize == PAGE_SIZE and the whole page is encrypted at once.
+ * This allocates a new bounce page and encrypts the given data into it. The
+ * length and offset of the data must be aligned to the file's crypto data unit
+ * size. Alignment to the filesystem block size fulfills this requirement, as
+ * the filesystem block size is always a multiple of the data unit size.
+ *
+ * In the bounce page, the ciphertext data will be located at the same offset at
+ * which the plaintext data was located in the source page. Any other parts of
+ * the bounce page will be left uninitialized.
*
* This is for use by the filesystem's ->writepages() method.
*
@@ -183,28 +184,29 @@ struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
{
const struct inode *inode = page->mapping->host;
- const unsigned int blockbits = inode->i_blkbits;
- const unsigned int blocksize = 1 << blockbits;
+ const struct fscrypt_info *ci = inode->i_crypt_info;
+ const unsigned int du_bits = ci->ci_data_unit_bits;
+ const unsigned int du_size = 1U << du_bits;
struct page *ciphertext_page;
- u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
- (offs >> blockbits);
+ u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) +
+ (offs >> du_bits);
unsigned int i;
int err;
if (WARN_ON_ONCE(!PageLocked(page)))
return ERR_PTR(-EINVAL);
- if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+ if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
return ERR_PTR(-EINVAL);
ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
if (!ciphertext_page)
return ERR_PTR(-ENOMEM);
- for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
- err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
- page, ciphertext_page,
- blocksize, i, gfp_flags);
+ for (i = offs; i < offs + len; i += du_size, index++) {
+ err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, index,
+ page, ciphertext_page,
+ du_size, i, gfp_flags);
if (err) {
fscrypt_free_bounce_page(ciphertext_page);
return ERR_PTR(err);
@@ -231,30 +233,33 @@ EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
* arbitrary page, not necessarily in the original pagecache page. The @inode
* and @lblk_num must be specified, as they can't be determined from @page.
*
+ * This is not compatible with fscrypt_operations::supports_subblock_data_units.
+ *
* Return: 0 on success; -errno on failure
*/
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num, gfp_t gfp_flags)
{
- return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
- len, offs, gfp_flags);
+ if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
+ return -EOPNOTSUPP;
+ return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_ENCRYPT,
+ lblk_num, page, page, len, offs,
+ gfp_flags);
}
EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
/**
- * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
- * pagecache folio
- * @folio: The locked pagecache folio containing the block(s) to decrypt
- * @len: Total size of the block(s) to decrypt. Must be a nonzero
- * multiple of the filesystem's block size.
- * @offs: Byte offset within @folio of the first block to decrypt. Must be
- * a multiple of the filesystem's block size.
+ * fscrypt_decrypt_pagecache_blocks() - Decrypt data from a pagecache folio
+ * @folio: the pagecache folio containing the data to decrypt
+ * @len: size of the data to decrypt, in bytes
+ * @offs: offset within @folio of the data to decrypt, in bytes
*
- * The specified block(s) are decrypted in-place within the pagecache folio,
- * which must still be locked and not uptodate.
- *
- * This is for use by the filesystem's ->readahead() method.
+ * Decrypt data that has just been read from an encrypted file. The data must
+ * be located in a pagecache folio that is still locked and not yet uptodate.
+ * The length and offset of the data must be aligned to the file's crypto data
+ * unit size. Alignment to the filesystem block size fulfills this requirement,
+ * as the filesystem block size is always a multiple of the data unit size.
*
* Return: 0 on success; -errno on failure
*/
@@ -262,25 +267,26 @@ int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
size_t offs)
{
const struct inode *inode = folio->mapping->host;
- const unsigned int blockbits = inode->i_blkbits;
- const unsigned int blocksize = 1 << blockbits;
- u64 lblk_num = ((u64)folio->index << (PAGE_SHIFT - blockbits)) +
- (offs >> blockbits);
+ const struct fscrypt_info *ci = inode->i_crypt_info;
+ const unsigned int du_bits = ci->ci_data_unit_bits;
+ const unsigned int du_size = 1U << du_bits;
+ u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) +
+ (offs >> du_bits);
size_t i;
int err;
if (WARN_ON_ONCE(!folio_test_locked(folio)))
return -EINVAL;
- if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+ if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
return -EINVAL;
- for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
+ for (i = offs; i < offs + len; i += du_size, index++) {
struct page *page = folio_page(folio, i >> PAGE_SHIFT);
- err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
- page, blocksize, i & ~PAGE_MASK,
- GFP_NOFS);
+ err = fscrypt_crypt_data_unit(ci, FS_DECRYPT, index, page,
+ page, du_size, i & ~PAGE_MASK,
+ GFP_NOFS);
if (err)
return err;
}
@@ -302,14 +308,19 @@ EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
* arbitrary page, not necessarily in the original pagecache page. The @inode
* and @lblk_num must be specified, as they can't be determined from @page.
*
+ * This is not compatible with fscrypt_operations::supports_subblock_data_units.
+ *
* Return: 0 on success; -errno on failure
*/
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num)
{
- return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
- len, offs, GFP_NOFS);
+ if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
+ return -EOPNOTSUPP;
+ return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_DECRYPT,
+ lblk_num, page, page, len, offs,
+ GFP_NOFS);
}
EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
@@ -47,7 +47,8 @@ struct fscrypt_context_v2 {
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 __reserved[4];
+ u8 log2_data_unit_size;
+ u8 __reserved[3];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
};
@@ -165,6 +166,26 @@ fscrypt_policy_flags(const union fscrypt_policy *policy)
BUG();
}
+static inline int
+fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
+ const struct inode *inode)
+{
+ return policy->log2_data_unit_size ?: inode->i_blkbits;
+}
+
+static inline int
+fscrypt_policy_du_bits(const union fscrypt_policy *policy,
+ const struct inode *inode)
+{
+ switch (policy->version) {
+ case FSCRYPT_POLICY_V1:
+ return inode->i_blkbits;
+ case FSCRYPT_POLICY_V2:
+ return fscrypt_policy_v2_du_bits(&policy->v2, inode);
+ }
+ BUG();
+}
+
/*
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
@@ -211,6 +232,13 @@ struct fscrypt_info {
bool ci_inlinecrypt;
#endif
+ /*
+ * log2 of the data unit size (granularity of contents encryption) of
+ * this file. This is computable from ci_policy and ci_inode but is
+ * cached here for efficiency. Only used for regular files.
+ */
+ u8 ci_data_unit_bits;
+
/*
* Encryption mode used for this inode. It corresponds to either the
* contents or filenames encryption mode, depending on the inode type.
@@ -265,10 +293,11 @@ typedef enum {
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
int fscrypt_initialize(struct super_block *sb);
-int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
- u64 lblk_num, struct page *src_page,
- struct page *dest_page, unsigned int len,
- unsigned int offs, gfp_t gfp_flags);
+int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
+ fscrypt_direction_t rw, u64 index,
+ struct page *src_page, struct page *dest_page,
+ unsigned int len, unsigned int offs,
+ gfp_t gfp_flags);
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
void __printf(3, 4) __cold
@@ -283,8 +312,8 @@ fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
union fscrypt_iv {
struct {
- /* logical block number within the file */
- __le64 lblk_num;
+ /* zero-based index of data unit within the file */
+ __le64 index;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
@@ -293,17 +322,17 @@ union fscrypt_iv {
__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
};
-void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
const struct fscrypt_info *ci);
/*
- * Return the number of bits used by the maximum file logical block number that
- * is possible on the given filesystem.
+ * Return the number of bits used by the maximum file data unit index that is
+ * possible on the given filesystem, using the given data unit size.
*/
static inline int
-fscrypt_max_file_lblk_bits(const struct super_block *sb)
+fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
{
- return fls64(sb->s_maxbytes - 1) - sb->s_blocksize_bits;
+ return fls64(sb->s_maxbytes - 1) - du_bits;
}
/* fname.c */
@@ -39,10 +39,16 @@ static struct block_device **fscrypt_get_devices(struct super_block *sb,
return devs;
}
+static unsigned int fscrypt_get_du_size(const struct fscrypt_info *ci)
+{
+ return 1U << ci->ci_data_unit_bits;
+}
+
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
{
const struct super_block *sb = ci->ci_inode->i_sb;
unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
+ int dun_bits;
if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
return offsetofend(union fscrypt_iv, nonce);
@@ -53,8 +59,9 @@ static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
return sizeof(__le32);
- /* Default case: IVs are just the file logical block number */
- return DIV_ROUND_UP(fscrypt_max_file_lblk_bits(sb), 8);
+ /* Default case: IVs are just the file data unit index */
+ dun_bits = fscrypt_max_file_dun_bits(sb, ci->ci_data_unit_bits);
+ return DIV_ROUND_UP(dun_bits, 8);
}
/*
@@ -126,7 +133,7 @@ int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
* crypto configuration that the file would use.
*/
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
- crypto_cfg.data_unit_size = sb->s_blocksize;
+ crypto_cfg.data_unit_size = fscrypt_get_du_size(ci);
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
devs = fscrypt_get_devices(sb, &num_devs);
@@ -165,7 +172,8 @@ int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
return -ENOMEM;
err = blk_crypto_init_key(blk_key, raw_key, crypto_mode,
- fscrypt_get_dun_bytes(ci), sb->s_blocksize);
+ fscrypt_get_dun_bytes(ci),
+ fscrypt_get_du_size(ci));
if (err) {
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
goto fail;
@@ -232,10 +240,12 @@ EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
{
+ u64 index = lblk_num << (ci->ci_inode->i_blkbits -
+ ci->ci_data_unit_bits);
union fscrypt_iv iv;
int i;
- fscrypt_generate_iv(&iv, lblk_num, ci);
+ fscrypt_generate_iv(&iv, index, ci);
BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
@@ -580,6 +580,9 @@ fscrypt_setup_encryption_info(struct inode *inode,
WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
crypt_info->ci_mode = mode;
+ crypt_info->ci_data_unit_bits =
+ fscrypt_policy_du_bits(&crypt_info->ci_policy, inode);
+
res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
if (res)
goto out;
@@ -165,10 +165,11 @@ static bool supported_iv_ino_lblk_policy(const struct fscrypt_policy_v2 *policy,
}
/*
- * IV_INO_LBLK_64 and IV_INO_LBLK_32 both require that file logical
- * block numbers fit in 32 bits.
+ * IV_INO_LBLK_64 and IV_INO_LBLK_32 both require that file data unit
+ * indices fit in 32 bits.
*/
- if (fscrypt_max_file_lblk_bits(sb) > 32) {
+ if (fscrypt_max_file_dun_bits(sb,
+ fscrypt_policy_v2_du_bits(policy, inode)) > 32) {
fscrypt_warn(inode,
"Can't use %s policy on filesystem '%s' because its maximum file size is too large",
type, sb->s_id);
@@ -243,6 +244,31 @@ static bool fscrypt_supported_v2_policy(const struct fscrypt_policy_v2 *policy,
return false;
}
+ if (policy->log2_data_unit_size) {
+ if (!inode->i_sb->s_cop->supports_subblock_data_units) {
+ fscrypt_warn(inode,
+ "Filesystem does not support configuring crypto data unit size");
+ return false;
+ }
+ if (policy->log2_data_unit_size > inode->i_blkbits ||
+ policy->log2_data_unit_size < SECTOR_SHIFT /* 9 */) {
+ fscrypt_warn(inode,
+ "Unsupported log2_data_unit_size in encryption policy: %d",
+ policy->log2_data_unit_size);
+ return false;
+ }
+ if (policy->log2_data_unit_size != inode->i_blkbits &&
+ (policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) {
+ /*
+ * Not safe to enable yet, as we need to ensure that DUN
+ * wraparound can only occur on a FS block boundary.
+ */
+ fscrypt_warn(inode,
+ "Sub-block data units not yet supported with IV_INO_LBLK_32");
+ return false;
+ }
+ }
+
if ((policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) &&
!supported_direct_key_modes(inode, policy->contents_encryption_mode,
policy->filenames_encryption_mode))
@@ -329,6 +355,7 @@ static int fscrypt_new_context(union fscrypt_context *ctx_u,
ctx->filenames_encryption_mode =
policy->filenames_encryption_mode;
ctx->flags = policy->flags;
+ ctx->log2_data_unit_size = policy->log2_data_unit_size;
memcpy(ctx->master_key_identifier,
policy->master_key_identifier,
sizeof(ctx->master_key_identifier));
@@ -389,6 +416,7 @@ int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
policy->filenames_encryption_mode =
ctx->filenames_encryption_mode;
policy->flags = ctx->flags;
+ policy->log2_data_unit_size = ctx->log2_data_unit_size;
memcpy(policy->__reserved, ctx->__reserved,
sizeof(policy->__reserved));
memcpy(policy->master_key_identifier,
@@ -235,6 +235,7 @@ static bool ext4_has_stable_inodes(struct super_block *sb)
const struct fscrypt_operations ext4_cryptops = {
.needs_bounce_pages = 1,
.has_32bit_inodes = 1,
+ .supports_subblock_data_units = 1,
.legacy_key_prefix_for_backcompat = "ext4:",
.get_context = ext4_get_context,
.set_context = ext4_set_context,
@@ -3226,6 +3226,7 @@ static struct block_device **f2fs_get_devices(struct super_block *sb,
static const struct fscrypt_operations f2fs_cryptops = {
.needs_bounce_pages = 1,
.has_32bit_inodes = 1,
+ .supports_subblock_data_units = 1,
.legacy_key_prefix_for_backcompat = "f2fs:",
.get_context = f2fs_get_context,
.set_context = f2fs_set_context,
@@ -84,6 +84,18 @@ struct fscrypt_operations {
*/
unsigned int has_32bit_inodes : 1;
+ /*
+ * If set, then fs/crypto/ will allow users to select a crypto data unit
+ * size that is less than the filesystem block size. This is done via
+ * the log2_data_unit_size field of the fscrypt policy. This flag is
+ * not compatible with filesystems that encrypt variable-length blocks
+ * (i.e. blocks that aren't all equal to filesystem's block size), for
+ * example as a result of compression. It's also not compatible with
+ * the fscrypt_encrypt_block_inplace() and
+ * fscrypt_decrypt_block_inplace() functions.
+ */
+ unsigned int supports_subblock_data_units : 1;
+
/*
* This field exists only for backwards compatibility reasons and should
* only be set by the filesystems that are setting it already. It
@@ -71,7 +71,8 @@ struct fscrypt_policy_v2 {
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 __reserved[4];
+ __u8 log2_data_unit_size;
+ __u8 __reserved[3];
__u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};