@@ -3,9 +3,10 @@ Kernel driver ucd9000
Supported chips:
- * TI UCD90120, UCD90124, UCD90160, UCD9090, and UCD90910
+ * TI UCD90120, UCD90124, UCD90160, UCD90320, UCD9090, and UCD90910
- Prefixes: 'ucd90120', 'ucd90124', 'ucd90160', 'ucd9090', 'ucd90910'
+ Prefixes: 'ucd90120', 'ucd90124', 'ucd90160', 'ucd90320', 'ucd9090',
+ 'ucd90910'
Addresses scanned: -
@@ -14,6 +15,7 @@ Supported chips:
- http://focus.ti.com/lit/ds/symlink/ucd90120.pdf
- http://focus.ti.com/lit/ds/symlink/ucd90124.pdf
- http://focus.ti.com/lit/ds/symlink/ucd90160.pdf
+ - http://focus.ti.com/lit/ds/symlink/ucd90320.pdf
- http://focus.ti.com/lit/ds/symlink/ucd9090.pdf
- http://focus.ti.com/lit/ds/symlink/ucd90910.pdf
@@ -45,6 +47,12 @@ power-on reset signals, external interrupts, cascading, or other system
functions. Twelve of these pins offer PWM functionality. Using these pins, the
UCD90160 offers support for margining, and general-purpose PWM functions.
+The UCD90320 is a 32-rail PMBus/I2C addressable power-supply sequencer and
+monitor. The 24 integrated ADC channels (AMONx) monitor the power supply
+voltage, current, and temperature. Of the 84 GPIO pins, 8 can be used as
+digital monitors (DMONx), 32 to enable the power supply (ENx), 24 for margining
+(MARx), 16 for logical GPO, and 32 GPIs for cascading, and system function.
+
The UCD9090 is a 10-rail PMBus/I2C addressable power-supply sequencer and
monitor. The device integrates a 12-bit ADC for monitoring up to 10 power-supply
voltage inputs. Twenty-three GPIO pins can be used for power supply enables,
@@ -200,11 +200,11 @@ config SENSORS_TPS53679
be called tps53679.
config SENSORS_UCD9000
- tristate "TI UCD90120, UCD90124, UCD90160, UCD9090, UCD90910"
+ tristate "TI UCD90120, UCD90124, UCD90160, UCD90320, UCD9090, UCD90910"
help
If you say yes here you get hardware monitoring support for TI
- UCD90120, UCD90124, UCD90160, UCD9090, UCD90910, Sequencer and System
- Health Controllers.
+ UCD90120, UCD90124, UCD90160, UCD90320, UCD9090, UCD90910, Sequencer
+ and System Health Controllers.
This driver can also be built as a module. If so, the module will
be called ucd9000.
@@ -18,7 +18,8 @@
#include <linux/gpio/driver.h>
#include "pmbus.h"
-enum chips { ucd9000, ucd90120, ucd90124, ucd90160, ucd9090, ucd90910 };
+enum chips { ucd9000, ucd90120, ucd90124, ucd90160, ucd90320, ucd9090,
+ ucd90910 };
#define UCD9000_MONITOR_CONFIG 0xd5
#define UCD9000_NUM_PAGES 0xd6
@@ -38,7 +39,7 @@ enum chips { ucd9000, ucd90120, ucd90124, ucd90160, ucd9090, ucd90910 };
#define UCD9000_GPIO_OUTPUT 1
#define UCD9000_MON_TYPE(x) (((x) >> 5) & 0x07)
-#define UCD9000_MON_PAGE(x) ((x) & 0x0f)
+#define UCD9000_MON_PAGE(x) ((x) & 0x1f)
#define UCD9000_MON_VOLTAGE 1
#define UCD9000_MON_TEMPERATURE 2
@@ -50,10 +51,12 @@ enum chips { ucd9000, ucd90120, ucd90124, ucd90160, ucd9090, ucd90910 };
#define UCD9000_GPIO_NAME_LEN 16
#define UCD9090_NUM_GPIOS 23
#define UCD901XX_NUM_GPIOS 26
+#define UCD90320_NUM_GPIOS 84
#define UCD90910_NUM_GPIOS 26
#define UCD9000_DEBUGFS_NAME_LEN 24
#define UCD9000_GPI_COUNT 8
+#define UCD90320_GPI_COUNT 32
struct ucd9000_data {
u8 fan_data[UCD9000_NUM_FAN][I2C_SMBUS_BLOCK_MAX];
@@ -131,6 +134,7 @@ static const struct i2c_device_id ucd9000_id[] = {
{"ucd90120", ucd90120},
{"ucd90124", ucd90124},
{"ucd90160", ucd90160},
+ {"ucd90320", ucd90320},
{"ucd9090", ucd9090},
{"ucd90910", ucd90910},
{}
@@ -154,6 +158,10 @@ static const struct of_device_id __maybe_unused ucd9000_of_match[] = {
.compatible = "ti,ucd90160",
.data = (void *)ucd90160
},
+ {
+ .compatible = "ti,ucd90320",
+ .data = (void *)ucd90320
+ },
{
.compatible = "ti,ucd9090",
.data = (void *)ucd9090
@@ -322,6 +330,9 @@ static void ucd9000_probe_gpio(struct i2c_client *client,
case ucd90160:
data->gpio.ngpio = UCD901XX_NUM_GPIOS;
break;
+ case ucd90320:
+ data->gpio.ngpio = UCD90320_NUM_GPIOS;
+ break;
case ucd90910:
data->gpio.ngpio = UCD90910_NUM_GPIOS;
break;
@@ -372,17 +383,18 @@ static int ucd9000_debugfs_show_mfr_status_bit(void *data, u64 *val)
struct ucd9000_debugfs_entry *entry = data;
struct i2c_client *client = entry->client;
u8 buffer[I2C_SMBUS_BLOCK_MAX];
- int ret;
+ int ret, i;
ret = ucd9000_get_mfr_status(client, buffer);
if (ret < 0)
return ret;
/*
- * Attribute only created for devices with gpi fault bits at bits
- * 16-23, which is the second byte of the response.
+ * GPI fault bits are in sets of 8, two bytes from end of response.
*/
- *val = !!(buffer[1] & BIT(entry->index));
+ i = ret - 3 - entry->index / 8;
+ if (i >= 0)
+ *val = !!(buffer[i] & BIT(entry->index % 8));
return 0;
}
@@ -422,7 +434,7 @@ static int ucd9000_init_debugfs(struct i2c_client *client,
{
struct dentry *debugfs;
struct ucd9000_debugfs_entry *entries;
- int i;
+ int i, gpi_count;
char name[UCD9000_DEBUGFS_NAME_LEN];
debugfs = pmbus_get_debugfs_dir(client);
@@ -435,18 +447,21 @@ static int ucd9000_init_debugfs(struct i2c_client *client,
/*
* Of the chips this driver supports, only the UCD9090, UCD90160,
- * and UCD90910 report GPI faults in their MFR_STATUS register, so only
- * create the GPI fault debugfs attributes for those chips.
+ * UCD90320, and UCD90910 report GPI faults in their MFR_STATUS
+ * register, so only create the GPI fault debugfs attributes for those
+ * chips.
*/
if (mid->driver_data == ucd9090 || mid->driver_data == ucd90160 ||
- mid->driver_data == ucd90910) {
+ mid->driver_data == ucd90320 || mid->driver_data == ucd90910) {
+ gpi_count = mid->driver_data == ucd90320 ? UCD90320_GPI_COUNT
+ : UCD9000_GPI_COUNT;
entries = devm_kcalloc(&client->dev,
- UCD9000_GPI_COUNT, sizeof(*entries),
+ gpi_count, sizeof(*entries),
GFP_KERNEL);
if (!entries)
return -ENOMEM;
- for (i = 0; i < UCD9000_GPI_COUNT; i++) {
+ for (i = 0; i < gpi_count; i++) {
entries[i].client = client;
entries[i].index = i;
scnprintf(name, UCD9000_DEBUGFS_NAME_LEN,