@@ -39,15 +39,15 @@
* @list: List entry for the rs control list
*/
struct rs_control {
- int mm;
- int nn;
+ int mm;
+ int nn;
uint16_t *alpha_to;
uint16_t *index_of;
uint16_t *genpoly;
- int nroots;
- int fcr;
- int prim;
- int iprim;
+ int nroots;
+ int fcr;
+ int prim;
+ int iprim;
int gfpoly;
int (*gffunc)(int);
int users;
@@ -192,7 +192,7 @@ void free_rs(struct rs_control *rs)
* @gffunc: pointer to function to generate the next field element,
* or the multiplicative identity element if given 0. Used
* instead of gfpoly if gfpoly is 0
- * @fcr: the first consecutive root of the rs code generator polynomial
+ * @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
@@ -209,9 +209,9 @@ static struct rs_control *init_rs_intern
if (symsize < 1)
return NULL;
if (fcr < 0 || fcr >= (1<<symsize))
- return NULL;
+ return NULL;
if (prim <= 0 || prim >= (1<<symsize))
- return NULL;
+ return NULL;
if (nroots < 0 || nroots >= (1<<symsize))
return NULL;
@@ -254,7 +254,7 @@ static struct rs_control *init_rs_intern
* @gfpoly: the extended Galois field generator polynomial coefficients,
* with the 0th coefficient in the low order bit. The polynomial
* must be primitive;
- * @fcr: the first consecutive root of the rs code generator polynomial
+ * @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
@@ -274,13 +274,13 @@ struct rs_control *init_rs_gfp(int symsi
* @gffunc: pointer to function to generate the next field element,
* or the multiplicative identity element if given 0. Used
* instead of gfpoly if gfpoly is 0
- * @fcr: the first consecutive root of the rs code generator polynomial
+ * @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
*/
struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
- int fcr, int prim, int nroots)
+ int fcr, int prim, int nroots)
{
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
GFP_KERNEL);