mbox series

[v5,00/22] fscache,erofs: fscache-based on-demand read semantics

Message ID 20220316131723.111553-1-jefflexu@linux.alibaba.com (mailing list archive)
Headers show
Series fscache,erofs: fscache-based on-demand read semantics | expand

Message

Jingbo Xu March 16, 2022, 1:17 p.m. UTC
changes since v4:
- erofs: add reviewed-by tag from Chao Yu (patch 8)
- cachefiles: rename CACHEFILES_OP_INIT to CACHEFILES_OP_OPEN (patch 4)
- cachefiles: add a new message type (CACHEFILES_OP_CLOSE). It will be
  sent to user daemon when withdrawing cookie. It is used to notify user daemon
  to close the attached anon_fd. (patch 5)
- cachefiles: add a read-write spinlock @cache->reqs_lock (patch 3) to protect
  parallel accessing to the xarray (patch 4).
- cachefiles: remove the logic of automaticlly flushing all associated
  requests when anon_fd gets closed (in cachefiles_ondemand_fd_release()).
  The reason is that, the reordering of cread (response to READ request) and
  close(anon_fd) may unexpectedly complete another READ request which reuses
  the ID of previous READ request.

```
Process 1				Process 2
close(anon_fd)
  complete READ request A with ID X

					on-demand read
					  enqueue READ request B into xarray,
					  now READ request B reuses ID X
cread(ID X) of READ request A
  now ID X responds to READ request B
  complete READ request B // unexpected
```

  So now closing anon_fd won't flush all associated requests. A
  mandatory response (cread) is required for each READ request.


RFC: https://lore.kernel.org/all/YbRL2glGzjfZkVbH@B-P7TQMD6M-0146.local/t/
v1: https://lore.kernel.org/lkml/47831875-4bdd-8398-9f2d-0466b31a4382@linux.alibaba.com/T/
v2: https://lore.kernel.org/all/2946d871-b9e1-cf29-6d39-bcab30f2854f@linux.alibaba.com/t/
v3: https://lore.kernel.org/lkml/20220209060108.43051-1-jefflexu@linux.alibaba.com/T/
v4: https://lore.kernel.org/lkml/20220307123305.79520-1-jefflexu@linux.alibaba.com/T/#t


[Background]
============
Nydus [1] is a container image distribution service specially optimised
for distribution over network. Nydus is an excellent container image
acceleration solution, since it only pulls data from remote when it's
really needed, a.k.a. on-demand reading.

erofs (Enhanced Read-Only File System) is a filesystem specially
optimised for read-only scenarios. (Documentation/filesystem/erofs.rst)

Recently we are focusing on erofs in container images distribution
scenario [2], trying to combine it with nydus. In this case, erofs can
be mounted from one bootstrap file (metadata) with (optional) multiple
data blob files (data) stored on another local filesystem. (All these
files are actually image files in erofs disk format.)

To accelerate the container startup (fetching container image from remote
and then start the container), we do hope that the bootstrap blob file
could support demand read. That is, erofs can be mounted and accessed
even when the bootstrap/data blob files have not been fully downloaded.

That means we have to manage the cache state of the bootstrap/data blob
files (if cache hit, read directly from the local cache; if cache miss,
fetch the data somehow). It would be painful and may be dumb for erofs to
implement the cache management itself. Thus we prefer fscache/cachefiles
to do the cache management. Besides, the demand-read feature shall be
general and it can benefit other using scenarios if it can be implemented
in fscache level.

[1] https://nydus.dev
[2] https://sched.co/pcdL


[Overall Design]
================

Please refer to patch 6 ("cachefiles: document on-demand read mode") for
more details.

When working in original mode, cachefiles mainly serves as a local cache for
remote networking fs, while in on-demand read mode, cachefiles can boost the
scenario where on-demand read semantics is needed, e.g. container image
distribution.

The essential difference between these two modes is that, in original mode,
when cache miss, netfs itself will fetch data from remote, and then write the
fetched data into cache file. While in on-demand read mode, a user daemon is
responsible for fetching data and then writing to the cache file.

The on-demand read mode relies on a simple protocol used for communication
between kernel and user daemon.

The current implementation relies on the anonymous fd mechanism to avoid
the dependence on the format of cache file. When cache file is opened
for the first time, an anon_fd associated with the cache file is sent to
user daemon. With the given anon_fd, user daemon could fetch and write data
into the cache file in the background, even when kernel has not triggered
the cache miss. Besides, the write() syscall to the anon_fd will finally
call cachefiles kernel module, which will write data to cache file in
the latest format of cache file.

1. cache miss
When cache miss, cachefiles kernel module will notify user daemon the
anon_fd, along with the requested file range. When notified, user dameon
needs to fetch data of the requested file range, and then write the fetched
data into cache file with the given anonymous fd. When finished
processing the request, user daemon needs to notify the kernel.

After notifying the user daemon, the kernel read routine will hang there,
until the request is handled by user daemon. When it's awaken by the
notification from user daemon, i.e. the corresponding hole has been filled
by the user daemon, it will retry to read from the same file range.

2. cache hit
Once data is already ready in cache file, netfs will read from cache file directly.


[Advantage of fscache-based demand-read]
========================================
1. Asynchronous Prefetch
In current mechanism, fscache is responsible for cache state management,
while the data plane (fetch data from local/remote on cache miss) is
done on the user daemon side.

If data has already been ready in the backing file, the upper fs (e.g.
erofs) will read from the backing file directly and won't be trapped to
user space anymore. Thus the user daemon could fetch data (from remote)
asynchronously on the background, and thus accelerate the backing file
accessing in some degree.

2. Support massive blob files
Besides this mechanism supports a large amount of backing files, and
thus can benefit the densely employed scenario.

In our using scenario, one container image can correspond to one
bootstrap file (required) and multiple data blob files (optional). For
example, one container image for node.js will corresponds to ~20 files
in total. In densely employed environment, there could be as many as
hundreds of containers and thus thousands of backing files on one
machine.


[Test]
==========
You could start a quick test by
https://github.com/lostjeffle/demand-read-cachefilesd


Jeffle Xu (22):
  fscache: export fscache_end_operation()
  cachefiles: extract write routine
  cachefiles: introduce on-demand read mode
  cachefiles: notify user daemon with anon_fd when looking up cookie
  cachefiles: notify user daemon when withdrawing cookie
  cachefiles: implement on-demand read
  cachefiles: document on-demand read mode
  erofs: use meta buffers for erofs_read_superblock()
  erofs: make erofs_map_blocks() generally available
  erofs: add mode checking helper
  erofs: register global fscache volume
  erofs: add cookie context helper functions
  erofs: add anonymous inode managing page cache of blob file
  erofs: add erofs_fscache_read_pages() helper
  erofs: register cookie context for bootstrap blob
  erofs: implement fscache-based metadata read
  erofs: implement fscache-based data read for non-inline layout
  erofs: implement fscache-based data read for inline layout
  erofs: register cookie context for data blobs
  erofs: implement fscache-based data read for data blobs
  erofs: implement fscache-based data readahead
  erofs: add 'uuid' mount option

 .../filesystems/caching/cachefiles.rst        | 176 ++++++
 fs/cachefiles/Kconfig                         |  11 +
 fs/cachefiles/daemon.c                        | 587 +++++++++++++++++-
 fs/cachefiles/interface.c                     |   2 +
 fs/cachefiles/internal.h                      |  53 ++
 fs/cachefiles/io.c                            |  72 ++-
 fs/cachefiles/namei.c                         |  16 +-
 fs/erofs/Makefile                             |   3 +-
 fs/erofs/data.c                               |  18 +-
 fs/erofs/fscache.c                            | 492 +++++++++++++++
 fs/erofs/inode.c                              |   6 +-
 fs/erofs/internal.h                           |  30 +
 fs/erofs/super.c                              | 106 +++-
 fs/fscache/internal.h                         |  11 -
 fs/nfs/fscache.c                              |   8 -
 include/linux/fscache.h                       |  15 +
 include/linux/netfs.h                         |   1 +
 include/trace/events/cachefiles.h             |   2 +
 include/uapi/linux/cachefiles.h               |  51 ++
 19 files changed, 1560 insertions(+), 100 deletions(-)
 create mode 100644 fs/erofs/fscache.c
 create mode 100644 include/uapi/linux/cachefiles.h