From patchwork Wed Apr 19 21:17:13 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Josef Bacik X-Patchwork-Id: 13217388 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id AA8D9C77B7A for ; Wed, 19 Apr 2023 21:17:39 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S230480AbjDSVRi (ORCPT ); Wed, 19 Apr 2023 17:17:38 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:39836 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S230041AbjDSVRd (ORCPT ); Wed, 19 Apr 2023 17:17:33 -0400 Received: from mail-qv1-xf33.google.com (mail-qv1-xf33.google.com [IPv6:2607:f8b0:4864:20::f33]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 3D47C59FE for ; Wed, 19 Apr 2023 14:17:28 -0700 (PDT) Received: by mail-qv1-xf33.google.com with SMTP id h14so1022461qvr.7 for ; Wed, 19 Apr 2023 14:17:28 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=toxicpanda-com.20221208.gappssmtp.com; s=20221208; t=1681939047; x=1684531047; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:to:from:from:to:cc:subject:date:message-id :reply-to; bh=oh1dpq/rgodqSThtaPqj+w/HM7CjssLAdjoDpUJRqEo=; b=jnrg5K+yr8shurKJPy/lABAOMSUs9tRHDL2qbcSqjbU4GpMdqumRU/XyH7pZ24enBV +GeCVcxkNvOgO9XHhB96CS2qHmbwfhh73L21nRhmAyP3mvJ2ruutj4NOENohv0I0sBiP +3tsLgL4kkhZQdt57lQ9+Xw1CHCm1/DiiI6VZdsx6S2etPQYWSjBopu3+83zMS2qTAfS Smmh5l5i7J56UhpPF6mlEVPQWsehaTzXbjkBQKrSlaYE0VZwZ6iifQXciJqoUZeptZR7 PFY2YFgZZ+UAw/rOzAAFt8i8urfm4/E8r6097e2Yz2xd7ud66OgNFfekXlyenZPfSTrk l1nw== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20221208; t=1681939047; x=1684531047; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:to:from:x-gm-message-state:from:to:cc :subject:date:message-id:reply-to; bh=oh1dpq/rgodqSThtaPqj+w/HM7CjssLAdjoDpUJRqEo=; b=RPcLNMWfWVCL08Q3iSE75hZ03Wb7aAPSEO+0iwC1PUuGVFZPb28HnY0MqW/77ROL84 u2Lp7mdSpwvXUBgiXri5W83UaoFcs4bsEJrbd7tSS/aHdp0iVQd/NAY+RwbVzkirR68P ZNPaKSCs9tKBoROVOA7fVTKQNxLfiG/yYAT88ldJ9a3LnfZPYLWw+tRhta0STL2W8GCJ D4ipdPr4JBvNKDh3ipWp0/lxd9R/cY1V1YrvyenRtAWmqEZUbH78sDs1ckfSEBeP+3LO G/gCjRU4Scdb0LdXWqt0rRE1vHKvdkwS77jlPSUACw8JfIaBC48dPULA+Bm3+KrtzUZD Uk9g== X-Gm-Message-State: AAQBX9f7oP1HP6Xl84/n+MArBMBWH92QdLpUnIqjGgesm+apH18jrr2P DHg58ov5DSyNEqtdr63/ffAZmPr+oC0YqMbGuAUbRg== X-Google-Smtp-Source: AKy350Yp0wRIZi1Q2vWRhx65gnFkHVWdagxsqj0cLoNO1Ypn9Fw/dODAzGc2csAtOjTMHH93RDaAkw== X-Received: by 2002:ad4:5c83:0:b0:5f1:6c2c:1d75 with SMTP id o3-20020ad45c83000000b005f16c2c1d75mr6917692qvh.28.1681939046235; Wed, 19 Apr 2023 14:17:26 -0700 (PDT) Received: from localhost (cpe-174-109-170-245.nc.res.rr.com. [174.109.170.245]) by smtp.gmail.com with ESMTPSA id w4-20020a05620a094400b0074e003c55f0sm1754592qkw.102.2023.04.19.14.17.25 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Wed, 19 Apr 2023 14:17:25 -0700 (PDT) From: Josef Bacik To: linux-btrfs@vger.kernel.org, kernel-team@fb.com Subject: [PATCH 2/8] btrfs-progs: sync ondisk definitions from the kernel Date: Wed, 19 Apr 2023 17:17:13 -0400 Message-Id: X-Mailer: git-send-email 2.40.0 In-Reply-To: References: MIME-Version: 1.0 Precedence: bulk List-ID: X-Mailing-List: linux-btrfs@vger.kernel.org This pulls in the kernel's btrfs_tree.h, which now has all of the ondisk definitions. Include this into ctree.h, and then yank out all the duplicate code from ctree.h. Signed-off-by: Josef Bacik --- kernel-shared/ctree.h | 954 +---------------------- kernel-shared/uapi/btrfs_tree.h | 1259 +++++++++++++++++++++++++++++++ 2 files changed, 1261 insertions(+), 952 deletions(-) create mode 100644 kernel-shared/uapi/btrfs_tree.h diff --git a/kernel-shared/ctree.h b/kernel-shared/ctree.h index f31db57b..a5bcc9bc 100644 --- a/kernel-shared/ctree.h +++ b/kernel-shared/ctree.h @@ -26,11 +26,11 @@ #include "common/extent-cache.h" #include "kernel-shared/extent_io.h" #include "kernel-shared/uapi/btrfs.h" +#include "kernel-shared/uapi/btrfs_tree.h" struct btrfs_root; struct btrfs_trans_handle; struct btrfs_free_space_ctl; -#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ /* * Fake signature for an unfinalized filesystem, which only has barebone tree @@ -42,272 +42,10 @@ struct btrfs_free_space_ctl; #define BTRFS_MAX_MIRRORS 3 -#define BTRFS_MAX_LEVEL 8 - -/* holds pointers to all of the tree roots */ -#define BTRFS_ROOT_TREE_OBJECTID 1ULL - -/* stores information about which extents are in use, and reference counts */ -#define BTRFS_EXTENT_TREE_OBJECTID 2ULL - -/* - * chunk tree stores translations from logical -> physical block numbering - * the super block points to the chunk tree - */ -#define BTRFS_CHUNK_TREE_OBJECTID 3ULL - -/* - * stores information about which areas of a given device are in use. - * one per device. The tree of tree roots points to the device tree - */ -#define BTRFS_DEV_TREE_OBJECTID 4ULL - -/* one per subvolume, storing files and directories */ -#define BTRFS_FS_TREE_OBJECTID 5ULL - -/* directory objectid inside the root tree */ -#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL -/* holds checksums of all the data extents */ -#define BTRFS_CSUM_TREE_OBJECTID 7ULL -#define BTRFS_QUOTA_TREE_OBJECTID 8ULL - -/* for storing items that use the BTRFS_UUID_KEY* */ -#define BTRFS_UUID_TREE_OBJECTID 9ULL - -/* tracks free space in block groups. */ -#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL - -/* hold the block group items. */ -#define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL - -/* device stats in the device tree */ -#define BTRFS_DEV_STATS_OBJECTID 0ULL - -/* for storing balance parameters in the root tree */ -#define BTRFS_BALANCE_OBJECTID -4ULL - -/* orphan objectid for tracking unlinked/truncated files */ -#define BTRFS_ORPHAN_OBJECTID -5ULL - -/* does write ahead logging to speed up fsyncs */ -#define BTRFS_TREE_LOG_OBJECTID -6ULL -#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL - -/* space balancing */ -#define BTRFS_TREE_RELOC_OBJECTID -8ULL -#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL - -/* - * extent checksums all have this objectid - * this allows them to share the logging tree - * for fsyncs - */ -#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL - -/* For storing free space cache */ -#define BTRFS_FREE_SPACE_OBJECTID -11ULL - -/* - * The inode number assigned to the special inode for storing - * free ino cache - */ -#define BTRFS_FREE_INO_OBJECTID -12ULL - -/* dummy objectid represents multiple objectids */ -#define BTRFS_MULTIPLE_OBJECTIDS -255ULL - -/* - * All files have objectids in this range. - */ -#define BTRFS_FIRST_FREE_OBJECTID 256ULL -#define BTRFS_LAST_FREE_OBJECTID -256ULL -#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL - - - -/* - * the device items go into the chunk tree. The key is in the form - * [ 1 BTRFS_DEV_ITEM_KEY device_id ] - */ -#define BTRFS_DEV_ITEMS_OBJECTID 1ULL - -#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2ULL - -/* - * the max metadata block size. This limit is somewhat artificial, - * but the memmove costs go through the roof for larger blocks. - */ -#define BTRFS_MAX_METADATA_BLOCKSIZE 65536 - -/* - * we can actually store much bigger names, but lets not confuse the rest - * of linux - */ -#define BTRFS_NAME_LEN 255 - -/* - * Theoretical limit is larger, but we keep this down to a sane - * value. That should limit greatly the possibility of collisions on - * inode ref items. - */ -#define BTRFS_LINK_MAX 65535U - -/* 32 bytes in various csum fields */ -#define BTRFS_CSUM_SIZE 32 - -/* csum types */ -enum btrfs_csum_type { - BTRFS_CSUM_TYPE_CRC32 = 0, - BTRFS_CSUM_TYPE_XXHASH = 1, - BTRFS_CSUM_TYPE_SHA256 = 2, - BTRFS_CSUM_TYPE_BLAKE2 = 3, -}; - -#define BTRFS_EMPTY_DIR_SIZE 0 - -#define BTRFS_FT_UNKNOWN 0 -#define BTRFS_FT_REG_FILE 1 -#define BTRFS_FT_DIR 2 -#define BTRFS_FT_CHRDEV 3 -#define BTRFS_FT_BLKDEV 4 -#define BTRFS_FT_FIFO 5 -#define BTRFS_FT_SOCK 6 -#define BTRFS_FT_SYMLINK 7 -#define BTRFS_FT_XATTR 8 -#define BTRFS_FT_MAX 9 - -#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) - -/* - * the key defines the order in the tree, and so it also defines (optimal) - * block layout. objectid corresponds to the inode number. The flags - * tells us things about the object, and is a kind of stream selector. - * so for a given inode, keys with flags of 1 might refer to the inode - * data, flags of 2 may point to file data in the btree and flags == 3 - * may point to extents. - * - * offset is the starting byte offset for this key in the stream. - * - * btrfs_disk_key is in disk byte order. struct btrfs_key is always - * in cpu native order. Otherwise they are identical and their sizes - * should be the same (ie both packed) - */ -struct btrfs_disk_key { - __le64 objectid; - u8 type; - __le64 offset; -} __attribute__ ((__packed__)); - -struct btrfs_key { - u64 objectid; - u8 type; - u64 offset; -} __attribute__ ((__packed__)); - struct btrfs_mapping_tree { struct cache_tree cache_tree; }; -#define BTRFS_UUID_SIZE 16 -struct btrfs_dev_item { - /* the internal btrfs device id */ - __le64 devid; - - /* size of the device */ - __le64 total_bytes; - - /* bytes used */ - __le64 bytes_used; - - /* optimal io alignment for this device */ - __le32 io_align; - - /* optimal io width for this device */ - __le32 io_width; - - /* minimal io size for this device */ - __le32 sector_size; - - /* type and info about this device */ - __le64 type; - - /* expected generation for this device */ - __le64 generation; - - /* - * starting byte of this partition on the device, - * to allow for stripe alignment in the future - */ - __le64 start_offset; - - /* grouping information for allocation decisions */ - __le32 dev_group; - - /* seek speed 0-100 where 100 is fastest */ - u8 seek_speed; - - /* bandwidth 0-100 where 100 is fastest */ - u8 bandwidth; - - /* btrfs generated uuid for this device */ - u8 uuid[BTRFS_UUID_SIZE]; - - /* uuid of FS who owns this device */ - u8 fsid[BTRFS_UUID_SIZE]; -} __attribute__ ((__packed__)); - -struct btrfs_stripe { - __le64 devid; - __le64 offset; - u8 dev_uuid[BTRFS_UUID_SIZE]; -} __attribute__ ((__packed__)); - -struct btrfs_chunk { - /* size of this chunk in bytes */ - __le64 length; - - /* objectid of the root referencing this chunk */ - __le64 owner; - - __le64 stripe_len; - __le64 type; - - /* optimal io alignment for this chunk */ - __le32 io_align; - - /* optimal io width for this chunk */ - __le32 io_width; - - /* minimal io size for this chunk */ - __le32 sector_size; - - /* 2^16 stripes is quite a lot, a second limit is the size of a single - * item in the btree - */ - __le16 num_stripes; - - /* sub stripes only matter for raid10 */ - __le16 sub_stripes; - struct btrfs_stripe stripe; - /* additional stripes go here */ -} __attribute__ ((__packed__)); - -#define BTRFS_FREE_SPACE_EXTENT 1 -#define BTRFS_FREE_SPACE_BITMAP 2 - -struct btrfs_free_space_entry { - __le64 offset; - __le64 bytes; - u8 type; -} __attribute__ ((__packed__)); - -struct btrfs_free_space_header { - struct btrfs_disk_key location; - __le64 generation; - __le64 num_entries; - __le64 num_bitmaps; -} __attribute__ ((__packed__)); - static inline unsigned long btrfs_chunk_item_size(int num_stripes) { BUG_ON(num_stripes == 0); @@ -315,17 +53,8 @@ static inline unsigned long btrfs_chunk_item_size(int num_stripes) sizeof(struct btrfs_stripe) * (num_stripes - 1); } -#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) -#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) - /* Temporary flag not on-disk for blocks that have changed csum already */ -#define BTRFS_HEADER_FLAG_CSUM_NEW (1ULL << 16) - -#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) -#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) -#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) -#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) -#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) +#define BTRFS_HEADER_FLAG_CSUM_NEW (1ULL << 16) #define BTRFS_SUPER_FLAG_CHANGING_CSUM (1ULL << 37) /* @@ -335,32 +64,6 @@ static inline unsigned long btrfs_chunk_item_size(int num_stripes) */ #define BTRFS_SUPER_FLAG_CHANGING_BG_TREE (1ULL << 38) -#define BTRFS_BACKREF_REV_MAX 256 -#define BTRFS_BACKREF_REV_SHIFT 56 -#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ - BTRFS_BACKREF_REV_SHIFT) - -#define BTRFS_OLD_BACKREF_REV 0 -#define BTRFS_MIXED_BACKREF_REV 1 - -/* - * every tree block (leaf or node) starts with this header. - */ -struct btrfs_header { - /* these first four must match the super block */ - u8 csum[BTRFS_CSUM_SIZE]; - u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ - __le64 bytenr; /* which block this node is supposed to live in */ - __le64 flags; - - /* allowed to be different from the super from here on down */ - u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; - __le64 generation; - __le64 owner; - __le32 nritems; - u8 level; -} __attribute__ ((__packed__)); - static inline u32 __BTRFS_LEAF_DATA_SIZE(u32 nodesize) { return nodesize - sizeof(struct btrfs_header); @@ -368,160 +71,9 @@ static inline u32 __BTRFS_LEAF_DATA_SIZE(u32 nodesize) #define BTRFS_LEAF_DATA_SIZE(fs_info) (fs_info->leaf_data_size) -/* - * this is a very generous portion of the super block, giving us - * room to translate 14 chunks with 3 stripes each. - */ -#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 -#define BTRFS_LABEL_SIZE 256 - -/* - * just in case we somehow lose the roots and are not able to mount, - * we store an array of the roots from previous transactions - * in the super. - */ -#define BTRFS_NUM_BACKUP_ROOTS 4 -struct btrfs_root_backup { - __le64 tree_root; - __le64 tree_root_gen; - - __le64 chunk_root; - __le64 chunk_root_gen; - - __le64 extent_root; - __le64 extent_root_gen; - - __le64 fs_root; - __le64 fs_root_gen; - - __le64 dev_root; - __le64 dev_root_gen; - - __le64 csum_root; - __le64 csum_root_gen; - - __le64 total_bytes; - __le64 bytes_used; - __le64 num_devices; - /* future */ - __le64 unsed_64[4]; - - u8 tree_root_level; - u8 chunk_root_level; - u8 extent_root_level; - u8 fs_root_level; - u8 dev_root_level; - u8 csum_root_level; - /* future and to align */ - u8 unused_8[10]; -} __attribute__ ((__packed__)); - #define BTRFS_SUPER_INFO_OFFSET (65536) #define BTRFS_SUPER_INFO_SIZE (4096) -/* - * the super block basically lists the main trees of the FS - * it currently lacks any block count etc etc - */ -struct btrfs_super_block { - u8 csum[BTRFS_CSUM_SIZE]; - /* the first 3 fields must match struct btrfs_header */ - u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ - __le64 bytenr; /* this block number */ - __le64 flags; - - /* allowed to be different from the btrfs_header from here own down */ - __le64 magic; - __le64 generation; - __le64 root; - __le64 chunk_root; - __le64 log_root; - - /* - * This has never been used and is 0 in all versions. We always use - * generation + 1 to read log tree root. - */ - __le64 __unused_log_root_transid; - __le64 total_bytes; - __le64 bytes_used; - __le64 root_dir_objectid; - __le64 num_devices; - __le32 sectorsize; - __le32 nodesize; - /* Unused and must be equal to nodesize */ - __le32 __unused_leafsize; - __le32 stripesize; - __le32 sys_chunk_array_size; - __le64 chunk_root_generation; - __le64 compat_flags; - __le64 compat_ro_flags; - __le64 incompat_flags; - __le16 csum_type; - u8 root_level; - u8 chunk_root_level; - u8 log_root_level; - struct btrfs_dev_item dev_item; - - char label[BTRFS_LABEL_SIZE]; - - __le64 cache_generation; - __le64 uuid_tree_generation; - - u8 metadata_uuid[BTRFS_FSID_SIZE]; - - __le64 nr_global_roots; - - __le64 reserved[27]; - u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; - struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; - /* Padded to 4096 bytes */ - u8 padding[565]; -} __attribute__ ((__packed__)); -BUILD_ASSERT(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); - -/* - * Compat flags that we support. If any incompat flags are set other than the - * ones specified below then we will fail to mount - */ -#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE (1ULL << 0) -/* - * Older kernels on big-endian systems produced broken free space tree bitmaps, - * and btrfs-progs also used to corrupt the free space tree. If this bit is - * clear, then the free space tree cannot be trusted. btrfs-progs can also - * intentionally clear this bit to ask the kernel to rebuild the free space - * tree. - */ -#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID (1ULL << 1) -#define BTRFS_FEATURE_COMPAT_RO_VERITY (1ULL << 2) - -/* - * Save all block group items into a dedicated block group tree, to greatly - * reduce mount time for large fs. - */ -#define BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE (1ULL << 3) - -#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) -#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1) -#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2) -#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3) -#define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD (1ULL << 4) - -/* - * older kernels tried to do bigger metadata blocks, but the - * code was pretty buggy. Lets not let them try anymore. - */ -#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5) -#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6) -#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7) -#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8) -#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9) -#define BTRFS_FEATURE_INCOMPAT_METADATA_UUID (1ULL << 10) -#define BTRFS_FEATURE_INCOMPAT_RAID1C34 (1ULL << 11) -#define BTRFS_FEATURE_INCOMPAT_ZONED (1ULL << 12) -#define BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2 (1ULL << 13) - -#define BTRFS_FEATURE_COMPAT_SUPP 0ULL - /* * The FREE_SPACE_TREE and FREE_SPACE_TREE_VALID compat_ro bits must not be * added here until read-write support for the free space tree is implemented in @@ -566,43 +118,6 @@ BUILD_ASSERT(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); BTRFS_FEATURE_INCOMPAT_ZONED) #endif -/* - * A leaf is full of items. offset and size tell us where to find - * the item in the leaf (relative to the start of the data area) - */ -struct btrfs_item { - struct btrfs_disk_key key; - __le32 offset; - __le32 size; -} __attribute__ ((__packed__)); - -/* - * leaves have an item area and a data area: - * [item0, item1....itemN] [free space] [dataN...data1, data0] - * - * The data is separate from the items to get the keys closer together - * during searches. - */ -struct btrfs_leaf { - struct btrfs_header header; - struct btrfs_item items[]; -} __attribute__ ((__packed__)); - -/* - * all non-leaf blocks are nodes, they hold only keys and pointers to - * other blocks - */ -struct btrfs_key_ptr { - struct btrfs_disk_key key; - __le64 blockptr; - __le64 generation; -} __attribute__ ((__packed__)); - -struct btrfs_node { - struct btrfs_header header; - struct btrfs_key_ptr ptrs[]; -} __attribute__ ((__packed__)); - /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point @@ -631,98 +146,11 @@ struct btrfs_path { u8 skip_check_block; }; -/* - * items in the extent btree are used to record the objectid of the - * owner of the block and the number of references - */ - -struct btrfs_extent_item { - __le64 refs; - __le64 generation; - __le64 flags; -} __attribute__ ((__packed__)); - -struct btrfs_extent_item_v0 { - __le32 refs; -} __attribute__ ((__packed__)); - #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) \ ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ sizeof(struct btrfs_item)) #define BTRFS_MAX_EXTENT_SIZE 128UL * 1024 * 1024 -#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) -#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) - -/* following flags only apply to tree blocks */ - -/* use full backrefs for extent pointers in the block*/ -#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) - -struct btrfs_tree_block_info { - struct btrfs_disk_key key; - u8 level; -} __attribute__ ((__packed__)); - -struct btrfs_extent_data_ref { - __le64 root; - __le64 objectid; - __le64 offset; - __le32 count; -} __attribute__ ((__packed__)); - -struct btrfs_shared_data_ref { - __le32 count; -} __attribute__ ((__packed__)); - -struct btrfs_extent_inline_ref { - u8 type; - __le64 offset; -} __attribute__ ((__packed__)); - -struct btrfs_extent_ref_v0 { - __le64 root; - __le64 generation; - __le64 objectid; - __le32 count; -} __attribute__ ((__packed__)); - -/* dev extents record free space on individual devices. The owner - * field points back to the chunk allocation mapping tree that allocated - * the extent. The chunk tree uuid field is a way to double check the owner - */ -struct btrfs_dev_extent { - __le64 chunk_tree; - __le64 chunk_objectid; - __le64 chunk_offset; - __le64 length; - u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; -} __attribute__ ((__packed__)); - -struct btrfs_inode_ref { - __le64 index; - __le16 name_len; - /* name goes here */ -} __attribute__ ((__packed__)); - -struct btrfs_inode_extref { - __le64 parent_objectid; - __le64 index; - __le16 name_len; - __u8 name[0]; /* name goes here */ -} __attribute__ ((__packed__)); - -struct btrfs_timespec { - __le64 sec; - __le32 nsec; -} __attribute__ ((__packed__)); - -/* we don't understand any encryption methods right now */ -typedef enum { - BTRFS_ENCRYPTION_NONE = 0, - BTRFS_ENCRYPTION_LAST = 1, -} btrfs_encryption_type; - enum btrfs_tree_block_status { BTRFS_TREE_BLOCK_CLEAN, BTRFS_TREE_BLOCK_INVALID_NRITEMS, @@ -734,269 +162,6 @@ enum btrfs_tree_block_status { BTRFS_TREE_BLOCK_INVALID_BLOCKPTR, }; -struct btrfs_inode_item { - /* nfs style generation number */ - __le64 generation; - /* transid that last touched this inode */ - __le64 transid; - __le64 size; - __le64 nbytes; - __le64 block_group; - __le32 nlink; - __le32 uid; - __le32 gid; - __le32 mode; - __le64 rdev; - __le64 flags; - - /* modification sequence number for NFS */ - __le64 sequence; - - /* - * a little future expansion, for more than this we can - * just grow the inode item and version it - */ - __le64 reserved[4]; - struct btrfs_timespec atime; - struct btrfs_timespec ctime; - struct btrfs_timespec mtime; - struct btrfs_timespec otime; -} __attribute__ ((__packed__)); - -struct btrfs_dir_log_item { - __le64 end; -} __attribute__ ((__packed__)); - -struct btrfs_dir_item { - struct btrfs_disk_key location; - __le64 transid; - __le16 data_len; - __le16 name_len; - u8 type; -} __attribute__ ((__packed__)); - -struct btrfs_root_item_v0 { - struct btrfs_inode_item inode; - __le64 generation; - __le64 root_dirid; - __le64 bytenr; - __le64 byte_limit; - __le64 bytes_used; - __le64 last_snapshot; - __le64 flags; - __le32 refs; - struct btrfs_disk_key drop_progress; - u8 drop_level; - u8 level; -} __attribute__ ((__packed__)); - -struct btrfs_root_item { - struct btrfs_inode_item inode; - __le64 generation; - __le64 root_dirid; - __le64 bytenr; - __le64 byte_limit; - __le64 bytes_used; - __le64 last_snapshot; - __le64 flags; - __le32 refs; - struct btrfs_disk_key drop_progress; - u8 drop_level; - u8 level; - - /* - * The following fields appear after subvol_uuids+subvol_times - * were introduced. - */ - - /* - * This generation number is used to test if the new fields are valid - * and up to date while reading the root item. Every time the root item - * is written out, the "generation" field is copied into this field. If - * anyone ever mounted the fs with an older kernel, we will have - * mismatching generation values here and thus must invalidate the - * new fields. See btrfs_update_root and btrfs_find_last_root for - * details. - * the offset of generation_v2 is also used as the start for the memset - * when invalidating the fields. - */ - __le64 generation_v2; - u8 uuid[BTRFS_UUID_SIZE]; - u8 parent_uuid[BTRFS_UUID_SIZE]; - u8 received_uuid[BTRFS_UUID_SIZE]; - __le64 ctransid; /* updated when an inode changes */ - __le64 otransid; /* trans when created */ - __le64 stransid; /* trans when sent. non-zero for received subvol */ - __le64 rtransid; /* trans when received. non-zero for received subvol */ - struct btrfs_timespec ctime; - struct btrfs_timespec otime; - struct btrfs_timespec stime; - struct btrfs_timespec rtime; - - /* - * If we want to use a specific set of fst/checksum/extent roots for - * this root. - */ - __le64 global_tree_id; - __le64 reserved[7]; /* for future */ -} __attribute__ ((__packed__)); - -/* - * this is used for both forward and backward root refs - */ -struct btrfs_root_ref { - __le64 dirid; - __le64 sequence; - __le16 name_len; -} __attribute__ ((__packed__)); - -struct btrfs_disk_balance_args { - /* - * profiles to operate on, single is denoted by - * BTRFS_AVAIL_ALLOC_BIT_SINGLE - */ - __le64 profiles; - - /* - * usage filter - * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' - * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max - */ - union { - __le64 usage; - struct { - __le32 usage_min; - __le32 usage_max; - }; - }; - - /* devid filter */ - __le64 devid; - - /* devid subset filter [pstart..pend) */ - __le64 pstart; - __le64 pend; - - /* btrfs virtual address space subset filter [vstart..vend) */ - __le64 vstart; - __le64 vend; - - /* - * profile to convert to, single is denoted by - * BTRFS_AVAIL_ALLOC_BIT_SINGLE - */ - __le64 target; - - /* BTRFS_BALANCE_ARGS_* */ - __le64 flags; - - /* - * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' - * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum - * and maximum - */ - union { - __le64 limit; - struct { - __le32 limit_min; - __le32 limit_max; - }; - }; - - /* - * Process chunks that cross stripes_min..stripes_max devices, - * BTRFS_BALANCE_ARGS_STRIPES_RANGE - */ - __le32 stripes_min; - __le32 stripes_max; - - __le64 unused[6]; -} __attribute__ ((__packed__)); - -/* - * store balance parameters to disk so that balance can be properly - * resumed after crash or unmount - */ -struct btrfs_balance_item { - /* BTRFS_BALANCE_* */ - __le64 flags; - - struct btrfs_disk_balance_args data; - struct btrfs_disk_balance_args meta; - struct btrfs_disk_balance_args sys; - - __le64 unused[4]; -} __attribute__ ((__packed__)); - -#define BTRFS_FILE_EXTENT_INLINE 0 -#define BTRFS_FILE_EXTENT_REG 1 -#define BTRFS_FILE_EXTENT_PREALLOC 2 - -struct btrfs_file_extent_item { - /* - * transaction id that created this extent - */ - __le64 generation; - /* - * max number of bytes to hold this extent in ram - * when we split a compressed extent we can't know how big - * each of the resulting pieces will be. So, this is - * an upper limit on the size of the extent in ram instead of - * an exact limit. - */ - __le64 ram_bytes; - - /* - * 32 bits for the various ways we might encode the data, - * including compression and encryption. If any of these - * are set to something a given disk format doesn't understand - * it is treated like an incompat flag for reading and writing, - * but not for stat. - */ - u8 compression; - u8 encryption; - __le16 other_encoding; /* spare for later use */ - - /* are we inline data or a real extent? */ - u8 type; - - /* - * Disk space consumed by the data extent - * Data checksum is stored in csum tree, thus no bytenr/length takes - * csum into consideration. - * - * The inline extent data starts at this offset in the structure. - */ - __le64 disk_bytenr; - __le64 disk_num_bytes; - /* - * The logical offset in file blocks. - * this extent record is for. This allows a file extent to point - * into the middle of an existing extent on disk, sharing it - * between two snapshots (useful if some bytes in the middle of the - * extent have changed - */ - __le64 offset; - /* - * The logical number of file blocks. This always reflects the size - * uncompressed and without encoding. - */ - __le64 num_bytes; - -} __attribute__ ((__packed__)); - -struct btrfs_dev_stats_item { - /* - * grow this item struct at the end for future enhancements and keep - * the existing values unchanged - */ - __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; -} __attribute__ ((__packed__)); - -struct btrfs_csum_item { - u8 csum; -} __attribute__ ((__packed__)); - /* * We don't want to overwrite 1M at the beginning of device, even though * there is our 1st superblock at 64k. Some possible reasons: @@ -1005,20 +170,6 @@ struct btrfs_csum_item { */ #define BTRFS_BLOCK_RESERVED_1M_FOR_SUPER ((u64)1 * 1024 * 1024) -#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) -#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) -#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) -#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) -#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) -#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) -#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) -#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) -#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) -#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) -#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) -#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ - BTRFS_SPACE_INFO_GLOBAL_RSV) - enum btrfs_raid_types { BTRFS_RAID_RAID10, BTRFS_RAID_RAID1, @@ -1032,32 +183,6 @@ enum btrfs_raid_types { BTRFS_NR_RAID_TYPES }; -#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ - BTRFS_BLOCK_GROUP_SYSTEM | \ - BTRFS_BLOCK_GROUP_METADATA) - -#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ - BTRFS_BLOCK_GROUP_RAID1 | \ - BTRFS_BLOCK_GROUP_RAID5 | \ - BTRFS_BLOCK_GROUP_RAID6 | \ - BTRFS_BLOCK_GROUP_RAID1C3 | \ - BTRFS_BLOCK_GROUP_RAID1C4 | \ - BTRFS_BLOCK_GROUP_DUP | \ - BTRFS_BLOCK_GROUP_RAID10) - -#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ - BTRFS_BLOCK_GROUP_RAID6) - -#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ - BTRFS_BLOCK_GROUP_RAID1C3 | \ - BTRFS_BLOCK_GROUP_RAID1C4) - -/* used in struct btrfs_balance_args fields */ -#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) - -#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ - BTRFS_AVAIL_ALLOC_BIT_SINGLE) - /* * GLOBAL_RSV does not exist as a on-disk block group type and is used * internally for exporting info about global block reserve from space infos @@ -1066,65 +191,11 @@ enum btrfs_raid_types { #define BTRFS_QGROUP_LEVEL_SHIFT 48 -static inline __u16 btrfs_qgroup_level(u64 qgroupid) -{ - return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; -} - static inline u64 btrfs_qgroup_subvolid(u64 qgroupid) { return qgroupid & ((1ULL << BTRFS_QGROUP_LEVEL_SHIFT) - 1); } -#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) -#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) -#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) - -struct btrfs_qgroup_status_item { - __le64 version; - __le64 generation; - __le64 flags; - __le64 rescan; /* progress during scanning */ -} __attribute__ ((__packed__)); - -#define BTRFS_QGROUP_STATUS_VERSION 1 -struct btrfs_block_group_item { - __le64 used; - __le64 chunk_objectid; - __le64 flags; -} __attribute__ ((__packed__)); - -struct btrfs_free_space_info { - __le32 extent_count; - __le32 flags; -} __attribute__ ((__packed__)); - -#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) - -struct btrfs_qgroup_info_item { - __le64 generation; - __le64 rfer; - __le64 rfer_cmpr; - __le64 excl; - __le64 excl_cmpr; -} __attribute__ ((__packed__)); - -/* flags definition for qgroup limits */ -#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0) -#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1) -#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2) -#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3) -#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4) -#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5) - -struct btrfs_qgroup_limit_item { - __le64 flags; - __le64 max_rfer; - __le64 max_excl; - __le64 rsv_rfer; - __le64 rsv_excl; -} __attribute__ ((__packed__)); - struct btrfs_space_info { u64 flags; u64 total_bytes; @@ -1564,21 +635,6 @@ static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 -/* - * Inode flags - */ -#define BTRFS_INODE_NODATASUM (1 << 0) -#define BTRFS_INODE_NODATACOW (1 << 1) -#define BTRFS_INODE_READONLY (1 << 2) -#define BTRFS_INODE_NOCOMPRESS (1 << 3) -#define BTRFS_INODE_PREALLOC (1 << 4) -#define BTRFS_INODE_SYNC (1 << 5) -#define BTRFS_INODE_IMMUTABLE (1 << 6) -#define BTRFS_INODE_APPEND (1 << 7) -#define BTRFS_INODE_NODUMP (1 << 8) -#define BTRFS_INODE_NOATIME (1 << 9) -#define BTRFS_INODE_DIRSYNC (1 << 10) -#define BTRFS_INODE_COMPRESS (1 << 11) #define read_eb_member(eb, ptr, type, member, result) ( \ read_extent_buffer(eb, (char *)(result), \ @@ -1948,12 +1004,6 @@ static inline u32 btrfs_extent_inline_ref_size(int type) return 0; } -BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); -BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, - generation, 64); -BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); -BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); - /* struct btrfs_node */ BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); diff --git a/kernel-shared/uapi/btrfs_tree.h b/kernel-shared/uapi/btrfs_tree.h new file mode 100644 index 00000000..42744d2b --- /dev/null +++ b/kernel-shared/uapi/btrfs_tree.h @@ -0,0 +1,1259 @@ +/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ +#ifndef _BTRFS_CTREE_H_ +#define _BTRFS_CTREE_H_ + +#include "btrfs.h" +#include +#ifdef __KERNEL__ +#include +#else +#include +#endif + +/* ASCII for _BHRfS_M, no terminating nul */ +#define BTRFS_MAGIC 0x4D5F53665248425FULL + +#define BTRFS_MAX_LEVEL 8 + +/* + * We can actually store much bigger names, but lets not confuse the rest of + * linux. + */ +#define BTRFS_NAME_LEN 255 + +/* + * Theoretical limit is larger, but we keep this down to a sane value. That + * should limit greatly the possibility of collisions on inode ref items. + */ +#define BTRFS_LINK_MAX 65535U + +/* + * This header contains the structure definitions and constants used + * by file system objects that can be retrieved using + * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that + * is needed to describe a leaf node's key or item contents. + */ + +/* holds pointers to all of the tree roots */ +#define BTRFS_ROOT_TREE_OBJECTID 1ULL + +/* stores information about which extents are in use, and reference counts */ +#define BTRFS_EXTENT_TREE_OBJECTID 2ULL + +/* + * chunk tree stores translations from logical -> physical block numbering + * the super block points to the chunk tree + */ +#define BTRFS_CHUNK_TREE_OBJECTID 3ULL + +/* + * stores information about which areas of a given device are in use. + * one per device. The tree of tree roots points to the device tree + */ +#define BTRFS_DEV_TREE_OBJECTID 4ULL + +/* one per subvolume, storing files and directories */ +#define BTRFS_FS_TREE_OBJECTID 5ULL + +/* directory objectid inside the root tree */ +#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL + +/* holds checksums of all the data extents */ +#define BTRFS_CSUM_TREE_OBJECTID 7ULL + +/* holds quota configuration and tracking */ +#define BTRFS_QUOTA_TREE_OBJECTID 8ULL + +/* for storing items that use the BTRFS_UUID_KEY* types */ +#define BTRFS_UUID_TREE_OBJECTID 9ULL + +/* tracks free space in block groups. */ +#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL + +/* Holds the block group items for extent tree v2. */ +#define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL + +/* device stats in the device tree */ +#define BTRFS_DEV_STATS_OBJECTID 0ULL + +/* for storing balance parameters in the root tree */ +#define BTRFS_BALANCE_OBJECTID -4ULL + +/* orphan objectid for tracking unlinked/truncated files */ +#define BTRFS_ORPHAN_OBJECTID -5ULL + +/* does write ahead logging to speed up fsyncs */ +#define BTRFS_TREE_LOG_OBJECTID -6ULL +#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL + +/* for space balancing */ +#define BTRFS_TREE_RELOC_OBJECTID -8ULL +#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL + +/* + * extent checksums all have this objectid + * this allows them to share the logging tree + * for fsyncs + */ +#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL + +/* For storing free space cache */ +#define BTRFS_FREE_SPACE_OBJECTID -11ULL + +/* + * The inode number assigned to the special inode for storing + * free ino cache + */ +#define BTRFS_FREE_INO_OBJECTID -12ULL + +/* dummy objectid represents multiple objectids */ +#define BTRFS_MULTIPLE_OBJECTIDS -255ULL + +/* + * All files have objectids in this range. + */ +#define BTRFS_FIRST_FREE_OBJECTID 256ULL +#define BTRFS_LAST_FREE_OBJECTID -256ULL +#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL + + +/* + * the device items go into the chunk tree. The key is in the form + * [ 1 BTRFS_DEV_ITEM_KEY device_id ] + */ +#define BTRFS_DEV_ITEMS_OBJECTID 1ULL + +#define BTRFS_BTREE_INODE_OBJECTID 1 + +#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 + +#define BTRFS_DEV_REPLACE_DEVID 0ULL + +/* + * inode items have the data typically returned from stat and store other + * info about object characteristics. There is one for every file and dir in + * the FS + */ +#define BTRFS_INODE_ITEM_KEY 1 +#define BTRFS_INODE_REF_KEY 12 +#define BTRFS_INODE_EXTREF_KEY 13 +#define BTRFS_XATTR_ITEM_KEY 24 + +/* + * fs verity items are stored under two different key types on disk. + * The descriptor items: + * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] + * + * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size + * of the descriptor item and some extra data for encryption. + * Starting at offset 1, these hold the generic fs verity descriptor. The + * latter are opaque to btrfs, we just read and write them as a blob for the + * higher level verity code. The most common descriptor size is 256 bytes. + * + * The merkle tree items: + * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] + * + * These also start at offset 0, and correspond to the merkle tree bytes. When + * fsverity asks for page 0 of the merkle tree, we pull up one page starting at + * offset 0 for this key type. These are also opaque to btrfs, we're blindly + * storing whatever fsverity sends down. + */ +#define BTRFS_VERITY_DESC_ITEM_KEY 36 +#define BTRFS_VERITY_MERKLE_ITEM_KEY 37 + +#define BTRFS_ORPHAN_ITEM_KEY 48 +/* reserve 2-15 close to the inode for later flexibility */ + +/* + * dir items are the name -> inode pointers in a directory. There is one + * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used + * but it's still defined here for documentation purposes and to help avoid + * having its numerical value reused in the future. + */ +#define BTRFS_DIR_LOG_ITEM_KEY 60 +#define BTRFS_DIR_LOG_INDEX_KEY 72 +#define BTRFS_DIR_ITEM_KEY 84 +#define BTRFS_DIR_INDEX_KEY 96 +/* + * extent data is for file data + */ +#define BTRFS_EXTENT_DATA_KEY 108 + +/* + * extent csums are stored in a separate tree and hold csums for + * an entire extent on disk. + */ +#define BTRFS_EXTENT_CSUM_KEY 128 + +/* + * root items point to tree roots. They are typically in the root + * tree used by the super block to find all the other trees + */ +#define BTRFS_ROOT_ITEM_KEY 132 + +/* + * root backrefs tie subvols and snapshots to the directory entries that + * reference them + */ +#define BTRFS_ROOT_BACKREF_KEY 144 + +/* + * root refs make a fast index for listing all of the snapshots and + * subvolumes referenced by a given root. They point directly to the + * directory item in the root that references the subvol + */ +#define BTRFS_ROOT_REF_KEY 156 + +/* + * extent items are in the extent map tree. These record which blocks + * are used, and how many references there are to each block + */ +#define BTRFS_EXTENT_ITEM_KEY 168 + +/* + * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know + * the length, so we save the level in key->offset instead of the length. + */ +#define BTRFS_METADATA_ITEM_KEY 169 + +#define BTRFS_TREE_BLOCK_REF_KEY 176 + +#define BTRFS_EXTENT_DATA_REF_KEY 178 + +#define BTRFS_EXTENT_REF_V0_KEY 180 + +#define BTRFS_SHARED_BLOCK_REF_KEY 182 + +#define BTRFS_SHARED_DATA_REF_KEY 184 + +/* + * block groups give us hints into the extent allocation trees. Which + * blocks are free etc etc + */ +#define BTRFS_BLOCK_GROUP_ITEM_KEY 192 + +/* + * Every block group is represented in the free space tree by a free space info + * item, which stores some accounting information. It is keyed on + * (block_group_start, FREE_SPACE_INFO, block_group_length). + */ +#define BTRFS_FREE_SPACE_INFO_KEY 198 + +/* + * A free space extent tracks an extent of space that is free in a block group. + * It is keyed on (start, FREE_SPACE_EXTENT, length). + */ +#define BTRFS_FREE_SPACE_EXTENT_KEY 199 + +/* + * When a block group becomes very fragmented, we convert it to use bitmaps + * instead of extents. A free space bitmap is keyed on + * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with + * (length / sectorsize) bits. + */ +#define BTRFS_FREE_SPACE_BITMAP_KEY 200 + +#define BTRFS_DEV_EXTENT_KEY 204 +#define BTRFS_DEV_ITEM_KEY 216 +#define BTRFS_CHUNK_ITEM_KEY 228 + +/* + * Records the overall state of the qgroups. + * There's only one instance of this key present, + * (0, BTRFS_QGROUP_STATUS_KEY, 0) + */ +#define BTRFS_QGROUP_STATUS_KEY 240 +/* + * Records the currently used space of the qgroup. + * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). + */ +#define BTRFS_QGROUP_INFO_KEY 242 +/* + * Contains the user configured limits for the qgroup. + * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). + */ +#define BTRFS_QGROUP_LIMIT_KEY 244 +/* + * Records the child-parent relationship of qgroups. For + * each relation, 2 keys are present: + * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) + * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) + */ +#define BTRFS_QGROUP_RELATION_KEY 246 + +/* + * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. + */ +#define BTRFS_BALANCE_ITEM_KEY 248 + +/* + * The key type for tree items that are stored persistently, but do not need to + * exist for extended period of time. The items can exist in any tree. + * + * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] + * + * Existing items: + * + * - balance status item + * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) + */ +#define BTRFS_TEMPORARY_ITEM_KEY 248 + +/* + * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY + */ +#define BTRFS_DEV_STATS_KEY 249 + +/* + * The key type for tree items that are stored persistently and usually exist + * for a long period, eg. filesystem lifetime. The item kinds can be status + * information, stats or preference values. The item can exist in any tree. + * + * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] + * + * Existing items: + * + * - device statistics, store IO stats in the device tree, one key for all + * stats + * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) + */ +#define BTRFS_PERSISTENT_ITEM_KEY 249 + +/* + * Persistently stores the device replace state in the device tree. + * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). + */ +#define BTRFS_DEV_REPLACE_KEY 250 + +/* + * Stores items that allow to quickly map UUIDs to something else. + * These items are part of the filesystem UUID tree. + * The key is built like this: + * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). + */ +#if BTRFS_UUID_SIZE != 16 +#error "UUID items require BTRFS_UUID_SIZE == 16!" +#endif +#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ +#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to + * received subvols */ + +/* + * string items are for debugging. They just store a short string of + * data in the FS + */ +#define BTRFS_STRING_ITEM_KEY 253 + +/* Maximum metadata block size (nodesize) */ +#define BTRFS_MAX_METADATA_BLOCKSIZE 65536 + +/* 32 bytes in various csum fields */ +#define BTRFS_CSUM_SIZE 32 + +/* csum types */ +enum btrfs_csum_type { + BTRFS_CSUM_TYPE_CRC32 = 0, + BTRFS_CSUM_TYPE_XXHASH = 1, + BTRFS_CSUM_TYPE_SHA256 = 2, + BTRFS_CSUM_TYPE_BLAKE2 = 3, +}; + +/* + * flags definitions for directory entry item type + * + * Used by: + * struct btrfs_dir_item.type + * + * Values 0..7 must match common file type values in fs_types.h. + */ +#define BTRFS_FT_UNKNOWN 0 +#define BTRFS_FT_REG_FILE 1 +#define BTRFS_FT_DIR 2 +#define BTRFS_FT_CHRDEV 3 +#define BTRFS_FT_BLKDEV 4 +#define BTRFS_FT_FIFO 5 +#define BTRFS_FT_SOCK 6 +#define BTRFS_FT_SYMLINK 7 +#define BTRFS_FT_XATTR 8 +#define BTRFS_FT_MAX 9 +/* Directory contains encrypted data */ +#define BTRFS_FT_ENCRYPTED 0x80 + +static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags) +{ + return flags & ~BTRFS_FT_ENCRYPTED; +} + +/* + * Inode flags + */ +#define BTRFS_INODE_NODATASUM (1U << 0) +#define BTRFS_INODE_NODATACOW (1U << 1) +#define BTRFS_INODE_READONLY (1U << 2) +#define BTRFS_INODE_NOCOMPRESS (1U << 3) +#define BTRFS_INODE_PREALLOC (1U << 4) +#define BTRFS_INODE_SYNC (1U << 5) +#define BTRFS_INODE_IMMUTABLE (1U << 6) +#define BTRFS_INODE_APPEND (1U << 7) +#define BTRFS_INODE_NODUMP (1U << 8) +#define BTRFS_INODE_NOATIME (1U << 9) +#define BTRFS_INODE_DIRSYNC (1U << 10) +#define BTRFS_INODE_COMPRESS (1U << 11) + +#define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) + +#define BTRFS_INODE_FLAG_MASK \ + (BTRFS_INODE_NODATASUM | \ + BTRFS_INODE_NODATACOW | \ + BTRFS_INODE_READONLY | \ + BTRFS_INODE_NOCOMPRESS | \ + BTRFS_INODE_PREALLOC | \ + BTRFS_INODE_SYNC | \ + BTRFS_INODE_IMMUTABLE | \ + BTRFS_INODE_APPEND | \ + BTRFS_INODE_NODUMP | \ + BTRFS_INODE_NOATIME | \ + BTRFS_INODE_DIRSYNC | \ + BTRFS_INODE_COMPRESS | \ + BTRFS_INODE_ROOT_ITEM_INIT) + +#define BTRFS_INODE_RO_VERITY (1U << 0) + +#define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) + +/* + * The key defines the order in the tree, and so it also defines (optimal) + * block layout. + * + * objectid corresponds to the inode number. + * + * type tells us things about the object, and is a kind of stream selector. + * so for a given inode, keys with type of 1 might refer to the inode data, + * type of 2 may point to file data in the btree and type == 3 may point to + * extents. + * + * offset is the starting byte offset for this key in the stream. + * + * btrfs_disk_key is in disk byte order. struct btrfs_key is always + * in cpu native order. Otherwise they are identical and their sizes + * should be the same (ie both packed) + */ +struct btrfs_disk_key { + __le64 objectid; + __u8 type; + __le64 offset; +} __attribute__ ((__packed__)); + +struct btrfs_key { + __u64 objectid; + __u8 type; + __u64 offset; +} __attribute__ ((__packed__)); + +/* + * Every tree block (leaf or node) starts with this header. + */ +struct btrfs_header { + /* These first four must match the super block */ + __u8 csum[BTRFS_CSUM_SIZE]; + /* FS specific uuid */ + __u8 fsid[BTRFS_FSID_SIZE]; + /* Which block this node is supposed to live in */ + __le64 bytenr; + __le64 flags; + + /* Allowed to be different from the super from here on down */ + __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; + __le64 generation; + __le64 owner; + __le32 nritems; + __u8 level; +} __attribute__ ((__packed__)); + +/* + * This is a very generous portion of the super block, giving us room to + * translate 14 chunks with 3 stripes each. + */ +#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 + +/* + * Just in case we somehow lose the roots and are not able to mount, we store + * an array of the roots from previous transactions in the super. + */ +#define BTRFS_NUM_BACKUP_ROOTS 4 +struct btrfs_root_backup { + __le64 tree_root; + __le64 tree_root_gen; + + __le64 chunk_root; + __le64 chunk_root_gen; + + __le64 extent_root; + __le64 extent_root_gen; + + __le64 fs_root; + __le64 fs_root_gen; + + __le64 dev_root; + __le64 dev_root_gen; + + __le64 csum_root; + __le64 csum_root_gen; + + __le64 total_bytes; + __le64 bytes_used; + __le64 num_devices; + /* future */ + __le64 unused_64[4]; + + __u8 tree_root_level; + __u8 chunk_root_level; + __u8 extent_root_level; + __u8 fs_root_level; + __u8 dev_root_level; + __u8 csum_root_level; + /* future and to align */ + __u8 unused_8[10]; +} __attribute__ ((__packed__)); + +/* + * A leaf is full of items. offset and size tell us where to find the item in + * the leaf (relative to the start of the data area) + */ +struct btrfs_item { + struct btrfs_disk_key key; + __le32 offset; + __le32 size; +} __attribute__ ((__packed__)); + +/* + * Leaves have an item area and a data area: + * [item0, item1....itemN] [free space] [dataN...data1, data0] + * + * The data is separate from the items to get the keys closer together during + * searches. + */ +struct btrfs_leaf { + struct btrfs_header header; + struct btrfs_item items[]; +} __attribute__ ((__packed__)); + +/* + * All non-leaf blocks are nodes, they hold only keys and pointers to other + * blocks. + */ +struct btrfs_key_ptr { + struct btrfs_disk_key key; + __le64 blockptr; + __le64 generation; +} __attribute__ ((__packed__)); + +struct btrfs_node { + struct btrfs_header header; + struct btrfs_key_ptr ptrs[]; +} __attribute__ ((__packed__)); + +struct btrfs_dev_item { + /* the internal btrfs device id */ + __le64 devid; + + /* size of the device */ + __le64 total_bytes; + + /* bytes used */ + __le64 bytes_used; + + /* optimal io alignment for this device */ + __le32 io_align; + + /* optimal io width for this device */ + __le32 io_width; + + /* minimal io size for this device */ + __le32 sector_size; + + /* type and info about this device */ + __le64 type; + + /* expected generation for this device */ + __le64 generation; + + /* + * starting byte of this partition on the device, + * to allow for stripe alignment in the future + */ + __le64 start_offset; + + /* grouping information for allocation decisions */ + __le32 dev_group; + + /* seek speed 0-100 where 100 is fastest */ + __u8 seek_speed; + + /* bandwidth 0-100 where 100 is fastest */ + __u8 bandwidth; + + /* btrfs generated uuid for this device */ + __u8 uuid[BTRFS_UUID_SIZE]; + + /* uuid of FS who owns this device */ + __u8 fsid[BTRFS_UUID_SIZE]; +} __attribute__ ((__packed__)); + +struct btrfs_stripe { + __le64 devid; + __le64 offset; + __u8 dev_uuid[BTRFS_UUID_SIZE]; +} __attribute__ ((__packed__)); + +struct btrfs_chunk { + /* size of this chunk in bytes */ + __le64 length; + + /* objectid of the root referencing this chunk */ + __le64 owner; + + __le64 stripe_len; + __le64 type; + + /* optimal io alignment for this chunk */ + __le32 io_align; + + /* optimal io width for this chunk */ + __le32 io_width; + + /* minimal io size for this chunk */ + __le32 sector_size; + + /* 2^16 stripes is quite a lot, a second limit is the size of a single + * item in the btree + */ + __le16 num_stripes; + + /* sub stripes only matter for raid10 */ + __le16 sub_stripes; + struct btrfs_stripe stripe; + /* additional stripes go here */ +} __attribute__ ((__packed__)); + +/* + * The super block basically lists the main trees of the FS. + */ +struct btrfs_super_block { + /* The first 4 fields must match struct btrfs_header */ + __u8 csum[BTRFS_CSUM_SIZE]; + /* FS specific UUID, visible to user */ + __u8 fsid[BTRFS_FSID_SIZE]; + /* This block number */ + __le64 bytenr; + __le64 flags; + + /* Allowed to be different from the btrfs_header from here own down */ + __le64 magic; + __le64 generation; + __le64 root; + __le64 chunk_root; + __le64 log_root; + + /* + * This member has never been utilized since the very beginning, thus + * it's always 0 regardless of kernel version. We always use + * generation + 1 to read log tree root. So here we mark it deprecated. + */ + __le64 __unused_log_root_transid; + __le64 total_bytes; + __le64 bytes_used; + __le64 root_dir_objectid; + __le64 num_devices; + __le32 sectorsize; + __le32 nodesize; + __le32 __unused_leafsize; + __le32 stripesize; + __le32 sys_chunk_array_size; + __le64 chunk_root_generation; + __le64 compat_flags; + __le64 compat_ro_flags; + __le64 incompat_flags; + __le16 csum_type; + __u8 root_level; + __u8 chunk_root_level; + __u8 log_root_level; + struct btrfs_dev_item dev_item; + + char label[BTRFS_LABEL_SIZE]; + + __le64 cache_generation; + __le64 uuid_tree_generation; + + /* The UUID written into btree blocks */ + __u8 metadata_uuid[BTRFS_FSID_SIZE]; + + __u64 nr_global_roots; + + __le64 reserved[27]; + __u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; + struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; + + /* Padded to 4096 bytes */ + __u8 padding[565]; +} __attribute__ ((__packed__)); + +#define BTRFS_FREE_SPACE_EXTENT 1 +#define BTRFS_FREE_SPACE_BITMAP 2 + +struct btrfs_free_space_entry { + __le64 offset; + __le64 bytes; + __u8 type; +} __attribute__ ((__packed__)); + +struct btrfs_free_space_header { + struct btrfs_disk_key location; + __le64 generation; + __le64 num_entries; + __le64 num_bitmaps; +} __attribute__ ((__packed__)); + +#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) +#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) + +/* Super block flags */ +/* Errors detected */ +#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) + +#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) +#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) +#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) +#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) +#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) + + +/* + * items in the extent btree are used to record the objectid of the + * owner of the block and the number of references + */ + +struct btrfs_extent_item { + __le64 refs; + __le64 generation; + __le64 flags; +} __attribute__ ((__packed__)); + +struct btrfs_extent_item_v0 { + __le32 refs; +} __attribute__ ((__packed__)); + + +#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) +#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) + +/* following flags only apply to tree blocks */ + +/* use full backrefs for extent pointers in the block */ +#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) + +#define BTRFS_BACKREF_REV_MAX 256 +#define BTRFS_BACKREF_REV_SHIFT 56 +#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ + BTRFS_BACKREF_REV_SHIFT) + +#define BTRFS_OLD_BACKREF_REV 0 +#define BTRFS_MIXED_BACKREF_REV 1 + +/* + * this flag is only used internally by scrub and may be changed at any time + * it is only declared here to avoid collisions + */ +#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) + +struct btrfs_tree_block_info { + struct btrfs_disk_key key; + __u8 level; +} __attribute__ ((__packed__)); + +struct btrfs_extent_data_ref { + __le64 root; + __le64 objectid; + __le64 offset; + __le32 count; +} __attribute__ ((__packed__)); + +struct btrfs_shared_data_ref { + __le32 count; +} __attribute__ ((__packed__)); + +struct btrfs_extent_inline_ref { + __u8 type; + __le64 offset; +} __attribute__ ((__packed__)); + +/* dev extents record free space on individual devices. The owner + * field points back to the chunk allocation mapping tree that allocated + * the extent. The chunk tree uuid field is a way to double check the owner + */ +struct btrfs_dev_extent { + __le64 chunk_tree; + __le64 chunk_objectid; + __le64 chunk_offset; + __le64 length; + __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; +} __attribute__ ((__packed__)); + +struct btrfs_inode_ref { + __le64 index; + __le16 name_len; + /* name goes here */ +} __attribute__ ((__packed__)); + +struct btrfs_inode_extref { + __le64 parent_objectid; + __le64 index; + __le16 name_len; + __u8 name[]; + /* name goes here */ +} __attribute__ ((__packed__)); + +struct btrfs_timespec { + __le64 sec; + __le32 nsec; +} __attribute__ ((__packed__)); + +struct btrfs_inode_item { + /* nfs style generation number */ + __le64 generation; + /* transid that last touched this inode */ + __le64 transid; + __le64 size; + __le64 nbytes; + __le64 block_group; + __le32 nlink; + __le32 uid; + __le32 gid; + __le32 mode; + __le64 rdev; + __le64 flags; + + /* modification sequence number for NFS */ + __le64 sequence; + + /* + * a little future expansion, for more than this we can + * just grow the inode item and version it + */ + __le64 reserved[4]; + struct btrfs_timespec atime; + struct btrfs_timespec ctime; + struct btrfs_timespec mtime; + struct btrfs_timespec otime; +} __attribute__ ((__packed__)); + +struct btrfs_dir_log_item { + __le64 end; +} __attribute__ ((__packed__)); + +struct btrfs_dir_item { + struct btrfs_disk_key location; + __le64 transid; + __le16 data_len; + __le16 name_len; + __u8 type; +} __attribute__ ((__packed__)); + +#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) + +/* + * Internal in-memory flag that a subvolume has been marked for deletion but + * still visible as a directory + */ +#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) + +struct btrfs_root_item { + struct btrfs_inode_item inode; + __le64 generation; + __le64 root_dirid; + __le64 bytenr; + __le64 byte_limit; + __le64 bytes_used; + __le64 last_snapshot; + __le64 flags; + __le32 refs; + struct btrfs_disk_key drop_progress; + __u8 drop_level; + __u8 level; + + /* + * The following fields appear after subvol_uuids+subvol_times + * were introduced. + */ + + /* + * This generation number is used to test if the new fields are valid + * and up to date while reading the root item. Every time the root item + * is written out, the "generation" field is copied into this field. If + * anyone ever mounted the fs with an older kernel, we will have + * mismatching generation values here and thus must invalidate the + * new fields. See btrfs_update_root and btrfs_find_last_root for + * details. + * the offset of generation_v2 is also used as the start for the memset + * when invalidating the fields. + */ + __le64 generation_v2; + __u8 uuid[BTRFS_UUID_SIZE]; + __u8 parent_uuid[BTRFS_UUID_SIZE]; + __u8 received_uuid[BTRFS_UUID_SIZE]; + __le64 ctransid; /* updated when an inode changes */ + __le64 otransid; /* trans when created */ + __le64 stransid; /* trans when sent. non-zero for received subvol */ + __le64 rtransid; /* trans when received. non-zero for received subvol */ + struct btrfs_timespec ctime; + struct btrfs_timespec otime; + struct btrfs_timespec stime; + struct btrfs_timespec rtime; + __le64 reserved[8]; /* for future */ +} __attribute__ ((__packed__)); + +/* + * Btrfs root item used to be smaller than current size. The old format ends + * at where member generation_v2 is. + */ +static inline __u32 btrfs_legacy_root_item_size(void) +{ + return offsetof(struct btrfs_root_item, generation_v2); +} + +/* + * this is used for both forward and backward root refs + */ +struct btrfs_root_ref { + __le64 dirid; + __le64 sequence; + __le16 name_len; +} __attribute__ ((__packed__)); + +struct btrfs_disk_balance_args { + /* + * profiles to operate on, single is denoted by + * BTRFS_AVAIL_ALLOC_BIT_SINGLE + */ + __le64 profiles; + + /* + * usage filter + * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' + * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max + */ + union { + __le64 usage; + struct { + __le32 usage_min; + __le32 usage_max; + }; + }; + + /* devid filter */ + __le64 devid; + + /* devid subset filter [pstart..pend) */ + __le64 pstart; + __le64 pend; + + /* btrfs virtual address space subset filter [vstart..vend) */ + __le64 vstart; + __le64 vend; + + /* + * profile to convert to, single is denoted by + * BTRFS_AVAIL_ALLOC_BIT_SINGLE + */ + __le64 target; + + /* BTRFS_BALANCE_ARGS_* */ + __le64 flags; + + /* + * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' + * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum + * and maximum + */ + union { + __le64 limit; + struct { + __le32 limit_min; + __le32 limit_max; + }; + }; + + /* + * Process chunks that cross stripes_min..stripes_max devices, + * BTRFS_BALANCE_ARGS_STRIPES_RANGE + */ + __le32 stripes_min; + __le32 stripes_max; + + __le64 unused[6]; +} __attribute__ ((__packed__)); + +/* + * store balance parameters to disk so that balance can be properly + * resumed after crash or unmount + */ +struct btrfs_balance_item { + /* BTRFS_BALANCE_* */ + __le64 flags; + + struct btrfs_disk_balance_args data; + struct btrfs_disk_balance_args meta; + struct btrfs_disk_balance_args sys; + + __le64 unused[4]; +} __attribute__ ((__packed__)); + +enum { + BTRFS_FILE_EXTENT_INLINE = 0, + BTRFS_FILE_EXTENT_REG = 1, + BTRFS_FILE_EXTENT_PREALLOC = 2, + BTRFS_NR_FILE_EXTENT_TYPES = 3, +}; + +struct btrfs_file_extent_item { + /* + * transaction id that created this extent + */ + __le64 generation; + /* + * max number of bytes to hold this extent in ram + * when we split a compressed extent we can't know how big + * each of the resulting pieces will be. So, this is + * an upper limit on the size of the extent in ram instead of + * an exact limit. + */ + __le64 ram_bytes; + + /* + * 32 bits for the various ways we might encode the data, + * including compression and encryption. If any of these + * are set to something a given disk format doesn't understand + * it is treated like an incompat flag for reading and writing, + * but not for stat. + */ + __u8 compression; + __u8 encryption; + __le16 other_encoding; /* spare for later use */ + + /* are we inline data or a real extent? */ + __u8 type; + + /* + * disk space consumed by the extent, checksum blocks are included + * in these numbers + * + * At this offset in the structure, the inline extent data start. + */ + __le64 disk_bytenr; + __le64 disk_num_bytes; + /* + * the logical offset in file blocks (no csums) + * this extent record is for. This allows a file extent to point + * into the middle of an existing extent on disk, sharing it + * between two snapshots (useful if some bytes in the middle of the + * extent have changed + */ + __le64 offset; + /* + * the logical number of file blocks (no csums included). This + * always reflects the size uncompressed and without encoding. + */ + __le64 num_bytes; + +} __attribute__ ((__packed__)); + +struct btrfs_csum_item { + __u8 csum; +} __attribute__ ((__packed__)); + +struct btrfs_dev_stats_item { + /* + * grow this item struct at the end for future enhancements and keep + * the existing values unchanged + */ + __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; +} __attribute__ ((__packed__)); + +#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 +#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 + +struct btrfs_dev_replace_item { + /* + * grow this item struct at the end for future enhancements and keep + * the existing values unchanged + */ + __le64 src_devid; + __le64 cursor_left; + __le64 cursor_right; + __le64 cont_reading_from_srcdev_mode; + + __le64 replace_state; + __le64 time_started; + __le64 time_stopped; + __le64 num_write_errors; + __le64 num_uncorrectable_read_errors; +} __attribute__ ((__packed__)); + +/* different types of block groups (and chunks) */ +#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) +#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) +#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) +#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) +#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) +#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) +#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) +#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) +#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) +#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) +#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) +#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ + BTRFS_SPACE_INFO_GLOBAL_RSV) + +#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ + BTRFS_BLOCK_GROUP_SYSTEM | \ + BTRFS_BLOCK_GROUP_METADATA) + +#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ + BTRFS_BLOCK_GROUP_RAID1 | \ + BTRFS_BLOCK_GROUP_RAID1C3 | \ + BTRFS_BLOCK_GROUP_RAID1C4 | \ + BTRFS_BLOCK_GROUP_RAID5 | \ + BTRFS_BLOCK_GROUP_RAID6 | \ + BTRFS_BLOCK_GROUP_DUP | \ + BTRFS_BLOCK_GROUP_RAID10) +#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ + BTRFS_BLOCK_GROUP_RAID6) + +#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ + BTRFS_BLOCK_GROUP_RAID1C3 | \ + BTRFS_BLOCK_GROUP_RAID1C4) + +/* + * We need a bit for restriper to be able to tell when chunks of type + * SINGLE are available. This "extended" profile format is used in + * fs_info->avail_*_alloc_bits (in-memory) and balance item fields + * (on-disk). The corresponding on-disk bit in chunk.type is reserved + * to avoid remappings between two formats in future. + */ +#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) + +/* + * A fake block group type that is used to communicate global block reserve + * size to userspace via the SPACE_INFO ioctl. + */ +#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) + +#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ + BTRFS_AVAIL_ALLOC_BIT_SINGLE) + +static inline __u64 chunk_to_extended(__u64 flags) +{ + if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) + flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; + + return flags; +} +static inline __u64 extended_to_chunk(__u64 flags) +{ + return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; +} + +struct btrfs_block_group_item { + __le64 used; + __le64 chunk_objectid; + __le64 flags; +} __attribute__ ((__packed__)); + +struct btrfs_free_space_info { + __le32 extent_count; + __le32 flags; +} __attribute__ ((__packed__)); + +#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) + +#define BTRFS_QGROUP_LEVEL_SHIFT 48 +static inline __u16 btrfs_qgroup_level(__u64 qgroupid) +{ + return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); +} + +/* + * is subvolume quota turned on? + */ +#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) +/* + * RESCAN is set during the initialization phase + */ +#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) +/* + * Some qgroup entries are known to be out of date, + * either because the configuration has changed in a way that + * makes a rescan necessary, or because the fs has been mounted + * with a non-qgroup-aware version. + * Turning qouta off and on again makes it inconsistent, too. + */ +#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) + +#define BTRFS_QGROUP_STATUS_FLAGS_MASK (BTRFS_QGROUP_STATUS_FLAG_ON | \ + BTRFS_QGROUP_STATUS_FLAG_RESCAN | \ + BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) + +#define BTRFS_QGROUP_STATUS_VERSION 1 + +struct btrfs_qgroup_status_item { + __le64 version; + /* + * the generation is updated during every commit. As older + * versions of btrfs are not aware of qgroups, it will be + * possible to detect inconsistencies by checking the + * generation on mount time + */ + __le64 generation; + + /* flag definitions see above */ + __le64 flags; + + /* + * only used during scanning to record the progress + * of the scan. It contains a logical address + */ + __le64 rescan; +} __attribute__ ((__packed__)); + +struct btrfs_qgroup_info_item { + __le64 generation; + __le64 rfer; + __le64 rfer_cmpr; + __le64 excl; + __le64 excl_cmpr; +} __attribute__ ((__packed__)); + +struct btrfs_qgroup_limit_item { + /* + * only updated when any of the other values change + */ + __le64 flags; + __le64 max_rfer; + __le64 max_excl; + __le64 rsv_rfer; + __le64 rsv_excl; +} __attribute__ ((__packed__)); + +struct btrfs_verity_descriptor_item { + /* Size of the verity descriptor in bytes */ + __le64 size; + /* + * When we implement support for fscrypt, we will need to encrypt the + * Merkle tree for encrypted verity files. These 128 bits are for the + * eventual storage of an fscrypt initialization vector. + */ + __le64 reserved[2]; + __u8 encryption; +} __attribute__ ((__packed__)); + +#endif /* _BTRFS_CTREE_H_ */