From patchwork Wed Mar 15 12:37:34 2017 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Daniel Axtens X-Patchwork-Id: 9625499 X-Patchwork-Delegate: herbert@gondor.apana.org.au Return-Path: Received: from mail.wl.linuxfoundation.org (pdx-wl-mail.web.codeaurora.org [172.30.200.125]) by pdx-korg-patchwork.web.codeaurora.org (Postfix) with ESMTP id EF89E604A9 for ; Wed, 15 Mar 2017 12:39:39 +0000 (UTC) Received: from mail.wl.linuxfoundation.org (localhost [127.0.0.1]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id DAC112843D for ; Wed, 15 Mar 2017 12:39:39 +0000 (UTC) Received: by mail.wl.linuxfoundation.org (Postfix, from userid 486) id CEA052861A; Wed, 15 Mar 2017 12:39:39 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on pdx-wl-mail.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-6.5 required=2.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID, DKIM_VALID_AU, RCVD_IN_DNSWL_HI, RCVD_IN_SORBS_SPAM autolearn=ham version=3.3.1 Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id ECF102843D for ; Wed, 15 Mar 2017 12:39:36 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1751168AbdCOMiu (ORCPT ); Wed, 15 Mar 2017 08:38:50 -0400 Received: from mail-io0-f194.google.com ([209.85.223.194]:32909 "EHLO mail-io0-f194.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751157AbdCOMiA (ORCPT ); Wed, 15 Mar 2017 08:38:00 -0400 Received: by mail-io0-f194.google.com with SMTP id f84so2838416ioj.0 for ; Wed, 15 Mar 2017 05:37:59 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=axtens.net; s=google; h=from:to:cc:subject:date:message-id; bh=I29RbgKHIGGfLaJmWmGtJeHXmJNRQyaSh/ZB6pFc0Sw=; b=Pm3T/2vdnfIviRm5ykAVe84rlpUVWSFrDGnFe6fMwuCEDA87HngQFL85e2yYKXZR1b yEns5F8IU9dFb01YH7MUQ/JYJakY+azOK1pqA9s/BJC3zj8SkH+BG0MV1jCMGDw3MF9j 0P5wSyLxadvRg7mN0Jgx6lkE0LZ6M5RLTgg04= X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id; bh=I29RbgKHIGGfLaJmWmGtJeHXmJNRQyaSh/ZB6pFc0Sw=; b=M4C2LTYn5no9v8GWj6CfLC78LEOumnKtRhwhDDHOHFYZTwv50LfSuZGaIbsHBxwArc lUbRvJW/BNXgIfjJM/bfUQOuAa7xAWmb+EOTTZVaKDk4XXYawwg1qNV4PK43YtE01k2m XlmJf83pl0FLKdPOkTTcqgBK69izSDr12TgUavagr20CIMBG4RIp8HCZsZAZelBjbqNE kv0yTQ7A3QVaZL7yzwLEQgf1PxnfTTCPrNu3jlWuFXMX+KSTn6D0swdCGG1ZsldonQgD icSd8I2a2Unp4/spQZKAyTEy/XfD7cNDvChyfuPH7q1MLxKB7dzrG1qU5ODwHI5alVMj FONg== X-Gm-Message-State: AFeK/H02M+S+Ce0eQ98dOcvfUT5A6rCnMtD3eRcEF+lxUeWiJXtHKuJeDQfRVfsWfCbvEg== X-Received: by 10.107.134.94 with SMTP id i91mr4688971iod.0.1489581478788; Wed, 15 Mar 2017 05:37:58 -0700 (PDT) Received: from connectitude.ibm.com (ppp121-45-212-55.lns20.cbr1.internode.on.net. [121.45.212.55]) by smtp.gmail.com with ESMTPSA id l5sm103945ita.13.2017.03.15.05.37.55 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Wed, 15 Mar 2017 05:37:58 -0700 (PDT) From: Daniel Axtens To: linuxppc-dev@lists.ozlabs.org, linux-crypto@vger.kernel.org Cc: anton@samba.org, Daniel Axtens Subject: [PATCH 1/4] crypto: powerpc - Factor out the core CRC vpmsum algorithm Date: Wed, 15 Mar 2017 23:37:34 +1100 Message-Id: <20170315123737.20234-1-dja@axtens.net> X-Mailer: git-send-email 2.9.3 Sender: linux-crypto-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-crypto@vger.kernel.org X-Virus-Scanned: ClamAV using ClamSMTP The core nuts and bolts of the crc32c vpmsum algorithm will also work for a number of other CRC algorithms with different polynomials. Factor out the function into a new asm file. To handle multiple users of the function, a user simply provides constants, defines the name of their CRC function, and then #includes the core algorithm file. Cc: Anton Blanchard Signed-off-by: Daniel Axtens --- It's possible at this point to argue that the address of the constant tables should be passed in to the function, rather than doing this somewhat unconventional #include. However, we're about to add further #ifdef's back into the core that will be provided by the encapsulaing code, and which couldn't be done as a variable without performance loss. --- arch/powerpc/crypto/crc32-vpmsum_core.S | 726 ++++++++++++++++++++++++++++++++ arch/powerpc/crypto/crc32c-vpmsum_asm.S | 714 +------------------------------ 2 files changed, 729 insertions(+), 711 deletions(-) create mode 100644 arch/powerpc/crypto/crc32-vpmsum_core.S diff --git a/arch/powerpc/crypto/crc32-vpmsum_core.S b/arch/powerpc/crypto/crc32-vpmsum_core.S new file mode 100644 index 000000000000..629244ef170e --- /dev/null +++ b/arch/powerpc/crypto/crc32-vpmsum_core.S @@ -0,0 +1,726 @@ +/* + * Core of the accelerated CRC algorithm. + * In your file, define the constants and CRC_FUNCTION_NAME + * Then include this file. + * + * Calculate the checksum of data that is 16 byte aligned and a multiple of + * 16 bytes. + * + * The first step is to reduce it to 1024 bits. We do this in 8 parallel + * chunks in order to mask the latency of the vpmsum instructions. If we + * have more than 32 kB of data to checksum we repeat this step multiple + * times, passing in the previous 1024 bits. + * + * The next step is to reduce the 1024 bits to 64 bits. This step adds + * 32 bits of 0s to the end - this matches what a CRC does. We just + * calculate constants that land the data in this 32 bits. + * + * We then use fixed point Barrett reduction to compute a mod n over GF(2) + * for n = CRC using POWER8 instructions. We use x = 32. + * + * http://en.wikipedia.org/wiki/Barrett_reduction + * + * Copyright (C) 2015 Anton Blanchard , IBM + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. +*/ + +#include +#include + +#define MAX_SIZE 32768 + + .text + +#if defined(__BIG_ENDIAN__) +#define BYTESWAP_DATA +#else +#undef BYTESWAP_DATA +#endif + +#define off16 r25 +#define off32 r26 +#define off48 r27 +#define off64 r28 +#define off80 r29 +#define off96 r30 +#define off112 r31 + +#define const1 v24 +#define const2 v25 + +#define byteswap v26 +#define mask_32bit v27 +#define mask_64bit v28 +#define zeroes v29 + +#ifdef BYTESWAP_DATA +#define VPERM(A, B, C, D) vperm A, B, C, D +#else +#define VPERM(A, B, C, D) +#endif + +/* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */ +FUNC_START(CRC_FUNCTION_NAME) + std r31,-8(r1) + std r30,-16(r1) + std r29,-24(r1) + std r28,-32(r1) + std r27,-40(r1) + std r26,-48(r1) + std r25,-56(r1) + + li off16,16 + li off32,32 + li off48,48 + li off64,64 + li off80,80 + li off96,96 + li off112,112 + li r0,0 + + /* Enough room for saving 10 non volatile VMX registers */ + subi r6,r1,56+10*16 + subi r7,r1,56+2*16 + + stvx v20,0,r6 + stvx v21,off16,r6 + stvx v22,off32,r6 + stvx v23,off48,r6 + stvx v24,off64,r6 + stvx v25,off80,r6 + stvx v26,off96,r6 + stvx v27,off112,r6 + stvx v28,0,r7 + stvx v29,off16,r7 + + mr r10,r3 + + vxor zeroes,zeroes,zeroes + vspltisw v0,-1 + + vsldoi mask_32bit,zeroes,v0,4 + vsldoi mask_64bit,zeroes,v0,8 + + /* Get the initial value into v8 */ + vxor v8,v8,v8 + MTVRD(v8, R3) + vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ + +#ifdef BYTESWAP_DATA + addis r3,r2,.byteswap_constant@toc@ha + addi r3,r3,.byteswap_constant@toc@l + + lvx byteswap,0,r3 + addi r3,r3,16 +#endif + + cmpdi r5,256 + blt .Lshort + + rldicr r6,r5,0,56 + + /* Checksum in blocks of MAX_SIZE */ +1: lis r7,MAX_SIZE@h + ori r7,r7,MAX_SIZE@l + mr r9,r7 + cmpd r6,r7 + bgt 2f + mr r7,r6 +2: subf r6,r7,r6 + + /* our main loop does 128 bytes at a time */ + srdi r7,r7,7 + + /* + * Work out the offset into the constants table to start at. Each + * constant is 16 bytes, and it is used against 128 bytes of input + * data - 128 / 16 = 8 + */ + sldi r8,r7,4 + srdi r9,r9,3 + subf r8,r8,r9 + + /* We reduce our final 128 bytes in a separate step */ + addi r7,r7,-1 + mtctr r7 + + addis r3,r2,.constants@toc@ha + addi r3,r3,.constants@toc@l + + /* Find the start of our constants */ + add r3,r3,r8 + + /* zero v0-v7 which will contain our checksums */ + vxor v0,v0,v0 + vxor v1,v1,v1 + vxor v2,v2,v2 + vxor v3,v3,v3 + vxor v4,v4,v4 + vxor v5,v5,v5 + vxor v6,v6,v6 + vxor v7,v7,v7 + + lvx const1,0,r3 + + /* + * If we are looping back to consume more data we use the values + * already in v16-v23. + */ + cmpdi r0,1 + beq 2f + + /* First warm up pass */ + lvx v16,0,r4 + lvx v17,off16,r4 + VPERM(v16,v16,v16,byteswap) + VPERM(v17,v17,v17,byteswap) + lvx v18,off32,r4 + lvx v19,off48,r4 + VPERM(v18,v18,v18,byteswap) + VPERM(v19,v19,v19,byteswap) + lvx v20,off64,r4 + lvx v21,off80,r4 + VPERM(v20,v20,v20,byteswap) + VPERM(v21,v21,v21,byteswap) + lvx v22,off96,r4 + lvx v23,off112,r4 + VPERM(v22,v22,v22,byteswap) + VPERM(v23,v23,v23,byteswap) + addi r4,r4,8*16 + + /* xor in initial value */ + vxor v16,v16,v8 + +2: bdz .Lfirst_warm_up_done + + addi r3,r3,16 + lvx const2,0,r3 + + /* Second warm up pass */ + VPMSUMD(v8,v16,const1) + lvx v16,0,r4 + VPERM(v16,v16,v16,byteswap) + ori r2,r2,0 + + VPMSUMD(v9,v17,const1) + lvx v17,off16,r4 + VPERM(v17,v17,v17,byteswap) + ori r2,r2,0 + + VPMSUMD(v10,v18,const1) + lvx v18,off32,r4 + VPERM(v18,v18,v18,byteswap) + ori r2,r2,0 + + VPMSUMD(v11,v19,const1) + lvx v19,off48,r4 + VPERM(v19,v19,v19,byteswap) + ori r2,r2,0 + + VPMSUMD(v12,v20,const1) + lvx v20,off64,r4 + VPERM(v20,v20,v20,byteswap) + ori r2,r2,0 + + VPMSUMD(v13,v21,const1) + lvx v21,off80,r4 + VPERM(v21,v21,v21,byteswap) + ori r2,r2,0 + + VPMSUMD(v14,v22,const1) + lvx v22,off96,r4 + VPERM(v22,v22,v22,byteswap) + ori r2,r2,0 + + VPMSUMD(v15,v23,const1) + lvx v23,off112,r4 + VPERM(v23,v23,v23,byteswap) + + addi r4,r4,8*16 + + bdz .Lfirst_cool_down + + /* + * main loop. We modulo schedule it such that it takes three iterations + * to complete - first iteration load, second iteration vpmsum, third + * iteration xor. + */ + .balign 16 +4: lvx const1,0,r3 + addi r3,r3,16 + ori r2,r2,0 + + vxor v0,v0,v8 + VPMSUMD(v8,v16,const2) + lvx v16,0,r4 + VPERM(v16,v16,v16,byteswap) + ori r2,r2,0 + + vxor v1,v1,v9 + VPMSUMD(v9,v17,const2) + lvx v17,off16,r4 + VPERM(v17,v17,v17,byteswap) + ori r2,r2,0 + + vxor v2,v2,v10 + VPMSUMD(v10,v18,const2) + lvx v18,off32,r4 + VPERM(v18,v18,v18,byteswap) + ori r2,r2,0 + + vxor v3,v3,v11 + VPMSUMD(v11,v19,const2) + lvx v19,off48,r4 + VPERM(v19,v19,v19,byteswap) + lvx const2,0,r3 + ori r2,r2,0 + + vxor v4,v4,v12 + VPMSUMD(v12,v20,const1) + lvx v20,off64,r4 + VPERM(v20,v20,v20,byteswap) + ori r2,r2,0 + + vxor v5,v5,v13 + VPMSUMD(v13,v21,const1) + lvx v21,off80,r4 + VPERM(v21,v21,v21,byteswap) + ori r2,r2,0 + + vxor v6,v6,v14 + VPMSUMD(v14,v22,const1) + lvx v22,off96,r4 + VPERM(v22,v22,v22,byteswap) + ori r2,r2,0 + + vxor v7,v7,v15 + VPMSUMD(v15,v23,const1) + lvx v23,off112,r4 + VPERM(v23,v23,v23,byteswap) + + addi r4,r4,8*16 + + bdnz 4b + +.Lfirst_cool_down: + /* First cool down pass */ + lvx const1,0,r3 + addi r3,r3,16 + + vxor v0,v0,v8 + VPMSUMD(v8,v16,const1) + ori r2,r2,0 + + vxor v1,v1,v9 + VPMSUMD(v9,v17,const1) + ori r2,r2,0 + + vxor v2,v2,v10 + VPMSUMD(v10,v18,const1) + ori r2,r2,0 + + vxor v3,v3,v11 + VPMSUMD(v11,v19,const1) + ori r2,r2,0 + + vxor v4,v4,v12 + VPMSUMD(v12,v20,const1) + ori r2,r2,0 + + vxor v5,v5,v13 + VPMSUMD(v13,v21,const1) + ori r2,r2,0 + + vxor v6,v6,v14 + VPMSUMD(v14,v22,const1) + ori r2,r2,0 + + vxor v7,v7,v15 + VPMSUMD(v15,v23,const1) + ori r2,r2,0 + +.Lsecond_cool_down: + /* Second cool down pass */ + vxor v0,v0,v8 + vxor v1,v1,v9 + vxor v2,v2,v10 + vxor v3,v3,v11 + vxor v4,v4,v12 + vxor v5,v5,v13 + vxor v6,v6,v14 + vxor v7,v7,v15 + + /* + * vpmsumd produces a 96 bit result in the least significant bits + * of the register. Since we are bit reflected we have to shift it + * left 32 bits so it occupies the least significant bits in the + * bit reflected domain. + */ + vsldoi v0,v0,zeroes,4 + vsldoi v1,v1,zeroes,4 + vsldoi v2,v2,zeroes,4 + vsldoi v3,v3,zeroes,4 + vsldoi v4,v4,zeroes,4 + vsldoi v5,v5,zeroes,4 + vsldoi v6,v6,zeroes,4 + vsldoi v7,v7,zeroes,4 + + /* xor with last 1024 bits */ + lvx v8,0,r4 + lvx v9,off16,r4 + VPERM(v8,v8,v8,byteswap) + VPERM(v9,v9,v9,byteswap) + lvx v10,off32,r4 + lvx v11,off48,r4 + VPERM(v10,v10,v10,byteswap) + VPERM(v11,v11,v11,byteswap) + lvx v12,off64,r4 + lvx v13,off80,r4 + VPERM(v12,v12,v12,byteswap) + VPERM(v13,v13,v13,byteswap) + lvx v14,off96,r4 + lvx v15,off112,r4 + VPERM(v14,v14,v14,byteswap) + VPERM(v15,v15,v15,byteswap) + + addi r4,r4,8*16 + + vxor v16,v0,v8 + vxor v17,v1,v9 + vxor v18,v2,v10 + vxor v19,v3,v11 + vxor v20,v4,v12 + vxor v21,v5,v13 + vxor v22,v6,v14 + vxor v23,v7,v15 + + li r0,1 + cmpdi r6,0 + addi r6,r6,128 + bne 1b + + /* Work out how many bytes we have left */ + andi. r5,r5,127 + + /* Calculate where in the constant table we need to start */ + subfic r6,r5,128 + add r3,r3,r6 + + /* How many 16 byte chunks are in the tail */ + srdi r7,r5,4 + mtctr r7 + + /* + * Reduce the previously calculated 1024 bits to 64 bits, shifting + * 32 bits to include the trailing 32 bits of zeros + */ + lvx v0,0,r3 + lvx v1,off16,r3 + lvx v2,off32,r3 + lvx v3,off48,r3 + lvx v4,off64,r3 + lvx v5,off80,r3 + lvx v6,off96,r3 + lvx v7,off112,r3 + addi r3,r3,8*16 + + VPMSUMW(v0,v16,v0) + VPMSUMW(v1,v17,v1) + VPMSUMW(v2,v18,v2) + VPMSUMW(v3,v19,v3) + VPMSUMW(v4,v20,v4) + VPMSUMW(v5,v21,v5) + VPMSUMW(v6,v22,v6) + VPMSUMW(v7,v23,v7) + + /* Now reduce the tail (0 - 112 bytes) */ + cmpdi r7,0 + beq 1f + + lvx v16,0,r4 + lvx v17,0,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off16,r4 + lvx v17,off16,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off32,r4 + lvx v17,off32,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off48,r4 + lvx v17,off48,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off64,r4 + lvx v17,off64,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off80,r4 + lvx v17,off80,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + bdz 1f + + lvx v16,off96,r4 + lvx v17,off96,r3 + VPERM(v16,v16,v16,byteswap) + VPMSUMW(v16,v16,v17) + vxor v0,v0,v16 + + /* Now xor all the parallel chunks together */ +1: vxor v0,v0,v1 + vxor v2,v2,v3 + vxor v4,v4,v5 + vxor v6,v6,v7 + + vxor v0,v0,v2 + vxor v4,v4,v6 + + vxor v0,v0,v4 + +.Lbarrett_reduction: + /* Barrett constants */ + addis r3,r2,.barrett_constants@toc@ha + addi r3,r3,.barrett_constants@toc@l + + lvx const1,0,r3 + lvx const2,off16,r3 + + vsldoi v1,v0,v0,8 + vxor v0,v0,v1 /* xor two 64 bit results together */ + + /* shift left one bit */ + vspltisb v1,1 + vsl v0,v0,v1 + + vand v0,v0,mask_64bit + + /* + * The reflected version of Barrett reduction. Instead of bit + * reflecting our data (which is expensive to do), we bit reflect our + * constants and our algorithm, which means the intermediate data in + * our vector registers goes from 0-63 instead of 63-0. We can reflect + * the algorithm because we don't carry in mod 2 arithmetic. + */ + vand v1,v0,mask_32bit /* bottom 32 bits of a */ + VPMSUMD(v1,v1,const1) /* ma */ + vand v1,v1,mask_32bit /* bottom 32bits of ma */ + VPMSUMD(v1,v1,const2) /* qn */ + vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ + + /* + * Since we are bit reflected, the result (ie the low 32 bits) is in + * the high 32 bits. We just need to shift it left 4 bytes + * V0 [ 0 1 X 3 ] + * V0 [ 0 X 2 3 ] + */ + vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ + + /* Get it into r3 */ + MFVRD(R3, v0) + +.Lout: + subi r6,r1,56+10*16 + subi r7,r1,56+2*16 + + lvx v20,0,r6 + lvx v21,off16,r6 + lvx v22,off32,r6 + lvx v23,off48,r6 + lvx v24,off64,r6 + lvx v25,off80,r6 + lvx v26,off96,r6 + lvx v27,off112,r6 + lvx v28,0,r7 + lvx v29,off16,r7 + + ld r31,-8(r1) + ld r30,-16(r1) + ld r29,-24(r1) + ld r28,-32(r1) + ld r27,-40(r1) + ld r26,-48(r1) + ld r25,-56(r1) + + blr + +.Lfirst_warm_up_done: + lvx const1,0,r3 + addi r3,r3,16 + + VPMSUMD(v8,v16,const1) + VPMSUMD(v9,v17,const1) + VPMSUMD(v10,v18,const1) + VPMSUMD(v11,v19,const1) + VPMSUMD(v12,v20,const1) + VPMSUMD(v13,v21,const1) + VPMSUMD(v14,v22,const1) + VPMSUMD(v15,v23,const1) + + b .Lsecond_cool_down + +.Lshort: + cmpdi r5,0 + beq .Lzero + + addis r3,r2,.short_constants@toc@ha + addi r3,r3,.short_constants@toc@l + + /* Calculate where in the constant table we need to start */ + subfic r6,r5,256 + add r3,r3,r6 + + /* How many 16 byte chunks? */ + srdi r7,r5,4 + mtctr r7 + + vxor v19,v19,v19 + vxor v20,v20,v20 + + lvx v0,0,r4 + lvx v16,0,r3 + VPERM(v0,v0,v16,byteswap) + vxor v0,v0,v8 /* xor in initial value */ + VPMSUMW(v0,v0,v16) + bdz .Lv0 + + lvx v1,off16,r4 + lvx v17,off16,r3 + VPERM(v1,v1,v17,byteswap) + VPMSUMW(v1,v1,v17) + bdz .Lv1 + + lvx v2,off32,r4 + lvx v16,off32,r3 + VPERM(v2,v2,v16,byteswap) + VPMSUMW(v2,v2,v16) + bdz .Lv2 + + lvx v3,off48,r4 + lvx v17,off48,r3 + VPERM(v3,v3,v17,byteswap) + VPMSUMW(v3,v3,v17) + bdz .Lv3 + + lvx v4,off64,r4 + lvx v16,off64,r3 + VPERM(v4,v4,v16,byteswap) + VPMSUMW(v4,v4,v16) + bdz .Lv4 + + lvx v5,off80,r4 + lvx v17,off80,r3 + VPERM(v5,v5,v17,byteswap) + VPMSUMW(v5,v5,v17) + bdz .Lv5 + + lvx v6,off96,r4 + lvx v16,off96,r3 + VPERM(v6,v6,v16,byteswap) + VPMSUMW(v6,v6,v16) + bdz .Lv6 + + lvx v7,off112,r4 + lvx v17,off112,r3 + VPERM(v7,v7,v17,byteswap) + VPMSUMW(v7,v7,v17) + bdz .Lv7 + + addi r3,r3,128 + addi r4,r4,128 + + lvx v8,0,r4 + lvx v16,0,r3 + VPERM(v8,v8,v16,byteswap) + VPMSUMW(v8,v8,v16) + bdz .Lv8 + + lvx v9,off16,r4 + lvx v17,off16,r3 + VPERM(v9,v9,v17,byteswap) + VPMSUMW(v9,v9,v17) + bdz .Lv9 + + lvx v10,off32,r4 + lvx v16,off32,r3 + VPERM(v10,v10,v16,byteswap) + VPMSUMW(v10,v10,v16) + bdz .Lv10 + + lvx v11,off48,r4 + lvx v17,off48,r3 + VPERM(v11,v11,v17,byteswap) + VPMSUMW(v11,v11,v17) + bdz .Lv11 + + lvx v12,off64,r4 + lvx v16,off64,r3 + VPERM(v12,v12,v16,byteswap) + VPMSUMW(v12,v12,v16) + bdz .Lv12 + + lvx v13,off80,r4 + lvx v17,off80,r3 + VPERM(v13,v13,v17,byteswap) + VPMSUMW(v13,v13,v17) + bdz .Lv13 + + lvx v14,off96,r4 + lvx v16,off96,r3 + VPERM(v14,v14,v16,byteswap) + VPMSUMW(v14,v14,v16) + bdz .Lv14 + + lvx v15,off112,r4 + lvx v17,off112,r3 + VPERM(v15,v15,v17,byteswap) + VPMSUMW(v15,v15,v17) + +.Lv15: vxor v19,v19,v15 +.Lv14: vxor v20,v20,v14 +.Lv13: vxor v19,v19,v13 +.Lv12: vxor v20,v20,v12 +.Lv11: vxor v19,v19,v11 +.Lv10: vxor v20,v20,v10 +.Lv9: vxor v19,v19,v9 +.Lv8: vxor v20,v20,v8 +.Lv7: vxor v19,v19,v7 +.Lv6: vxor v20,v20,v6 +.Lv5: vxor v19,v19,v5 +.Lv4: vxor v20,v20,v4 +.Lv3: vxor v19,v19,v3 +.Lv2: vxor v20,v20,v2 +.Lv1: vxor v19,v19,v1 +.Lv0: vxor v20,v20,v0 + + vxor v0,v19,v20 + + b .Lbarrett_reduction + +.Lzero: + mr r3,r10 + b .Lout + +FUNC_END(CRC_FUNCTION_NAME) diff --git a/arch/powerpc/crypto/crc32c-vpmsum_asm.S b/arch/powerpc/crypto/crc32c-vpmsum_asm.S index dc640b212299..c0d080caefc1 100644 --- a/arch/powerpc/crypto/crc32c-vpmsum_asm.S +++ b/arch/powerpc/crypto/crc32c-vpmsum_asm.S @@ -1,20 +1,5 @@ /* - * Calculate the checksum of data that is 16 byte aligned and a multiple of - * 16 bytes. - * - * The first step is to reduce it to 1024 bits. We do this in 8 parallel - * chunks in order to mask the latency of the vpmsum instructions. If we - * have more than 32 kB of data to checksum we repeat this step multiple - * times, passing in the previous 1024 bits. - * - * The next step is to reduce the 1024 bits to 64 bits. This step adds - * 32 bits of 0s to the end - this matches what a CRC does. We just - * calculate constants that land the data in this 32 bits. - * - * We then use fixed point Barrett reduction to compute a mod n over GF(2) - * for n = CRC using POWER8 instructions. We use x = 32. - * - * http://en.wikipedia.org/wiki/Barrett_reduction + * Calculate a crc32c with vpmsum acceleration * * Copyright (C) 2015 Anton Blanchard , IBM * @@ -23,9 +8,6 @@ * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ -#include -#include - .section .rodata .balign 16 @@ -33,7 +15,6 @@ /* byte reverse permute constant */ .octa 0x0F0E0D0C0B0A09080706050403020100 -#define MAX_SIZE 32768 .constants: /* Reduce 262144 kbits to 1024 bits */ @@ -860,694 +841,5 @@ /* 33 bit reflected Barrett constant n */ .octa 0x00000000000000000000000105ec76f1 - .text - -#if defined(__BIG_ENDIAN__) -#define BYTESWAP_DATA -#else -#undef BYTESWAP_DATA -#endif - -#define off16 r25 -#define off32 r26 -#define off48 r27 -#define off64 r28 -#define off80 r29 -#define off96 r30 -#define off112 r31 - -#define const1 v24 -#define const2 v25 - -#define byteswap v26 -#define mask_32bit v27 -#define mask_64bit v28 -#define zeroes v29 - -#ifdef BYTESWAP_DATA -#define VPERM(A, B, C, D) vperm A, B, C, D -#else -#define VPERM(A, B, C, D) -#endif - -/* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */ -FUNC_START(__crc32c_vpmsum) - std r31,-8(r1) - std r30,-16(r1) - std r29,-24(r1) - std r28,-32(r1) - std r27,-40(r1) - std r26,-48(r1) - std r25,-56(r1) - - li off16,16 - li off32,32 - li off48,48 - li off64,64 - li off80,80 - li off96,96 - li off112,112 - li r0,0 - - /* Enough room for saving 10 non volatile VMX registers */ - subi r6,r1,56+10*16 - subi r7,r1,56+2*16 - - stvx v20,0,r6 - stvx v21,off16,r6 - stvx v22,off32,r6 - stvx v23,off48,r6 - stvx v24,off64,r6 - stvx v25,off80,r6 - stvx v26,off96,r6 - stvx v27,off112,r6 - stvx v28,0,r7 - stvx v29,off16,r7 - - mr r10,r3 - - vxor zeroes,zeroes,zeroes - vspltisw v0,-1 - - vsldoi mask_32bit,zeroes,v0,4 - vsldoi mask_64bit,zeroes,v0,8 - - /* Get the initial value into v8 */ - vxor v8,v8,v8 - MTVRD(v8, R3) - vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ - -#ifdef BYTESWAP_DATA - addis r3,r2,.byteswap_constant@toc@ha - addi r3,r3,.byteswap_constant@toc@l - - lvx byteswap,0,r3 - addi r3,r3,16 -#endif - - cmpdi r5,256 - blt .Lshort - - rldicr r6,r5,0,56 - - /* Checksum in blocks of MAX_SIZE */ -1: lis r7,MAX_SIZE@h - ori r7,r7,MAX_SIZE@l - mr r9,r7 - cmpd r6,r7 - bgt 2f - mr r7,r6 -2: subf r6,r7,r6 - - /* our main loop does 128 bytes at a time */ - srdi r7,r7,7 - - /* - * Work out the offset into the constants table to start at. Each - * constant is 16 bytes, and it is used against 128 bytes of input - * data - 128 / 16 = 8 - */ - sldi r8,r7,4 - srdi r9,r9,3 - subf r8,r8,r9 - - /* We reduce our final 128 bytes in a separate step */ - addi r7,r7,-1 - mtctr r7 - - addis r3,r2,.constants@toc@ha - addi r3,r3,.constants@toc@l - - /* Find the start of our constants */ - add r3,r3,r8 - - /* zero v0-v7 which will contain our checksums */ - vxor v0,v0,v0 - vxor v1,v1,v1 - vxor v2,v2,v2 - vxor v3,v3,v3 - vxor v4,v4,v4 - vxor v5,v5,v5 - vxor v6,v6,v6 - vxor v7,v7,v7 - - lvx const1,0,r3 - - /* - * If we are looping back to consume more data we use the values - * already in v16-v23. - */ - cmpdi r0,1 - beq 2f - - /* First warm up pass */ - lvx v16,0,r4 - lvx v17,off16,r4 - VPERM(v16,v16,v16,byteswap) - VPERM(v17,v17,v17,byteswap) - lvx v18,off32,r4 - lvx v19,off48,r4 - VPERM(v18,v18,v18,byteswap) - VPERM(v19,v19,v19,byteswap) - lvx v20,off64,r4 - lvx v21,off80,r4 - VPERM(v20,v20,v20,byteswap) - VPERM(v21,v21,v21,byteswap) - lvx v22,off96,r4 - lvx v23,off112,r4 - VPERM(v22,v22,v22,byteswap) - VPERM(v23,v23,v23,byteswap) - addi r4,r4,8*16 - - /* xor in initial value */ - vxor v16,v16,v8 - -2: bdz .Lfirst_warm_up_done - - addi r3,r3,16 - lvx const2,0,r3 - - /* Second warm up pass */ - VPMSUMD(v8,v16,const1) - lvx v16,0,r4 - VPERM(v16,v16,v16,byteswap) - ori r2,r2,0 - - VPMSUMD(v9,v17,const1) - lvx v17,off16,r4 - VPERM(v17,v17,v17,byteswap) - ori r2,r2,0 - - VPMSUMD(v10,v18,const1) - lvx v18,off32,r4 - VPERM(v18,v18,v18,byteswap) - ori r2,r2,0 - - VPMSUMD(v11,v19,const1) - lvx v19,off48,r4 - VPERM(v19,v19,v19,byteswap) - ori r2,r2,0 - - VPMSUMD(v12,v20,const1) - lvx v20,off64,r4 - VPERM(v20,v20,v20,byteswap) - ori r2,r2,0 - - VPMSUMD(v13,v21,const1) - lvx v21,off80,r4 - VPERM(v21,v21,v21,byteswap) - ori r2,r2,0 - - VPMSUMD(v14,v22,const1) - lvx v22,off96,r4 - VPERM(v22,v22,v22,byteswap) - ori r2,r2,0 - - VPMSUMD(v15,v23,const1) - lvx v23,off112,r4 - VPERM(v23,v23,v23,byteswap) - - addi r4,r4,8*16 - - bdz .Lfirst_cool_down - - /* - * main loop. We modulo schedule it such that it takes three iterations - * to complete - first iteration load, second iteration vpmsum, third - * iteration xor. - */ - .balign 16 -4: lvx const1,0,r3 - addi r3,r3,16 - ori r2,r2,0 - - vxor v0,v0,v8 - VPMSUMD(v8,v16,const2) - lvx v16,0,r4 - VPERM(v16,v16,v16,byteswap) - ori r2,r2,0 - - vxor v1,v1,v9 - VPMSUMD(v9,v17,const2) - lvx v17,off16,r4 - VPERM(v17,v17,v17,byteswap) - ori r2,r2,0 - - vxor v2,v2,v10 - VPMSUMD(v10,v18,const2) - lvx v18,off32,r4 - VPERM(v18,v18,v18,byteswap) - ori r2,r2,0 - - vxor v3,v3,v11 - VPMSUMD(v11,v19,const2) - lvx v19,off48,r4 - VPERM(v19,v19,v19,byteswap) - lvx const2,0,r3 - ori r2,r2,0 - - vxor v4,v4,v12 - VPMSUMD(v12,v20,const1) - lvx v20,off64,r4 - VPERM(v20,v20,v20,byteswap) - ori r2,r2,0 - - vxor v5,v5,v13 - VPMSUMD(v13,v21,const1) - lvx v21,off80,r4 - VPERM(v21,v21,v21,byteswap) - ori r2,r2,0 - - vxor v6,v6,v14 - VPMSUMD(v14,v22,const1) - lvx v22,off96,r4 - VPERM(v22,v22,v22,byteswap) - ori r2,r2,0 - - vxor v7,v7,v15 - VPMSUMD(v15,v23,const1) - lvx v23,off112,r4 - VPERM(v23,v23,v23,byteswap) - - addi r4,r4,8*16 - - bdnz 4b - -.Lfirst_cool_down: - /* First cool down pass */ - lvx const1,0,r3 - addi r3,r3,16 - - vxor v0,v0,v8 - VPMSUMD(v8,v16,const1) - ori r2,r2,0 - - vxor v1,v1,v9 - VPMSUMD(v9,v17,const1) - ori r2,r2,0 - - vxor v2,v2,v10 - VPMSUMD(v10,v18,const1) - ori r2,r2,0 - - vxor v3,v3,v11 - VPMSUMD(v11,v19,const1) - ori r2,r2,0 - - vxor v4,v4,v12 - VPMSUMD(v12,v20,const1) - ori r2,r2,0 - - vxor v5,v5,v13 - VPMSUMD(v13,v21,const1) - ori r2,r2,0 - - vxor v6,v6,v14 - VPMSUMD(v14,v22,const1) - ori r2,r2,0 - - vxor v7,v7,v15 - VPMSUMD(v15,v23,const1) - ori r2,r2,0 - -.Lsecond_cool_down: - /* Second cool down pass */ - vxor v0,v0,v8 - vxor v1,v1,v9 - vxor v2,v2,v10 - vxor v3,v3,v11 - vxor v4,v4,v12 - vxor v5,v5,v13 - vxor v6,v6,v14 - vxor v7,v7,v15 - - /* - * vpmsumd produces a 96 bit result in the least significant bits - * of the register. Since we are bit reflected we have to shift it - * left 32 bits so it occupies the least significant bits in the - * bit reflected domain. - */ - vsldoi v0,v0,zeroes,4 - vsldoi v1,v1,zeroes,4 - vsldoi v2,v2,zeroes,4 - vsldoi v3,v3,zeroes,4 - vsldoi v4,v4,zeroes,4 - vsldoi v5,v5,zeroes,4 - vsldoi v6,v6,zeroes,4 - vsldoi v7,v7,zeroes,4 - - /* xor with last 1024 bits */ - lvx v8,0,r4 - lvx v9,off16,r4 - VPERM(v8,v8,v8,byteswap) - VPERM(v9,v9,v9,byteswap) - lvx v10,off32,r4 - lvx v11,off48,r4 - VPERM(v10,v10,v10,byteswap) - VPERM(v11,v11,v11,byteswap) - lvx v12,off64,r4 - lvx v13,off80,r4 - VPERM(v12,v12,v12,byteswap) - VPERM(v13,v13,v13,byteswap) - lvx v14,off96,r4 - lvx v15,off112,r4 - VPERM(v14,v14,v14,byteswap) - VPERM(v15,v15,v15,byteswap) - - addi r4,r4,8*16 - - vxor v16,v0,v8 - vxor v17,v1,v9 - vxor v18,v2,v10 - vxor v19,v3,v11 - vxor v20,v4,v12 - vxor v21,v5,v13 - vxor v22,v6,v14 - vxor v23,v7,v15 - - li r0,1 - cmpdi r6,0 - addi r6,r6,128 - bne 1b - - /* Work out how many bytes we have left */ - andi. r5,r5,127 - - /* Calculate where in the constant table we need to start */ - subfic r6,r5,128 - add r3,r3,r6 - - /* How many 16 byte chunks are in the tail */ - srdi r7,r5,4 - mtctr r7 - - /* - * Reduce the previously calculated 1024 bits to 64 bits, shifting - * 32 bits to include the trailing 32 bits of zeros - */ - lvx v0,0,r3 - lvx v1,off16,r3 - lvx v2,off32,r3 - lvx v3,off48,r3 - lvx v4,off64,r3 - lvx v5,off80,r3 - lvx v6,off96,r3 - lvx v7,off112,r3 - addi r3,r3,8*16 - - VPMSUMW(v0,v16,v0) - VPMSUMW(v1,v17,v1) - VPMSUMW(v2,v18,v2) - VPMSUMW(v3,v19,v3) - VPMSUMW(v4,v20,v4) - VPMSUMW(v5,v21,v5) - VPMSUMW(v6,v22,v6) - VPMSUMW(v7,v23,v7) - - /* Now reduce the tail (0 - 112 bytes) */ - cmpdi r7,0 - beq 1f - - lvx v16,0,r4 - lvx v17,0,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off16,r4 - lvx v17,off16,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off32,r4 - lvx v17,off32,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off48,r4 - lvx v17,off48,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off64,r4 - lvx v17,off64,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off80,r4 - lvx v17,off80,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - bdz 1f - - lvx v16,off96,r4 - lvx v17,off96,r3 - VPERM(v16,v16,v16,byteswap) - VPMSUMW(v16,v16,v17) - vxor v0,v0,v16 - - /* Now xor all the parallel chunks together */ -1: vxor v0,v0,v1 - vxor v2,v2,v3 - vxor v4,v4,v5 - vxor v6,v6,v7 - - vxor v0,v0,v2 - vxor v4,v4,v6 - - vxor v0,v0,v4 - -.Lbarrett_reduction: - /* Barrett constants */ - addis r3,r2,.barrett_constants@toc@ha - addi r3,r3,.barrett_constants@toc@l - - lvx const1,0,r3 - lvx const2,off16,r3 - - vsldoi v1,v0,v0,8 - vxor v0,v0,v1 /* xor two 64 bit results together */ - - /* shift left one bit */ - vspltisb v1,1 - vsl v0,v0,v1 - - vand v0,v0,mask_64bit - - /* - * The reflected version of Barrett reduction. Instead of bit - * reflecting our data (which is expensive to do), we bit reflect our - * constants and our algorithm, which means the intermediate data in - * our vector registers goes from 0-63 instead of 63-0. We can reflect - * the algorithm because we don't carry in mod 2 arithmetic. - */ - vand v1,v0,mask_32bit /* bottom 32 bits of a */ - VPMSUMD(v1,v1,const1) /* ma */ - vand v1,v1,mask_32bit /* bottom 32bits of ma */ - VPMSUMD(v1,v1,const2) /* qn */ - vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ - - /* - * Since we are bit reflected, the result (ie the low 32 bits) is in - * the high 32 bits. We just need to shift it left 4 bytes - * V0 [ 0 1 X 3 ] - * V0 [ 0 X 2 3 ] - */ - vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ - - /* Get it into r3 */ - MFVRD(R3, v0) - -.Lout: - subi r6,r1,56+10*16 - subi r7,r1,56+2*16 - - lvx v20,0,r6 - lvx v21,off16,r6 - lvx v22,off32,r6 - lvx v23,off48,r6 - lvx v24,off64,r6 - lvx v25,off80,r6 - lvx v26,off96,r6 - lvx v27,off112,r6 - lvx v28,0,r7 - lvx v29,off16,r7 - - ld r31,-8(r1) - ld r30,-16(r1) - ld r29,-24(r1) - ld r28,-32(r1) - ld r27,-40(r1) - ld r26,-48(r1) - ld r25,-56(r1) - - blr - -.Lfirst_warm_up_done: - lvx const1,0,r3 - addi r3,r3,16 - - VPMSUMD(v8,v16,const1) - VPMSUMD(v9,v17,const1) - VPMSUMD(v10,v18,const1) - VPMSUMD(v11,v19,const1) - VPMSUMD(v12,v20,const1) - VPMSUMD(v13,v21,const1) - VPMSUMD(v14,v22,const1) - VPMSUMD(v15,v23,const1) - - b .Lsecond_cool_down - -.Lshort: - cmpdi r5,0 - beq .Lzero - - addis r3,r2,.short_constants@toc@ha - addi r3,r3,.short_constants@toc@l - - /* Calculate where in the constant table we need to start */ - subfic r6,r5,256 - add r3,r3,r6 - - /* How many 16 byte chunks? */ - srdi r7,r5,4 - mtctr r7 - - vxor v19,v19,v19 - vxor v20,v20,v20 - - lvx v0,0,r4 - lvx v16,0,r3 - VPERM(v0,v0,v16,byteswap) - vxor v0,v0,v8 /* xor in initial value */ - VPMSUMW(v0,v0,v16) - bdz .Lv0 - - lvx v1,off16,r4 - lvx v17,off16,r3 - VPERM(v1,v1,v17,byteswap) - VPMSUMW(v1,v1,v17) - bdz .Lv1 - - lvx v2,off32,r4 - lvx v16,off32,r3 - VPERM(v2,v2,v16,byteswap) - VPMSUMW(v2,v2,v16) - bdz .Lv2 - - lvx v3,off48,r4 - lvx v17,off48,r3 - VPERM(v3,v3,v17,byteswap) - VPMSUMW(v3,v3,v17) - bdz .Lv3 - - lvx v4,off64,r4 - lvx v16,off64,r3 - VPERM(v4,v4,v16,byteswap) - VPMSUMW(v4,v4,v16) - bdz .Lv4 - - lvx v5,off80,r4 - lvx v17,off80,r3 - VPERM(v5,v5,v17,byteswap) - VPMSUMW(v5,v5,v17) - bdz .Lv5 - - lvx v6,off96,r4 - lvx v16,off96,r3 - VPERM(v6,v6,v16,byteswap) - VPMSUMW(v6,v6,v16) - bdz .Lv6 - - lvx v7,off112,r4 - lvx v17,off112,r3 - VPERM(v7,v7,v17,byteswap) - VPMSUMW(v7,v7,v17) - bdz .Lv7 - - addi r3,r3,128 - addi r4,r4,128 - - lvx v8,0,r4 - lvx v16,0,r3 - VPERM(v8,v8,v16,byteswap) - VPMSUMW(v8,v8,v16) - bdz .Lv8 - - lvx v9,off16,r4 - lvx v17,off16,r3 - VPERM(v9,v9,v17,byteswap) - VPMSUMW(v9,v9,v17) - bdz .Lv9 - - lvx v10,off32,r4 - lvx v16,off32,r3 - VPERM(v10,v10,v16,byteswap) - VPMSUMW(v10,v10,v16) - bdz .Lv10 - - lvx v11,off48,r4 - lvx v17,off48,r3 - VPERM(v11,v11,v17,byteswap) - VPMSUMW(v11,v11,v17) - bdz .Lv11 - - lvx v12,off64,r4 - lvx v16,off64,r3 - VPERM(v12,v12,v16,byteswap) - VPMSUMW(v12,v12,v16) - bdz .Lv12 - - lvx v13,off80,r4 - lvx v17,off80,r3 - VPERM(v13,v13,v17,byteswap) - VPMSUMW(v13,v13,v17) - bdz .Lv13 - - lvx v14,off96,r4 - lvx v16,off96,r3 - VPERM(v14,v14,v16,byteswap) - VPMSUMW(v14,v14,v16) - bdz .Lv14 - - lvx v15,off112,r4 - lvx v17,off112,r3 - VPERM(v15,v15,v17,byteswap) - VPMSUMW(v15,v15,v17) - -.Lv15: vxor v19,v19,v15 -.Lv14: vxor v20,v20,v14 -.Lv13: vxor v19,v19,v13 -.Lv12: vxor v20,v20,v12 -.Lv11: vxor v19,v19,v11 -.Lv10: vxor v20,v20,v10 -.Lv9: vxor v19,v19,v9 -.Lv8: vxor v20,v20,v8 -.Lv7: vxor v19,v19,v7 -.Lv6: vxor v20,v20,v6 -.Lv5: vxor v19,v19,v5 -.Lv4: vxor v20,v20,v4 -.Lv3: vxor v19,v19,v3 -.Lv2: vxor v20,v20,v2 -.Lv1: vxor v19,v19,v1 -.Lv0: vxor v20,v20,v0 - - vxor v0,v19,v20 - - b .Lbarrett_reduction - -.Lzero: - mr r3,r10 - b .Lout - -FUNC_END(__crc32_vpmsum) +#define CRC_FUNCTION_NAME __crc32c_vpmsum +#include "crc32-vpmsum_core.S"