@@ -17,6 +17,21 @@
#include <linux/sort.h>
#include <linux/slab.h>
+/* Precision of fixed point for the m values from the filter */
+#define M_PRECISION BIT(23)
+
+/* Only activate the filter once we have at least this many elements. */
+#define TS_HISTORY_THRESHOLD 8
+
+/*
+ * If we don't have any history entries for this long, empty the filter to
+ * make sure there are no big discontinuities.
+ */
+#define TS_HISTORY_BORED_US 500000
+
+/* To measure by how much the filter is overshooting, if it happens. */
+#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
+
static inline int
cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
struct cros_ec_sensors_ring_sample *sample)
@@ -92,9 +107,11 @@ EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
bool on)
{
- int ret;
+ int ret, i;
mutex_lock(&sensorhub->cmd_lock);
+ for (i = 0; i < CROS_EC_SENSOR_MAX; i++)
+ sensorhub->last_batch_len[i] = 0;
sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
sensorhub->params->fifo_int_enable.enable = on;
@@ -111,8 +128,242 @@ int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
return ret;
}
+static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
+{
+ s64 v1 = *(s64 *)pv1;
+ s64 v2 = *(s64 *)pv2;
+
+ if (v1 > v2)
+ return 1;
+ else if (v1 < v2)
+ return -1;
+ else
+ return 0;
+}
+
+/*
+ * cros_ec_sensor_ring_median: Gets median of an array of numbers
+ *
+ * For now it's implemented using an inefficient > O(n) sort then return
+ * the middle element. A more optimal method would be something like
+ * quickselect, but given that n = 64 we can probably live with it in the
+ * name of clarity.
+ *
+ * Warning: the input array gets modified (sorted)!
+ */
+static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
+{
+ sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
+ return array[length / 2];
+}
+
+/*
+ * IRQ Timestamp Filtering
+ *
+ * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
+ * we have to calculate it's timestamp in the AP timebase. There are 3 time
+ * points:
+ * a - EC timebase, sensor event
+ * b - EC timebase, IRQ
+ * c - AP timebase, IRQ
+ * a' - what we want: sensor even in AP timebase
+ *
+ * While a and b are recorded at accurate times (due to the EC real time
+ * nature); c is pretty untrustworthy, even though it's recorded the
+ * first thing in ec_irq_handler(). There is a very good change we'll get
+ * added lantency due to:
+ * other irqs
+ * ddrfreq
+ * cpuidle
+ *
+ * Normally a' = c - b + a, but if we do that naive math any jitter in c
+ * will get coupled in a', which we don't want. We want a function
+ * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
+ *
+ * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
+ * The slope of the line won't be exactly 1, there will be some clock drift
+ * between the 2 chips for various reasons (mechanical stress, temperature,
+ * voltage). We need to extrapolate values for a future x, without trusting
+ * recent y values too much.
+ *
+ * We use a median filter for the slope, then another median filter for the
+ * y-intercept to calculate this function:
+ * dx[n] = x[n-1] - x[n]
+ * dy[n] = x[n-1] - x[n]
+ * m[n] = dy[n] / dx[n]
+ * median_m = median(m[n-k:n])
+ * error[i] = y[n-i] - median_m * x[n-i]
+ * median_error = median(error[:k])
+ * predicted_y = median_m * x + median_error
+ *
+ * Implementation differences from above:
+ * - Redefined y to be actually c - b, this gives us a lot more precision
+ * to do the math. (c-b)/b variations are more obvious than c/b variations.
+ * - Since we don't have floating point, any operations involving slope are
+ * done using fixed point math (*M_PRECISION)
+ * - Since x and y grow with time, we keep zeroing the graph (relative to
+ * the last sample), this way math involving *x[n-i] will not overflow
+ * - EC timestamps are kept in us, it improves the slope calculation precision
+ */
+
+/**
+ * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
+ *
+ * @state: Filter information.
+ * @b: IRQ timestamp, EC timebase (us)
+ * @c: IRQ timestamp, AP timebase (ns)
+ *
+ * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
+ * history.
+ */
+static void
+cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
+ *state,
+ s64 b, s64 c)
+{
+ s64 x, y;
+ s64 dx, dy;
+ s64 m; /* stored as *M_PRECISION */
+ s64 *m_history_copy = state->temp_buf;
+ s64 *error = state->temp_buf;
+ int i;
+
+ /* we trust b the most, that'll be our independent variable */
+ x = b;
+ /* y is the offset between AP and EC times, in ns */
+ y = c - b * 1000;
+
+ dx = (state->x_history[0] + state->x_offset) - x;
+ if (dx == 0)
+ return; /* we already have this irq in the history */
+ dy = (state->y_history[0] + state->y_offset) - y;
+ m = div64_s64(dy * M_PRECISION, dx);
+
+ /* Empty filter if we haven't seen any action in a while. */
+ if (-dx > TS_HISTORY_BORED_US)
+ state->history_len = 0;
+
+ /* Move everything over, also update offset to all absolute coords .*/
+ for (i = state->history_len - 1; i >= 1; i--) {
+ state->x_history[i] = state->x_history[i - 1] + dx;
+ state->y_history[i] = state->y_history[i - 1] + dy;
+
+ state->m_history[i] = state->m_history[i - 1];
+ /*
+ * Also use the same loop to copy m_history for future
+ * median extraction.
+ */
+ m_history_copy[i] = state->m_history[i - 1];
+ }
+
+ /* Store the x and y, but remember offset is actually last sample. */
+ state->x_offset = x;
+ state->y_offset = y;
+ state->x_history[0] = 0;
+ state->y_history[0] = 0;
+
+ state->m_history[0] = m;
+ m_history_copy[0] = m;
+
+ if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
+ state->history_len++;
+
+ /* Precalculate things for the filter. */
+ if (state->history_len > TS_HISTORY_THRESHOLD) {
+ state->median_m =
+ cros_ec_sensor_ring_median(m_history_copy,
+ state->history_len - 1);
+
+ /*
+ * Calculate y-intercepts as if m_median is the slope and
+ * points in the history are on the line. median_error will
+ * still be in the offset coordinate system.
+ */
+ for (i = 0; i < state->history_len; i++)
+ error[i] = state->y_history[i] -
+ div_s64(state->median_m * state->x_history[i],
+ M_PRECISION);
+ state->median_error =
+ cros_ec_sensor_ring_median(error, state->history_len);
+ } else {
+ state->median_m = 0;
+ state->median_error = 0;
+ }
+}
+
+/**
+ * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
+ * timebase
+ *
+ * @state: filter information.
+ * @x: any ec timestamp (us):
+ *
+ * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
+ * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
+ * should have happened on the AP, with low jitter
+ *
+ * Note: The filter will only activate once state->history_len goes
+ * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
+ * transform.
+ *
+ * How to derive the formula, starting from:
+ * f(x) = median_m * x + median_error
+ * That's the calculated AP - EC offset (at the x point in time)
+ * Undo the coordinate system transform:
+ * f(x) = median_m * (x - x_offset) + median_error + y_offset
+ * Remember to undo the "y = c - b * 1000" modification:
+ * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
+ *
+ * Return: timestamp in AP timebase (ns)
+ */
+static s64
+cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
+ s64 x)
+{
+ return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
+ + state->median_error + state->y_offset + x * 1000;
+}
+
+/*
+ * Since a and b were originally 32 bit values from the EC,
+ * they overflow relatively often, casting is not enough, so we need to
+ * add an offset.
+ */
+static void
+cros_ec_sensor_ring_fix_overflow(s64 *ts,
+ const s64 overflow_period,
+ struct cros_ec_sensors_ec_overflow_state
+ *state)
+{
+ s64 adjust;
+
+ *ts += state->offset;
+ if (abs(state->last - *ts) > (overflow_period / 2)) {
+ adjust = state->last > *ts ? overflow_period : -overflow_period;
+ state->offset += adjust;
+ *ts += adjust;
+ }
+ state->last = *ts;
+}
+
+static void
+cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
+ *sensorhub,
+ struct cros_ec_sensors_ring_sample
+ *sample)
+{
+ const u8 sensor_id = sample->sensor_id;
+
+ /* If this event is earlier than one we saw before... */
+ if (sensorhub->newest_sensor_event[sensor_id] > sample->timestamp)
+ /* mark it for spreading. */
+ sample->timestamp = sensorhub->last_batch_timestamp[sensor_id];
+ else
+ sensorhub->newest_sensor_event[sensor_id] = sample->timestamp;
+}
+
/**
- * cros_ec_sensor_ring_process_event() - process one EC FIFO event
+ * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
*
* @sensorhub: Sensor Hub object.
* @fifo_info: FIFO information from the EC (includes b point, EC timebase).
@@ -141,28 +392,54 @@ cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
- s64 new_timestamp;
+ s64 a = in->timestamp;
+ s64 b = fifo_info->info.timestamp;
+ s64 c = fifo_timestamp;
+
+ cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
+ &sensorhub->overflow_a);
+ cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
+ &sensorhub->overflow_b);
+
+ if (sensorhub->tight_timestamps) {
+ cros_ec_sensor_ring_ts_filter_update(
+ &sensorhub->filter, b, c);
+ *current_timestamp = cros_ec_sensor_ring_ts_filter(
+ &sensorhub->filter, a);
+ } else {
+ s64 new_timestamp;
- /*
- * Disable filtering since we might add more jitter
- * if b is in a random point in time.
- */
- new_timestamp = fifo_timestamp -
- fifo_info->info.timestamp * 1000 +
- in->timestamp * 1000;
+ /*
+ * Disable filtering since we might add more jitter
+ * if b is in a random point in time.
+ */
+ new_timestamp = fifo_timestamp -
+ fifo_info->info.timestamp * 1000 +
+ in->timestamp * 1000;
+ /*
+ * The timestamp can be stale if we had to use the fifo
+ * info timestamp.
+ */
+ if (new_timestamp - *current_timestamp > 0)
+ *current_timestamp = new_timestamp;
+ }
+ }
+ if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
+ sensorhub->last_batch_len[in->sensor_num] =
+ sensorhub->penultimate_batch_len[in->sensor_num] = 0;
/*
- * The timestamp can be stale if we had to use the fifo
- * info timestamp.
+ * ODR change is only useful for the sensor_ring, it does not
+ * convey information to clients.
*/
- if (new_timestamp - *current_timestamp > 0)
- *current_timestamp = new_timestamp;
+ return false;
}
if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
out->sensor_id = in->sensor_num;
out->timestamp = *current_timestamp;
out->flag = in->flags;
+ sensorhub->last_batch_len[out->sensor_id] = 0;
/*
* No other payload information provided with
* flush ack.
@@ -176,22 +453,220 @@ cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
/* Regular sample */
out->sensor_id = in->sensor_num;
- if (*current_timestamp - now > 0)
- /* If the timestamp is in the future. */
+ if (*current_timestamp - now > 0) {
+ /*
+ * This fix is needed to overcome the timestamp filter putting
+ * events in the future.
+ */
+ sensorhub->future_timestamp_total_ns +=
+ *current_timestamp - now;
+ if (++sensorhub->future_timestamp_count ==
+ FUTURE_TS_ANALYTICS_COUNT_MAX) {
+ s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
+ sensorhub->future_timestamp_count);
+ dev_warn_ratelimited(sensorhub->dev,
+ "100 timestamps in the future, %lldns shaved on average\n",
+ avg);
+ sensorhub->future_timestamp_count = 0;
+ sensorhub->future_timestamp_total_ns = 0;
+ }
out->timestamp = now;
- else
+ } else {
out->timestamp = *current_timestamp;
+ }
out->flag = in->flags;
for (axis = 0; axis < 3; axis++)
out->vector[axis] = in->data[axis];
+ if (sensorhub->tight_timestamps)
+ cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
return true;
}
/*
* cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
- * ringbuffer.
+ * ringbuffer.
+ *
+ * This is the new spreading code, assumes every sample's timestamp
+ * preceeds the sample. Run if tight_timestamps == true.
+ *
+ * Sometimes the EC receives only one interrupt (hence timestamp) for
+ * a batch of samples. Only the first sample will have the correct
+ * timestamp. So we must interpolate the other samples.
+ * We use the previous batch timestamp and our current batch timestamp
+ * as a way to calculate period, then spread the samples evenly.
+ *
+ * s0 int, 0ms
+ * s1 int, 10ms
+ * s2 int, 20ms
+ * 30ms point goes by, no interrupt, previous one is still asserted
+ * downloading s2 and s3
+ * s3 sample, 20ms (incorrect timestamp)
+ * s4 int, 40ms
+ *
+ * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
+ * has 2 samples in them, we adjust the timestamp of s3.
+ * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
+ * been part of a bigger batch things would have gotten a little
+ * more complicated.
+ *
+ * Note: we also assume another sensor sample doesn't break up a batch
+ * in 2 or more partitions. Example, there can't ever be a sync sensor
+ * in between S2 and S3. This simplifies the following code.
+ */
+static void
+cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
+ unsigned long sensor_mask,
+ struct cros_ec_sensors_ring_sample *last_out)
+{
+ struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
+ int id;
+
+ for_each_set_bit(id, &sensor_mask, BITS_PER_LONG) {
+ for (batch_start = sensorhub->ring; batch_start < last_out;
+ batch_start = next_batch_start) {
+ /*
+ * For each batch (where all samples have the same
+ * timestamp).
+ */
+ int batch_len, sample_idx;
+ struct cros_ec_sensors_ring_sample *batch_end =
+ batch_start;
+ struct cros_ec_sensors_ring_sample *s;
+ s64 batch_timestamp = batch_start->timestamp;
+ s64 sample_period;
+
+ /*
+ * Skip over batches that start with the sensor types
+ * we're not looking at right now.
+ */
+ if (batch_start->sensor_id != id) {
+ next_batch_start = batch_start + 1;
+ continue;
+ }
+
+ /*
+ * Do not start a batch
+ * from a flush, as it happens asynchronously to the
+ * regular flow of events.
+ */
+ if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
+ cros_sensorhub_send_sample(sensorhub,
+ batch_start);
+ next_batch_start = batch_start + 1;
+ continue;
+ }
+
+ if (batch_start->timestamp <=
+ sensorhub->last_batch_timestamp[id]) {
+ batch_timestamp =
+ sensorhub->last_batch_timestamp[id];
+ batch_len = sensorhub->last_batch_len[id];
+
+ sample_idx = batch_len;
+
+ sensorhub->last_batch_timestamp[id] =
+ sensorhub->penultimate_batch_timestamp[id];
+ sensorhub->last_batch_len[id] =
+ sensorhub->penultimate_batch_len[id];
+ } else {
+ /*
+ * Push first sample in the batch to the,
+ * kifo, it's guaranteed to be correct, the
+ * rest will follow later on.
+ */
+ sample_idx = 1;
+ batch_len = 1;
+ cros_sensorhub_send_sample(sensorhub,
+ batch_start);
+ batch_start++;
+ }
+
+ /* Find all samples have the same timestamp. */
+ for (s = batch_start; s < last_out; s++) {
+ if (s->sensor_id != id)
+ /*
+ * Skip over other sensor types that
+ * are interleaved, don't count them.
+ */
+ continue;
+ if (s->timestamp != batch_timestamp)
+ /* we discovered the next batch */
+ break;
+ if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
+ /* break on flush packets */
+ break;
+ batch_end = s;
+ batch_len++;
+ }
+
+ if (batch_len == 1)
+ goto done_with_this_batch;
+
+ /* Can we calculate period? */
+ if (sensorhub->last_batch_len[id] == 0) {
+ dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
+ id, batch_len - 1);
+ goto done_with_this_batch;
+ /*
+ * Note: we're dropping the rest of the samples
+ * in this batch since we have no idea where
+ * they're supposed to go without a period
+ * calculation.
+ */
+ }
+
+ sample_period = div_s64(batch_timestamp -
+ sensorhub->last_batch_timestamp[id],
+ sensorhub->last_batch_len[id]);
+ dev_dbg(sensorhub->dev,
+ "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
+ batch_len, id,
+ sensorhub->last_batch_timestamp[id],
+ sensorhub->last_batch_len[id],
+ batch_timestamp,
+ sample_period);
+
+ /*
+ * Adjust timestamps of the samples then push them to
+ * kfifo.
+ */
+ for (s = batch_start; s <= batch_end; s++) {
+ if (s->sensor_id != id)
+ /*
+ * Skip over other sensor types that
+ * are interleaved, don't change them.
+ */
+ continue;
+
+ s->timestamp = batch_timestamp +
+ sample_period * sample_idx;
+ sample_idx++;
+
+ cros_sensorhub_send_sample(sensorhub, s);
+ }
+
+done_with_this_batch:
+ sensorhub->penultimate_batch_timestamp[id] =
+ sensorhub->last_batch_timestamp[id];
+ sensorhub->penultimate_batch_len[id] =
+ sensorhub->last_batch_len[id];
+
+ sensorhub->last_batch_timestamp[id] = batch_timestamp;
+ sensorhub->last_batch_len[id] = batch_len;
+
+ next_batch_start = batch_end + 1;
+ }
+ }
+}
+
+/*
+ * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
+ * add to ringbuffer (legacy).
+ *
+ * Note: This assumes we're running old firmware, where every sample's timestamp
+ * is after the sample. Run if tight_timestamps == false.
*
* If there is a sample with a proper timestamp
*
@@ -214,11 +689,12 @@ cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
*
* We know have [TS1+1/3, TS1+2/3, current timestamp]
*/
-static void cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
- unsigned long sensor_mask,
- s64 current_timestamp,
- struct cros_ec_sensors_ring_sample
- *last_out)
+static void
+cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
+ unsigned long sensor_mask,
+ s64 current_timestamp,
+ struct cros_ec_sensors_ring_sample
+ *last_out)
{
struct cros_ec_sensors_ring_sample *out;
int i;
@@ -400,7 +876,8 @@ static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
* is slow to respond to the IRQ, the EC may have added new samples.
* Use the FIFO info timestamp as last timestamp then.
*/
- if ((last_out - 1)->timestamp == current_timestamp)
+ if (!sensorhub->tight_timestamps &&
+ (last_out - 1)->timestamp == current_timestamp)
current_timestamp = fifo_timestamp;
/* Warn on lost samples. */
@@ -414,6 +891,7 @@ static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
dev_warn_ratelimited(sensorhub->dev,
"Sensor %d: lost: %d out of %d\n",
i, lost, total_lost);
+ sensorhub->last_batch_len[i] = 0;
}
}
}
@@ -422,8 +900,13 @@ static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
* Spread samples in case of batching, then add them to the
* ringbuffer.
*/
- cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
- current_timestamp, last_out);
+ if (sensorhub->tight_timestamps)
+ cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
+ last_out);
+ else
+ cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
+ current_timestamp,
+ last_out);
ring_handler_end:
sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
@@ -500,6 +983,9 @@ int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
cros_ec_get_time_ns();
+ sensorhub->tight_timestamps = cros_ec_check_features(
+ ec, EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
+
/* Register the notifier that will act as a top half interrupt. */
sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
@@ -68,7 +68,44 @@ struct cros_ec_sensors_ring_sample {
s64 timestamp;
} __packed;
+/* State used for cros_ec_ring_fix_overflow */
+struct cros_ec_sensors_ec_overflow_state {
+ s64 offset;
+ s64 last;
+};
+
+/* Length of the filter, how long to remember entries for */
+#define CROS_EC_SENSORHUB_TS_HISTORY_SIZE 64
+
/**
+ * struct cros_ec_sensors_ts_filter_state - Timestamp filetr state.
+ *
+ * @x_offset: x is EC interrupt time. x_offset its last value.
+ * @y_offset: y is the difference between AP and EC time, y_offset its last
+ * value.
+ * @x_history: The past history of x, relative to x_offset.
+ * @y_history: The past history of y, relative to y_offset.
+ * @m_history: rate between y and x.
+ * @history_len: Amount of valid historic data in the arrays.
+ * @temp_buf: Temporary buffer used when updating the filter.
+ * @median_m: median value of m_history
+ * @median_error: final error to apply to AP interrupt timestamp to get the
+ * "true timestamp" the event occurred.
+ */
+struct cros_ec_sensors_ts_filter_state {
+ s64 x_offset, y_offset;
+ s64 x_history[CROS_EC_SENSORHUB_TS_HISTORY_SIZE];
+ s64 y_history[CROS_EC_SENSORHUB_TS_HISTORY_SIZE];
+ s64 m_history[CROS_EC_SENSORHUB_TS_HISTORY_SIZE];
+ int history_len;
+
+ s64 temp_buf[CROS_EC_SENSORHUB_TS_HISTORY_SIZE];
+
+ s64 median_m;
+ s64 median_error;
+};
+
+/*
* struct cros_ec_sensorhub - Sensor Hub device data.
*
* @dev: Device object, mostly used for logging.
@@ -79,10 +116,32 @@ struct cros_ec_sensors_ring_sample {
* @cmd_lock : Lock for sending msg.
* @notifier: Notifier to kick the FIFO interrupt.
* @ring: Preprocessed ring to store events.
- * @fifo_timestamp: array for event timestamp and spreading.
- * @fifo_info: copy of FIFO information coming from the EC.
- * @fifo_size: size of the ring.
- * @push_data: array of callback to send datums to iio sensor object.
+ * @fifo_timestamp: Array for event timestamp and spreading.
+ * @fifo_info: Copy of FIFO information coming from the EC.
+ * @fifo_size: Size of the ring.
+ * @penultimate_batch_timestamp: Array of last but one batch timestamps.
+ * Used for timestamp spreading calculations
+ * when a batch shows up.
+ * @penultimate_batch_len: Array of last but one batch length.
+ * @last_batch_timestamp: Last batch timestamp array.
+ * @last_batch_len: Last batch length array.
+ * @newest_sensor_event: Last sensor timestamp.
+ * @overflow_a: For handling timestamp overflow for a time (sensor events)
+ * @overflow_b: For handling timestamp overflow for b time (ec interrupts)
+ * @filter: Medium fileter structure.
+ * @tight_timestamps: Set to truen when EC support tight timestamping:
+ * The timestamps reported from the EC have low jitter.
+ * Timestamps also come before every sample. Set either
+ * by feature bits coming from the EC or userspace.
+ * @future_timestamp_count: Statistics used to compute shaved time.
+ * This occurs when timestamp interpolation from EC
+ * time to AP time accidentally puts timestamps in
+ * the future. These timestamps are clamped to
+ * `now` and these count/total_ns maintain the
+ * statistics for how much time was removed in a
+ * given period.
+ * @future_timestamp_total_ns: Total amount of time shaved.
+ * @push_data: Array of callback to send datums to iio sensor object.
*/
struct cros_ec_sensorhub {
struct device *dev;
@@ -101,6 +160,22 @@ struct cros_ec_sensorhub {
struct cros_ec_fifo_info fifo_info;
int fifo_size;
+ s64 penultimate_batch_timestamp[CROS_EC_SENSOR_MAX];
+ int penultimate_batch_len[CROS_EC_SENSOR_MAX];
+ s64 last_batch_timestamp[CROS_EC_SENSOR_MAX];
+ int last_batch_len[CROS_EC_SENSOR_MAX];
+ s64 newest_sensor_event[CROS_EC_SENSOR_MAX];
+
+ struct cros_ec_sensors_ec_overflow_state overflow_a;
+ struct cros_ec_sensors_ec_overflow_state overflow_b;
+
+ struct cros_ec_sensors_ts_filter_state filter;
+
+ int tight_timestamps;
+
+ s32 future_timestamp_count;
+ s64 future_timestamp_total_ns;
+
struct cros_ec_sensorhub_sensor_push_data
push_data[CROS_EC_SENSOR_PDEV_MAX];
};