new file mode 100644
@@ -0,0 +1,359 @@
+.\" Copyright (c) 2017, Oracle. All rights reserved.
+.\"
+.\" %%%LICENSE_START(GPLv2+_DOC_FULL)
+.\" This is free documentation; you can redistribute it and/or
+.\" modify it under the terms of the GNU General Public License as
+.\" published by the Free Software Foundation; either version 2 of
+.\" the License, or (at your option) any later version.
+.\"
+.\" The GNU General Public License's references to "object code"
+.\" and "executables" are to be interpreted as the output of any
+.\" document formatting or typesetting system, including
+.\" intermediate and printed output.
+.\"
+.\" This manual is distributed in the hope that it will be useful,
+.\" but WITHOUT ANY WARRANTY; without even the implied warranty of
+.\" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.\" GNU General Public License for more details.
+.\"
+.\" You should have received a copy of the GNU General Public
+.\" License along with this manual; if not, see
+.\" <http://www.gnu.org/licenses/>.
+.\" %%%LICENSE_END
+.TH IOCTL-GETFSMAP 2 2017-02-10 "Linux" "Linux Programmer's Manual"
+.SH NAME
+ioctl_getfsmap \- retrieve the physical layout of the filesystem
+.SH SYNOPSIS
+.br
+.B #include <sys/ioctl.h>
+.br
+.B #include <linux/fs.h>
+.br
+.B #include <linux/fsmap.h>
+.sp
+.BI "int ioctl(int " fd ", GETFSMAP, struct fsmap_head * " arg );
+.SH DESCRIPTION
+This
+.BR ioctl (2)
+retrieves physical extent mappings for a filesystem.
+This information can be used to discover which files are mapped to a physical
+block, examine free space, or find known bad blocks, among other things.
+
+The sole argument to this ioctl should be a pointer to a single
+.BR "struct fsmap_head" ":"
+.in +4n
+.nf
+
+struct fsmap {
+ __u32 fmr_device; /* device id */
+ __u32 fmr_flags; /* mapping flags */
+ __u64 fmr_physical; /* device offset of segment */
+ __u64 fmr_owner; /* owner id */
+ __u64 fmr_offset; /* file offset of segment */
+ __u64 fmr_length; /* length of segment */
+ __u64 fmr_reserved[3]; /* must be zero */
+};
+
+struct fsmap_head {
+ __u32 fmh_iflags; /* control flags */
+ __u32 fmh_oflags; /* output flags */
+ __u32 fmh_count; /* # of entries in array incl. input */
+ __u32 fmh_entries; /* # of entries filled in (output). */
+ __u64 fmh_reserved[6]; /* must be zero */
+
+ struct fsmap fmh_keys[2]; /* low and high keys for the mapping search */
+ struct fsmap fmh_recs[]; /* returned records */
+};
+
+.fi
+.in
+The two
+.I fmh_keys
+array elements specify the lowest and highest reverse-mapping
+keys, respectively, for which userspace would like physical mapping
+information.
+A reverse mapping key consists of the tuple (device, block, owner, offset).
+The owner and offset fields are part of the key because some filesystems
+support sharing physical blocks between multiple files and
+therefore may return multiple mappings for a given physical block.
+.PP
+Filesystem mappings are copied into the
+.I fmh_recs
+array, which immediately follows the header data.
+.SS Fields of struct fsmap_head
+.PP
+The
+.I fmh_iflags
+field is a bitmask passed to the kernel to alter the output.
+There are no flags defined, so this value must be zero.
+
+.PP
+The
+.I fmh_oflags
+field is a bitmask of flags that concern all output mappings.
+If
+.B FMH_OF_DEV_T
+is set, then the
+.I fmr_device
+field represents a
+.B dev_t
+structure containing the major and minor numbers of the block device.
+
+.PP
+The
+.I fmh_count
+field contains the number of elements in the array being passed to the
+kernel.
+If this value is 0,
+.I fmh_entries
+will be set to the number of records that would have been returned had
+the array been large enough;
+no mapping information will be returned.
+
+.PP
+The
+.I fmh_entries
+field contains the number of elements in the
+.I fmh_recs
+array that contain useful information.
+
+.PP
+The
+.I fmh_reserved
+fields must be set to zero.
+
+.SS Keys
+.PP
+The two key records in
+.B fsmap_head.fmh_keys
+specify the lowest and highest extent records in the keyspace that the caller
+wants returned.
+A filesystem that can share blocks between files likely requires the tuple
+.RI "(" "device" ", " "physical" ", " "owner" ", " "offset" ", " "flags" ")"
+to uniquely index any filesystem mapping record.
+Classic non-sharing filesystems might be able to identify any record with only
+.RI "(" "device" ", " "physical" ", " "flags" ")."
+For example, if the low key is set to (0, 36864, 0, 0, 0), the filesystem will
+only return records for extents starting at or above 36KiB on disk.
+If the high key is set to (0, 1048576, 0, 0, 0), only records below 1MiB will
+be returned.
+By convention, the field
+.B fsmap_head.fmh_keys[0]
+must contain the low key and
+.B fsmap_head.fmh_keys[1]
+must contain the high key for the request.
+.PP
+For convenience, if
+.B fmr_length
+is set in the low key, it will be added to
+.IR fmr_block " or " fmr_offset
+as appropriate.
+The caller can take advantage of this subtlety to set up subsequent calls
+by copying
+.B fsmap_head.fmh_recs[fsmap_head.fmh_entries - 1]
+into the low key.
+The function
+.B fsmap_advance
+provides this functionality.
+
+.SS Fields of struct fsmap
+.PP
+The
+.I fmr_device
+field contains a 32-bit cookie to uniquely identify the underlying storage
+device.
+If the
+.B FMH_OF_DEV_T
+flag is set in the header's
+.I fmh_oflags
+field, this field contains a
+.B dev_t
+from which major and minor numbers can be extracted.
+If the flag is not set, this field contains a value that must be unique
+for each unique storage device.
+
+.PP
+The
+.I fmr_physical
+field contains the disk address of the extent in bytes.
+
+.PP
+The
+.I fmr_owner
+field contains the owner of the extent.
+This is an inode number unless
+.B FMR_OF_SPECIAL_OWNER
+is set in the
+.I fmr_flags
+field, in which case the value is determined by the filesystem.
+See the section below about special owner values for more details.
+
+.PP
+The
+.I fmr_offset
+field contains the logical address in the mapping record in bytes.
+This field has no meaning if the
+.BR FMR_OF_SPECIAL_OWNER " or " FMR_OF_EXTENT_MAP
+flags are set in
+.IR fmr_flags "."
+
+.PP
+The
+.I fmr_length
+field contains the length of the extent in bytes.
+
+.PP
+The
+.I fmr_flags
+field is a bitmask of extent state flags.
+The bits are:
+.RS 0.4i
+.TP
+.B FMR_OF_PREALLOC
+The extent is allocated but not yet written.
+.TP
+.B FMR_OF_ATTR_FORK
+This extent contains extended attribute data.
+.TP
+.B FMR_OF_EXTENT_MAP
+This extent contains extent map information for the owner.
+.TP
+.B FMR_OF_SHARED
+Parts of this extent may be shared.
+.TP
+.B FMR_OF_SPECIAL_OWNER
+The
+.I fmr_owner
+field contains a special value instead of an inode number.
+.TP
+.B FMR_OF_LAST
+This is the last record in the filesystem.
+.RE
+
+.PP
+The
+.I fmr_reserved
+field will be set to zero.
+
+.SS Special Owner Values
+The following special owner values are generic to all filesystems:
+.RS 0.4i
+.TP
+.B FMR_OWN_FREE
+Free space.
+.TP
+.B FMR_OWN_UNKNOWN
+This extent is in use but its owner is not known.
+.TP
+.B FMR_OWN_METADATA
+This extent is filesystem metadata.
+.RE
+
+XFS can return the following special owner values:
+.RS 0.4i
+.TP
+.B XFS_FMR_OWN_FREE
+Free space.
+.TP
+.B XFS_FMR_OWN_UNKNOWN
+This extent is in use but its owner is not known.
+.TP
+.B XFS_FMR_OWN_FS
+Static filesystem metadata which exists at a fixed address.
+These are the AG superblock, the AGF, the AGFL, and the AGI headers.
+.TP
+.B XFS_FMR_OWN_LOG
+The filesystem journal.
+.TP
+.B XFS_FMR_OWN_AG
+Allocation group metadata, such as the free space btrees and the
+reverse mapping btrees.
+.TP
+.B XFS_FMR_OWN_INOBT
+The inode and free inode btrees.
+.TP
+.B XFS_FMR_OWN_INODES
+Inode records.
+.TP
+.B XFS_FMR_OWN_REFC
+Reference count information.
+.TP
+.B XFS_FMR_OWN_COW
+This extent is being used to stage a copy-on-write.
+.TP
+.B XFS_FMR_OWN_DEFECTIVE:
+This extent has been marked defective either by the filesystem or the
+underlying device.
+.RE
+
+ext4 can return the following special owner values:
+.RS 0.4i
+.TP
+.B EXT4_FMR_OWN_FREE
+Free space.
+.TP
+.B EXT4_FMR_OWN_UNKNOWN
+This extent is in use but its owner is not known.
+.TP
+.B EXT4_FMR_OWN_FS
+Static filesystem metadata which exists at a fixed address.
+This is the superblock and the group descriptors.
+.TP
+.B EXT4_FMR_OWN_LOG
+The filesystem journal.
+.TP
+.B EXT4_FMR_OWN_INODES
+Inode records.
+.TP
+.B EXT4_FMR_OWN_BLKBM
+Block bitmap.
+.TP
+.B EXT4_FMR_OWN_INOBM
+Inode bitmap.
+.RE
+
+.SH RETURN VALUE
+On error, \-1 is returned, and
+.I errno
+is set to indicate the error.
+.PP
+.SH ERRORS
+Error codes can be one of, but are not limited to, the following:
+.TP
+.B EINVAL
+The array is not long enough, or a non-zero value was passed in one of the
+fields that must be zero.
+.TP
+.B EFAULT
+The pointer passed in was not mapped to a valid memory address.
+.TP
+.B EBADF
+.IR fd
+is not open for reading.
+.TP
+.B EPERM
+This query is not allowed.
+.TP
+.B EOPNOTSUPP
+The filesystem does not support this command.
+.TP
+.B EUCLEAN
+The filesystem metadata is corrupt and needs repair.
+.TP
+.B EBADMSG
+The filesystem has detected a checksum error in the metadata.
+.TP
+.B ENOMEM
+Insufficient memory to process the request.
+
+.SH EXAMPLE
+.TP
+Please see io/fsmap.c in the xfsprogs distribution for a sample program.
+
+.SH CONFORMING TO
+This API is Linux-specific.
+Not all filesystems support it.
+.fi
+.in
+.SH SEE ALSO
+.BR ioctl (2)
Document the new GETFSMAP ioctl that returns the physical layout of a (disk-based) filesystem. This time around the fs-specific parts have been moved to a separate section; I'll move move them into separate xfsprogs/e2fsprogs manpages when we get closer to landing the ioctl. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> --- man2/ioctl_getfsmap.2 | 359 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 359 insertions(+) create mode 100644 man2/ioctl_getfsmap.2