@@ -31,6 +31,15 @@ kselftest runs as a userspace process. Tests that can be written/run in
userspace may wish to use the `Test Harness`_. Tests that need to be
run in kernel space may wish to use a `Test Module`_.
+Documentation on the tests
+==========================
+
+For documentation on the kselftests themselves, see:
+
+.. toctree::
+
+ testing-devices
+
Running the selftests (hotplug tests are run in limited mode)
=============================================================
new file mode 100644
@@ -0,0 +1,47 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. Copyright (c) 2024 Collabora Ltd
+
+=============================
+Device testing with kselftest
+=============================
+
+
+There are a few different kselftests available for testing devices generically,
+with some overlap in coverage and different requirements. This document aims to
+give an overview of each one.
+
+Note: Paths in this document are relative to the kselftest folder
+(``tools/testing/selftests``).
+
+Device oriented kselftests:
+
+* Devicetree (``dt``)
+
+ * **Coverage**: Probe status for devices described in Devicetree
+ * **Requirements**: None
+
+* Error logs (``devices/error_logs``)
+
+ * **Coverage**: Error (or more critical) log messages presence coming from any
+ device
+ * **Requirements**: None
+
+* Discoverable bus (``devices/probe``)
+
+ * **Coverage**: Presence and probe status of USB or PCI devices that have been
+ described in the reference file
+ * **Requirements**: Manually describe the devices that should be tested in a
+ YAML reference file (see ``devices/probe/boards/google,spherion.yaml`` for
+ an example)
+
+* Exist (``devices/exist``)
+
+ * **Coverage**: Presence of all devices
+ * **Requirements**: Generate the reference (see ``devices/exist/README.rst``
+ for details) on a known-good kernel
+
+Therefore, the suggestion is to enable the error log and devicetree tests on all
+(DT-based) platforms, since they don't have any requirements. Then to greatly
+improve coverage, generate the reference for each platform and enable the exist
+test. The discoverable bus test can be used to verify the probe status of
+specific USB or PCI devices, but is probably not worth it for most cases.
@@ -90,7 +90,7 @@ TARGETS += rtc
TARGETS += rust
TARGETS += seccomp
TARGETS += sgx
-TARGETS += sigaltstack
+TARGETS += signal
TARGETS += size
TARGETS += sparc64
TARGETS += splice
@@ -99,14 +99,13 @@ static int check_results(struct resctrl_val_param *param, size_t span, int no_of
}
/* Field 3 is llc occ resc value */
- if (runs > 0)
- sum_llc_occu_resc += strtoul(token_array[3], NULL, 0);
+ sum_llc_occu_resc += strtoul(token_array[3], NULL, 0);
runs++;
}
fclose(fp);
return show_results_info(sum_llc_occu_resc, no_of_bits, span,
- MAX_DIFF, MAX_DIFF_PERCENT, runs - 1, true);
+ MAX_DIFF, MAX_DIFF_PERCENT, runs, true);
}
static void cmt_test_cleanup(void)
@@ -116,15 +115,13 @@ static void cmt_test_cleanup(void)
static int cmt_run_test(const struct resctrl_test *test, const struct user_params *uparams)
{
- const char * const *cmd = uparams->benchmark_cmd;
- const char *new_cmd[BENCHMARK_ARGS];
+ struct fill_buf_param fill_buf = {};
unsigned long cache_total_size = 0;
int n = uparams->bits ? : 5;
unsigned long long_mask;
- char *span_str = NULL;
int count_of_bits;
size_t span;
- int ret, i;
+ int ret;
ret = get_full_cbm("L3", &long_mask);
if (ret)
@@ -155,32 +152,26 @@ static int cmt_run_test(const struct resctrl_test *test, const struct user_param
span = cache_portion_size(cache_total_size, param.mask, long_mask);
- if (strcmp(cmd[0], "fill_buf") == 0) {
- /* Duplicate the command to be able to replace span in it */
- for (i = 0; uparams->benchmark_cmd[i]; i++)
- new_cmd[i] = uparams->benchmark_cmd[i];
- new_cmd[i] = NULL;
-
- ret = asprintf(&span_str, "%zu", span);
- if (ret < 0)
- return -1;
- new_cmd[1] = span_str;
- cmd = new_cmd;
+ if (uparams->fill_buf) {
+ fill_buf.buf_size = span;
+ fill_buf.memflush = uparams->fill_buf->memflush;
+ param.fill_buf = &fill_buf;
+ } else if (!uparams->benchmark_cmd[0]) {
+ fill_buf.buf_size = span;
+ fill_buf.memflush = true;
+ param.fill_buf = &fill_buf;
}
remove(RESULT_FILE_NAME);
- ret = resctrl_val(test, uparams, cmd, ¶m);
+ ret = resctrl_val(test, uparams, ¶m);
if (ret)
- goto out;
+ return ret;
ret = check_results(¶m, span, n);
if (ret && (get_vendor() == ARCH_INTEL))
ksft_print_msg("Intel CMT may be inaccurate when Sub-NUMA Clustering is enabled. Check BIOS configuration.\n");
-out:
- free(span_str);
-
return ret;
}
@@ -88,18 +88,6 @@ static int fill_one_span_read(unsigned char *buf, size_t buf_size)
return sum;
}
-static void fill_one_span_write(unsigned char *buf, size_t buf_size)
-{
- unsigned char *end_ptr = buf + buf_size;
- unsigned char *p;
-
- p = buf;
- while (p < end_ptr) {
- *p = '1';
- p += (CL_SIZE / 2);
- }
-}
-
void fill_cache_read(unsigned char *buf, size_t buf_size, bool once)
{
int ret = 0;
@@ -114,20 +102,11 @@ void fill_cache_read(unsigned char *buf, size_t buf_size, bool once)
*value_sink = ret;
}
-static void fill_cache_write(unsigned char *buf, size_t buf_size, bool once)
-{
- while (1) {
- fill_one_span_write(buf, buf_size);
- if (once)
- break;
- }
-}
-
-unsigned char *alloc_buffer(size_t buf_size, int memflush)
+unsigned char *alloc_buffer(size_t buf_size, bool memflush)
{
void *buf = NULL;
uint64_t *p64;
- size_t s64;
+ ssize_t s64;
int ret;
ret = posix_memalign(&buf, PAGE_SIZE, buf_size);
@@ -151,19 +130,15 @@ unsigned char *alloc_buffer(size_t buf_size, int memflush)
return buf;
}
-int run_fill_buf(size_t buf_size, int memflush, int op, bool once)
+ssize_t get_fill_buf_size(int cpu_no, const char *cache_type)
{
- unsigned char *buf;
-
- buf = alloc_buffer(buf_size, memflush);
- if (!buf)
- return -1;
+ unsigned long cache_total_size = 0;
+ int ret;
- if (op == 0)
- fill_cache_read(buf, buf_size, once);
- else
- fill_cache_write(buf, buf_size, once);
- free(buf);
+ ret = get_cache_size(cpu_no, cache_type, &cache_total_size);
+ if (ret)
+ return ret;
- return 0;
+ return cache_total_size * 2 > MINIMUM_SPAN ?
+ cache_total_size * 2 : MINIMUM_SPAN;
}
@@ -21,7 +21,7 @@ static int mba_init(const struct resctrl_val_param *param, int domain_id)
{
int ret;
- ret = initialize_mem_bw_imc();
+ ret = initialize_read_mem_bw_imc();
if (ret)
return ret;
@@ -39,7 +39,8 @@ static int mba_setup(const struct resctrl_test *test,
const struct user_params *uparams,
struct resctrl_val_param *p)
{
- static int runs_per_allocation, allocation = 100;
+ static unsigned int allocation = ALLOCATION_MIN;
+ static int runs_per_allocation;
char allocation_str[64];
int ret;
@@ -50,7 +51,7 @@ static int mba_setup(const struct resctrl_test *test,
if (runs_per_allocation++ != 0)
return 0;
- if (allocation < ALLOCATION_MIN || allocation > ALLOCATION_MAX)
+ if (allocation > ALLOCATION_MAX)
return END_OF_TESTS;
sprintf(allocation_str, "%d", allocation);
@@ -59,7 +60,7 @@ static int mba_setup(const struct resctrl_test *test,
if (ret < 0)
return ret;
- allocation -= ALLOCATION_STEP;
+ allocation += ALLOCATION_STEP;
return 0;
}
@@ -67,13 +68,14 @@ static int mba_setup(const struct resctrl_test *test,
static int mba_measure(const struct user_params *uparams,
struct resctrl_val_param *param, pid_t bm_pid)
{
- return measure_mem_bw(uparams, param, bm_pid, "reads");
+ return measure_read_mem_bw(uparams, param, bm_pid);
}
static bool show_mba_info(unsigned long *bw_imc, unsigned long *bw_resc)
{
- int allocation, runs;
+ unsigned int allocation;
bool ret = false;
+ int runs;
ksft_print_msg("Results are displayed in (MB)\n");
/* Memory bandwidth from 100% down to 10% */
@@ -84,18 +86,21 @@ static bool show_mba_info(unsigned long *bw_imc, unsigned long *bw_resc)
int avg_diff_per;
float avg_diff;
- /*
- * The first run is discarded due to inaccurate value from
- * phase transition.
- */
- for (runs = NUM_OF_RUNS * allocation + 1;
+ for (runs = NUM_OF_RUNS * allocation;
runs < NUM_OF_RUNS * allocation + NUM_OF_RUNS ; runs++) {
sum_bw_imc += bw_imc[runs];
sum_bw_resc += bw_resc[runs];
}
- avg_bw_imc = sum_bw_imc / (NUM_OF_RUNS - 1);
- avg_bw_resc = sum_bw_resc / (NUM_OF_RUNS - 1);
+ avg_bw_imc = sum_bw_imc / NUM_OF_RUNS;
+ avg_bw_resc = sum_bw_resc / NUM_OF_RUNS;
+ if (avg_bw_imc < THROTTLE_THRESHOLD || avg_bw_resc < THROTTLE_THRESHOLD) {
+ ksft_print_msg("Bandwidth below threshold (%d MiB). Dropping results from MBA schemata %u.\n",
+ THROTTLE_THRESHOLD,
+ ALLOCATION_MIN + ALLOCATION_STEP * allocation);
+ continue;
+ }
+
avg_diff = (float)labs(avg_bw_resc - avg_bw_imc) / avg_bw_imc;
avg_diff_per = (int)(avg_diff * 100);
@@ -103,7 +108,7 @@ static bool show_mba_info(unsigned long *bw_imc, unsigned long *bw_resc)
avg_diff_per > MAX_DIFF_PERCENT ?
"Fail:" : "Pass:",
MAX_DIFF_PERCENT,
- ALLOCATION_MAX - ALLOCATION_STEP * allocation);
+ ALLOCATION_MIN + ALLOCATION_STEP * allocation);
ksft_print_msg("avg_diff_per: %d%%\n", avg_diff_per);
ksft_print_msg("avg_bw_imc: %lu\n", avg_bw_imc);
@@ -122,8 +127,9 @@ static bool show_mba_info(unsigned long *bw_imc, unsigned long *bw_resc)
static int check_results(void)
{
+ unsigned long bw_resc[NUM_OF_RUNS * ALLOCATION_MAX / ALLOCATION_STEP];
+ unsigned long bw_imc[NUM_OF_RUNS * ALLOCATION_MAX / ALLOCATION_STEP];
char *token_array[8], output[] = RESULT_FILE_NAME, temp[512];
- unsigned long bw_imc[1024], bw_resc[1024];
int runs;
FILE *fp;
@@ -170,11 +176,27 @@ static int mba_run_test(const struct resctrl_test *test, const struct user_param
.setup = mba_setup,
.measure = mba_measure,
};
+ struct fill_buf_param fill_buf = {};
int ret;
remove(RESULT_FILE_NAME);
- ret = resctrl_val(test, uparams, uparams->benchmark_cmd, ¶m);
+ if (uparams->fill_buf) {
+ fill_buf.buf_size = uparams->fill_buf->buf_size;
+ fill_buf.memflush = uparams->fill_buf->memflush;
+ param.fill_buf = &fill_buf;
+ } else if (!uparams->benchmark_cmd[0]) {
+ ssize_t buf_size;
+
+ buf_size = get_fill_buf_size(uparams->cpu, "L3");
+ if (buf_size < 0)
+ return buf_size;
+ fill_buf.buf_size = buf_size;
+ fill_buf.memflush = true;
+ param.fill_buf = &fill_buf;
+ }
+
+ ret = resctrl_val(test, uparams, ¶m);
if (ret)
return ret;
@@ -22,17 +22,13 @@ show_bw_info(unsigned long *bw_imc, unsigned long *bw_resc, size_t span)
int runs, ret, avg_diff_per;
float avg_diff = 0;
- /*
- * Discard the first value which is inaccurate due to monitoring setup
- * transition phase.
- */
- for (runs = 1; runs < NUM_OF_RUNS ; runs++) {
+ for (runs = 0; runs < NUM_OF_RUNS; runs++) {
sum_bw_imc += bw_imc[runs];
sum_bw_resc += bw_resc[runs];
}
- avg_bw_imc = sum_bw_imc / 4;
- avg_bw_resc = sum_bw_resc / 4;
+ avg_bw_imc = sum_bw_imc / NUM_OF_RUNS;
+ avg_bw_resc = sum_bw_resc / NUM_OF_RUNS;
avg_diff = (float)labs(avg_bw_resc - avg_bw_imc) / avg_bw_imc;
avg_diff_per = (int)(avg_diff * 100);
@@ -40,7 +36,8 @@ show_bw_info(unsigned long *bw_imc, unsigned long *bw_resc, size_t span)
ksft_print_msg("%s Check MBM diff within %d%%\n",
ret ? "Fail:" : "Pass:", MAX_DIFF_PERCENT);
ksft_print_msg("avg_diff_per: %d%%\n", avg_diff_per);
- ksft_print_msg("Span (MB): %zu\n", span / MB);
+ if (span)
+ ksft_print_msg("Span (MB): %zu\n", span / MB);
ksft_print_msg("avg_bw_imc: %lu\n", avg_bw_imc);
ksft_print_msg("avg_bw_resc: %lu\n", avg_bw_resc);
@@ -90,7 +87,7 @@ static int mbm_init(const struct resctrl_val_param *param, int domain_id)
{
int ret;
- ret = initialize_mem_bw_imc();
+ ret = initialize_read_mem_bw_imc();
if (ret)
return ret;
@@ -121,7 +118,7 @@ static int mbm_setup(const struct resctrl_test *test,
static int mbm_measure(const struct user_params *uparams,
struct resctrl_val_param *param, pid_t bm_pid)
{
- return measure_mem_bw(uparams, param, bm_pid, "reads");
+ return measure_read_mem_bw(uparams, param, bm_pid);
}
static void mbm_test_cleanup(void)
@@ -138,15 +135,31 @@ static int mbm_run_test(const struct resctrl_test *test, const struct user_param
.setup = mbm_setup,
.measure = mbm_measure,
};
+ struct fill_buf_param fill_buf = {};
int ret;
remove(RESULT_FILE_NAME);
- ret = resctrl_val(test, uparams, uparams->benchmark_cmd, ¶m);
+ if (uparams->fill_buf) {
+ fill_buf.buf_size = uparams->fill_buf->buf_size;
+ fill_buf.memflush = uparams->fill_buf->memflush;
+ param.fill_buf = &fill_buf;
+ } else if (!uparams->benchmark_cmd[0]) {
+ ssize_t buf_size;
+
+ buf_size = get_fill_buf_size(uparams->cpu, "L3");
+ if (buf_size < 0)
+ return buf_size;
+ fill_buf.buf_size = buf_size;
+ fill_buf.memflush = true;
+ param.fill_buf = &fill_buf;
+ }
+
+ ret = resctrl_val(test, uparams, ¶m);
if (ret)
return ret;
- ret = check_results(DEFAULT_SPAN);
+ ret = check_results(param.fill_buf ? param.fill_buf->buf_size : 0);
if (ret && (get_vendor() == ARCH_INTEL))
ksft_print_msg("Intel MBM may be inaccurate when Sub-NUMA Clustering is enabled. Check BIOS configuration.\n");
@@ -41,18 +41,48 @@
#define BENCHMARK_ARGS 64
-#define DEFAULT_SPAN (250 * MB)
+#define MINIMUM_SPAN (250 * MB)
+
+/*
+ * Memory bandwidth (in MiB) below which the bandwidth comparisons
+ * between iMC and resctrl are considered unreliable. For example RAS
+ * features or memory performance features that generate memory traffic
+ * may drive accesses that are counted differently by performance counters
+ * and MBM respectively, for instance generating "overhead" traffic which
+ * is not counted against any specific RMID.
+ */
+#define THROTTLE_THRESHOLD 750
+
+/*
+ * fill_buf_param: "fill_buf" benchmark parameters
+ * @buf_size: Size (in bytes) of buffer used in benchmark.
+ * "fill_buf" allocates and initializes buffer of
+ * @buf_size. User can change value via command line.
+ * @memflush: If false the buffer will not be flushed after
+ * allocation and initialization, otherwise the
+ * buffer will be flushed. User can change value via
+ * command line (via integers with 0 interpreted as
+ * false and anything else as true).
+ */
+struct fill_buf_param {
+ size_t buf_size;
+ bool memflush;
+};
/*
* user_params: User supplied parameters
* @cpu: CPU number to which the benchmark will be bound to
* @bits: Number of bits used for cache allocation size
* @benchmark_cmd: Benchmark command to run during (some of the) tests
+ * @fill_buf: Pointer to user provided parameters for "fill_buf",
+ * NULL if user did not provide parameters and test
+ * specific defaults should be used.
*/
struct user_params {
int cpu;
int bits;
const char *benchmark_cmd[BENCHMARK_ARGS];
+ const struct fill_buf_param *fill_buf;
};
/*
@@ -87,21 +117,29 @@ struct resctrl_test {
* @init: Callback function to initialize test environment
* @setup: Callback function to setup per test run environment
* @measure: Callback that performs the measurement (a single test)
+ * @fill_buf: Parameters for default "fill_buf" benchmark.
+ * Initialized with user provided parameters, possibly
+ * adapted to be relevant to the test. If user does
+ * not provide parameters for "fill_buf" nor a
+ * replacement benchmark then initialized with defaults
+ * appropriate for test. NULL if user provided
+ * benchmark.
*/
struct resctrl_val_param {
- const char *ctrlgrp;
- const char *mongrp;
- char filename[64];
- unsigned long mask;
- int num_of_runs;
- int (*init)(const struct resctrl_val_param *param,
- int domain_id);
- int (*setup)(const struct resctrl_test *test,
- const struct user_params *uparams,
- struct resctrl_val_param *param);
- int (*measure)(const struct user_params *uparams,
- struct resctrl_val_param *param,
- pid_t bm_pid);
+ const char *ctrlgrp;
+ const char *mongrp;
+ char filename[64];
+ unsigned long mask;
+ int num_of_runs;
+ int (*init)(const struct resctrl_val_param *param,
+ int domain_id);
+ int (*setup)(const struct resctrl_test *test,
+ const struct user_params *uparams,
+ struct resctrl_val_param *param);
+ int (*measure)(const struct user_params *uparams,
+ struct resctrl_val_param *param,
+ pid_t bm_pid);
+ struct fill_buf_param *fill_buf;
};
struct perf_event_read {
@@ -126,7 +164,6 @@ int filter_dmesg(void);
int get_domain_id(const char *resource, int cpu_no, int *domain_id);
int mount_resctrlfs(void);
int umount_resctrlfs(void);
-const char *get_bw_report_type(const char *bw_report);
bool resctrl_resource_exists(const char *resource);
bool resctrl_mon_feature_exists(const char *resource, const char *feature);
bool resource_info_file_exists(const char *resource, const char *file);
@@ -139,19 +176,17 @@ int write_schemata(const char *ctrlgrp, char *schemata, int cpu_no,
int write_bm_pid_to_resctrl(pid_t bm_pid, const char *ctrlgrp, const char *mongrp);
int perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu,
int group_fd, unsigned long flags);
-unsigned char *alloc_buffer(size_t buf_size, int memflush);
+unsigned char *alloc_buffer(size_t buf_size, bool memflush);
void mem_flush(unsigned char *buf, size_t buf_size);
void fill_cache_read(unsigned char *buf, size_t buf_size, bool once);
-int run_fill_buf(size_t buf_size, int memflush, int op, bool once);
-int initialize_mem_bw_imc(void);
-int measure_mem_bw(const struct user_params *uparams,
- struct resctrl_val_param *param, pid_t bm_pid,
- const char *bw_report);
+ssize_t get_fill_buf_size(int cpu_no, const char *cache_type);
+int initialize_read_mem_bw_imc(void);
+int measure_read_mem_bw(const struct user_params *uparams,
+ struct resctrl_val_param *param, pid_t bm_pid);
void initialize_mem_bw_resctrl(const struct resctrl_val_param *param,
int domain_id);
int resctrl_val(const struct resctrl_test *test,
const struct user_params *uparams,
- const char * const *benchmark_cmd,
struct resctrl_val_param *param);
unsigned long create_bit_mask(unsigned int start, unsigned int len);
unsigned int count_contiguous_bits(unsigned long val, unsigned int *start);
@@ -148,6 +148,78 @@ static void run_single_test(const struct resctrl_test *test, const struct user_p
test_cleanup(test);
}
+/*
+ * Allocate and initialize a struct fill_buf_param with user provided
+ * (via "-b fill_buf <fill_buf parameters>") parameters.
+ *
+ * Use defaults (that may not be appropriate for all tests) for any
+ * fill_buf parameters omitted by the user.
+ *
+ * Historically it may have been possible for user space to provide
+ * additional parameters, "operation" ("read" vs "write") in
+ * benchmark_cmd[3] and "once" (run "once" or until terminated) in
+ * benchmark_cmd[4]. Changing these parameters have never been
+ * supported with the default of "read" operation and running until
+ * terminated built into the tests. Any unsupported values for
+ * (original) "fill_buf" parameters are treated as failure.
+ *
+ * Return: On failure, forcibly exits the test on any parsing failure,
+ * returns NULL if no parsing needed (user did not actually provide
+ * "-b fill_buf").
+ * On success, returns pointer to newly allocated and fully
+ * initialized struct fill_buf_param that caller must free.
+ */
+static struct fill_buf_param *alloc_fill_buf_param(struct user_params *uparams)
+{
+ struct fill_buf_param *fill_param = NULL;
+ char *endptr = NULL;
+
+ if (!uparams->benchmark_cmd[0] || strcmp(uparams->benchmark_cmd[0], "fill_buf"))
+ return NULL;
+
+ fill_param = malloc(sizeof(*fill_param));
+ if (!fill_param)
+ ksft_exit_skip("Unable to allocate memory for fill_buf parameters.\n");
+
+ if (uparams->benchmark_cmd[1] && *uparams->benchmark_cmd[1] != '\0') {
+ errno = 0;
+ fill_param->buf_size = strtoul(uparams->benchmark_cmd[1], &endptr, 10);
+ if (errno || *endptr != '\0') {
+ free(fill_param);
+ ksft_exit_skip("Unable to parse benchmark buffer size.\n");
+ }
+ } else {
+ fill_param->buf_size = MINIMUM_SPAN;
+ }
+
+ if (uparams->benchmark_cmd[2] && *uparams->benchmark_cmd[2] != '\0') {
+ errno = 0;
+ fill_param->memflush = strtol(uparams->benchmark_cmd[2], &endptr, 10) != 0;
+ if (errno || *endptr != '\0') {
+ free(fill_param);
+ ksft_exit_skip("Unable to parse benchmark memflush parameter.\n");
+ }
+ } else {
+ fill_param->memflush = true;
+ }
+
+ if (uparams->benchmark_cmd[3] && *uparams->benchmark_cmd[3] != '\0') {
+ if (strcmp(uparams->benchmark_cmd[3], "0")) {
+ free(fill_param);
+ ksft_exit_skip("Only read operations supported.\n");
+ }
+ }
+
+ if (uparams->benchmark_cmd[4] && *uparams->benchmark_cmd[4] != '\0') {
+ if (strcmp(uparams->benchmark_cmd[4], "false")) {
+ free(fill_param);
+ ksft_exit_skip("fill_buf is required to run until termination.\n");
+ }
+ }
+
+ return fill_param;
+}
+
static void init_user_params(struct user_params *uparams)
{
memset(uparams, 0, sizeof(*uparams));
@@ -158,11 +230,11 @@ static void init_user_params(struct user_params *uparams)
int main(int argc, char **argv)
{
+ struct fill_buf_param *fill_param = NULL;
int tests = ARRAY_SIZE(resctrl_tests);
bool test_param_seen = false;
struct user_params uparams;
- char *span_str = NULL;
- int ret, c, i;
+ int c, i;
init_user_params(&uparams);
@@ -239,6 +311,10 @@ int main(int argc, char **argv)
}
last_arg:
+ fill_param = alloc_fill_buf_param(&uparams);
+ if (fill_param)
+ uparams.fill_buf = fill_param;
+
ksft_print_header();
/*
@@ -257,24 +333,11 @@ int main(int argc, char **argv)
filter_dmesg();
- if (!uparams.benchmark_cmd[0]) {
- /* If no benchmark is given by "-b" argument, use fill_buf. */
- uparams.benchmark_cmd[0] = "fill_buf";
- ret = asprintf(&span_str, "%u", DEFAULT_SPAN);
- if (ret < 0)
- ksft_exit_fail_msg("Out of memory!\n");
- uparams.benchmark_cmd[1] = span_str;
- uparams.benchmark_cmd[2] = "1";
- uparams.benchmark_cmd[3] = "0";
- uparams.benchmark_cmd[4] = "false";
- uparams.benchmark_cmd[5] = NULL;
- }
-
ksft_set_plan(tests);
for (i = 0; i < ARRAY_SIZE(resctrl_tests); i++)
run_single_test(resctrl_tests[i], &uparams);
- free(span_str);
+ free(fill_param);
ksft_finished();
}
@@ -12,13 +12,10 @@
#define UNCORE_IMC "uncore_imc"
#define READ_FILE_NAME "events/cas_count_read"
-#define WRITE_FILE_NAME "events/cas_count_write"
#define DYN_PMU_PATH "/sys/bus/event_source/devices"
#define SCALE 0.00006103515625
#define MAX_IMCS 20
#define MAX_TOKENS 5
-#define READ 0
-#define WRITE 1
#define CON_MBM_LOCAL_BYTES_PATH \
"%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
@@ -41,85 +38,71 @@ struct imc_counter_config {
static char mbm_total_path[1024];
static int imcs;
-static struct imc_counter_config imc_counters_config[MAX_IMCS][2];
+static struct imc_counter_config imc_counters_config[MAX_IMCS];
static const struct resctrl_test *current_test;
-void membw_initialize_perf_event_attr(int i, int j)
+static void read_mem_bw_initialize_perf_event_attr(int i)
{
- memset(&imc_counters_config[i][j].pe, 0,
+ memset(&imc_counters_config[i].pe, 0,
sizeof(struct perf_event_attr));
- imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type;
- imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr);
- imc_counters_config[i][j].pe.disabled = 1;
- imc_counters_config[i][j].pe.inherit = 1;
- imc_counters_config[i][j].pe.exclude_guest = 0;
- imc_counters_config[i][j].pe.config =
- imc_counters_config[i][j].umask << 8 |
- imc_counters_config[i][j].event;
- imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
- imc_counters_config[i][j].pe.read_format =
+ imc_counters_config[i].pe.type = imc_counters_config[i].type;
+ imc_counters_config[i].pe.size = sizeof(struct perf_event_attr);
+ imc_counters_config[i].pe.disabled = 1;
+ imc_counters_config[i].pe.inherit = 1;
+ imc_counters_config[i].pe.exclude_guest = 0;
+ imc_counters_config[i].pe.config =
+ imc_counters_config[i].umask << 8 |
+ imc_counters_config[i].event;
+ imc_counters_config[i].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
+ imc_counters_config[i].pe.read_format =
PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
}
-void membw_ioctl_perf_event_ioc_reset_enable(int i, int j)
+static void read_mem_bw_ioctl_perf_event_ioc_reset_enable(int i)
{
- ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0);
- ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0);
+ ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_RESET, 0);
+ ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_ENABLE, 0);
}
-void membw_ioctl_perf_event_ioc_disable(int i, int j)
+static void read_mem_bw_ioctl_perf_event_ioc_disable(int i)
{
- ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0);
+ ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_DISABLE, 0);
}
/*
- * get_event_and_umask: Parse config into event and umask
+ * get_read_event_and_umask: Parse config into event and umask
* @cas_count_cfg: Config
* @count: iMC number
- * @op: Operation (read/write)
*/
-void get_event_and_umask(char *cas_count_cfg, int count, bool op)
+static void get_read_event_and_umask(char *cas_count_cfg, int count)
{
char *token[MAX_TOKENS];
int i = 0;
- strcat(cas_count_cfg, ",");
token[0] = strtok(cas_count_cfg, "=,");
for (i = 1; i < MAX_TOKENS; i++)
token[i] = strtok(NULL, "=,");
- for (i = 0; i < MAX_TOKENS; i++) {
+ for (i = 0; i < MAX_TOKENS - 1; i++) {
if (!token[i])
break;
- if (strcmp(token[i], "event") == 0) {
- if (op == READ)
- imc_counters_config[count][READ].event =
- strtol(token[i + 1], NULL, 16);
- else
- imc_counters_config[count][WRITE].event =
- strtol(token[i + 1], NULL, 16);
- }
- if (strcmp(token[i], "umask") == 0) {
- if (op == READ)
- imc_counters_config[count][READ].umask =
- strtol(token[i + 1], NULL, 16);
- else
- imc_counters_config[count][WRITE].umask =
- strtol(token[i + 1], NULL, 16);
- }
+ if (strcmp(token[i], "event") == 0)
+ imc_counters_config[count].event = strtol(token[i + 1], NULL, 16);
+ if (strcmp(token[i], "umask") == 0)
+ imc_counters_config[count].umask = strtol(token[i + 1], NULL, 16);
}
}
-static int open_perf_event(int i, int cpu_no, int j)
+static int open_perf_read_event(int i, int cpu_no)
{
- imc_counters_config[i][j].fd =
- perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1,
+ imc_counters_config[i].fd =
+ perf_event_open(&imc_counters_config[i].pe, -1, cpu_no, -1,
PERF_FLAG_FD_CLOEXEC);
- if (imc_counters_config[i][j].fd == -1) {
+ if (imc_counters_config[i].fd == -1) {
fprintf(stderr, "Error opening leader %llx\n",
- imc_counters_config[i][j].pe.config);
+ imc_counters_config[i].pe.config);
return -1;
}
@@ -127,7 +110,7 @@ static int open_perf_event(int i, int cpu_no, int j)
return 0;
}
-/* Get type and config (read and write) of an iMC counter */
+/* Get type and config of an iMC counter's read event. */
static int read_from_imc_dir(char *imc_dir, int count)
{
char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
@@ -141,7 +124,7 @@ static int read_from_imc_dir(char *imc_dir, int count)
return -1;
}
- if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) {
+ if (fscanf(fp, "%u", &imc_counters_config[count].type) <= 0) {
ksft_perror("Could not get iMC type");
fclose(fp);
@@ -149,9 +132,6 @@ static int read_from_imc_dir(char *imc_dir, int count)
}
fclose(fp);
- imc_counters_config[count][WRITE].type =
- imc_counters_config[count][READ].type;
-
/* Get read config */
sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
fp = fopen(imc_counter_cfg, "r");
@@ -160,7 +140,7 @@ static int read_from_imc_dir(char *imc_dir, int count)
return -1;
}
- if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
+ if (fscanf(fp, "%1023s", cas_count_cfg) <= 0) {
ksft_perror("Could not get iMC cas count read");
fclose(fp);
@@ -168,34 +148,19 @@ static int read_from_imc_dir(char *imc_dir, int count)
}
fclose(fp);
- get_event_and_umask(cas_count_cfg, count, READ);
-
- /* Get write config */
- sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME);
- fp = fopen(imc_counter_cfg, "r");
- if (!fp) {
- ksft_perror("Failed to open iMC config file");
-
- return -1;
- }
- if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
- ksft_perror("Could not get iMC cas count write");
- fclose(fp);
-
- return -1;
- }
- fclose(fp);
-
- get_event_and_umask(cas_count_cfg, count, WRITE);
+ get_read_event_and_umask(cas_count_cfg, count);
return 0;
}
/*
* A system can have 'n' number of iMC (Integrated Memory Controller)
- * counters, get that 'n'. For each iMC counter get it's type and config.
- * Also, each counter has two configs, one for read and the other for write.
- * A config again has two parts, event and umask.
+ * counters, get that 'n'. Discover the properties of the available
+ * counters in support of needed performance measurement via perf.
+ * For each iMC counter get it's type and config. Also obtain each
+ * counter's event and umask for the memory read events that will be
+ * measured.
+ *
* Enumerate all these details into an array of structures.
*
* Return: >= 0 on success. < 0 on failure.
@@ -256,55 +221,46 @@ static int num_of_imcs(void)
return count;
}
-int initialize_mem_bw_imc(void)
+int initialize_read_mem_bw_imc(void)
{
- int imc, j;
+ int imc;
imcs = num_of_imcs();
if (imcs <= 0)
return imcs;
/* Initialize perf_event_attr structures for all iMC's */
- for (imc = 0; imc < imcs; imc++) {
- for (j = 0; j < 2; j++)
- membw_initialize_perf_event_attr(imc, j);
- }
+ for (imc = 0; imc < imcs; imc++)
+ read_mem_bw_initialize_perf_event_attr(imc);
return 0;
}
-static void perf_close_imc_mem_bw(void)
+static void perf_close_imc_read_mem_bw(void)
{
int mc;
for (mc = 0; mc < imcs; mc++) {
- if (imc_counters_config[mc][READ].fd != -1)
- close(imc_counters_config[mc][READ].fd);
- if (imc_counters_config[mc][WRITE].fd != -1)
- close(imc_counters_config[mc][WRITE].fd);
+ if (imc_counters_config[mc].fd != -1)
+ close(imc_counters_config[mc].fd);
}
}
/*
- * perf_open_imc_mem_bw - Open perf fds for IMCs
+ * perf_open_imc_read_mem_bw - Open perf fds for IMCs
* @cpu_no: CPU number that the benchmark PID is bound to
*
* Return: = 0 on success. < 0 on failure.
*/
-static int perf_open_imc_mem_bw(int cpu_no)
+static int perf_open_imc_read_mem_bw(int cpu_no)
{
int imc, ret;
- for (imc = 0; imc < imcs; imc++) {
- imc_counters_config[imc][READ].fd = -1;
- imc_counters_config[imc][WRITE].fd = -1;
- }
+ for (imc = 0; imc < imcs; imc++)
+ imc_counters_config[imc].fd = -1;
for (imc = 0; imc < imcs; imc++) {
- ret = open_perf_event(imc, cpu_no, READ);
- if (ret)
- goto close_fds;
- ret = open_perf_event(imc, cpu_no, WRITE);
+ ret = open_perf_read_event(imc, cpu_no);
if (ret)
goto close_fds;
}
@@ -312,60 +268,52 @@ static int perf_open_imc_mem_bw(int cpu_no)
return 0;
close_fds:
- perf_close_imc_mem_bw();
+ perf_close_imc_read_mem_bw();
return -1;
}
/*
- * do_mem_bw_test - Perform memory bandwidth test
+ * do_imc_read_mem_bw_test - Perform memory bandwidth test
*
* Runs memory bandwidth test over one second period. Also, handles starting
* and stopping of the IMC perf counters around the test.
*/
-static void do_imc_mem_bw_test(void)
+static void do_imc_read_mem_bw_test(void)
{
int imc;
- for (imc = 0; imc < imcs; imc++) {
- membw_ioctl_perf_event_ioc_reset_enable(imc, READ);
- membw_ioctl_perf_event_ioc_reset_enable(imc, WRITE);
- }
+ for (imc = 0; imc < imcs; imc++)
+ read_mem_bw_ioctl_perf_event_ioc_reset_enable(imc);
sleep(1);
- /* Stop counters after a second to get results (both read and write) */
- for (imc = 0; imc < imcs; imc++) {
- membw_ioctl_perf_event_ioc_disable(imc, READ);
- membw_ioctl_perf_event_ioc_disable(imc, WRITE);
- }
+ /* Stop counters after a second to get results. */
+ for (imc = 0; imc < imcs; imc++)
+ read_mem_bw_ioctl_perf_event_ioc_disable(imc);
}
/*
- * get_mem_bw_imc - Memory bandwidth as reported by iMC counters
- * @bw_report: Bandwidth report type (reads, writes)
+ * get_read_mem_bw_imc - Memory read bandwidth as reported by iMC counters
*
- * Memory bandwidth utilized by a process on a socket can be calculated
- * using iMC counters. Perf events are used to read these counters.
+ * Memory read bandwidth utilized by a process on a socket can be calculated
+ * using iMC counters' read events. Perf events are used to read these
+ * counters.
*
* Return: = 0 on success. < 0 on failure.
*/
-static int get_mem_bw_imc(const char *bw_report, float *bw_imc)
+static int get_read_mem_bw_imc(float *bw_imc)
{
- float reads, writes, of_mul_read, of_mul_write;
+ float reads = 0, of_mul_read = 1;
int imc;
- /* Start all iMC counters to log values (both read and write) */
- reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1;
-
/*
- * Get results which are stored in struct type imc_counter_config
+ * Log read event values from all iMC counters into
+ * struct imc_counter_config.
* Take overflow into consideration before calculating total bandwidth.
*/
for (imc = 0; imc < imcs; imc++) {
struct imc_counter_config *r =
- &imc_counters_config[imc][READ];
- struct imc_counter_config *w =
- &imc_counters_config[imc][WRITE];
+ &imc_counters_config[imc];
if (read(r->fd, &r->return_value,
sizeof(struct membw_read_format)) == -1) {
@@ -373,12 +321,6 @@ static int get_mem_bw_imc(const char *bw_report, float *bw_imc)
return -1;
}
- if (read(w->fd, &w->return_value,
- sizeof(struct membw_read_format)) == -1) {
- ksft_perror("Couldn't get write bandwidth through iMC");
- return -1;
- }
-
__u64 r_time_enabled = r->return_value.time_enabled;
__u64 r_time_running = r->return_value.time_running;
@@ -386,27 +328,10 @@ static int get_mem_bw_imc(const char *bw_report, float *bw_imc)
of_mul_read = (float)r_time_enabled /
(float)r_time_running;
- __u64 w_time_enabled = w->return_value.time_enabled;
- __u64 w_time_running = w->return_value.time_running;
-
- if (w_time_enabled != w_time_running)
- of_mul_write = (float)w_time_enabled /
- (float)w_time_running;
reads += r->return_value.value * of_mul_read * SCALE;
- writes += w->return_value.value * of_mul_write * SCALE;
}
- if (strcmp(bw_report, "reads") == 0) {
- *bw_imc = reads;
- return 0;
- }
-
- if (strcmp(bw_report, "writes") == 0) {
- *bw_imc = writes;
- return 0;
- }
-
- *bw_imc = reads + writes;
+ *bw_imc = reads;
return 0;
}
@@ -448,7 +373,7 @@ static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total)
return 0;
}
-static pid_t bm_pid, ppid;
+static pid_t bm_pid;
void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
{
@@ -506,13 +431,6 @@ void signal_handler_unregister(void)
}
}
-static void parent_exit(pid_t ppid)
-{
- kill(ppid, SIGKILL);
- umount_resctrlfs();
- exit(EXIT_FAILURE);
-}
-
/*
* print_results_bw: the memory bandwidth results are stored in a file
* @filename: file that stores the results
@@ -552,35 +470,31 @@ static int print_results_bw(char *filename, pid_t bm_pid, float bw_imc,
}
/*
- * measure_mem_bw - Measures memory bandwidth numbers while benchmark runs
+ * measure_read_mem_bw - Measures read memory bandwidth numbers while benchmark runs
* @uparams: User supplied parameters
* @param: Parameters passed to resctrl_val()
* @bm_pid: PID that runs the benchmark
- * @bw_report: Bandwidth report type (reads, writes)
*
* Measure memory bandwidth from resctrl and from another source which is
* perf imc value or could be something else if perf imc event is not
* available. Compare the two values to validate resctrl value. It takes
* 1 sec to measure the data.
+ * resctrl does not distinguish between read and write operations so
+ * its data includes all memory operations.
*/
-int measure_mem_bw(const struct user_params *uparams,
- struct resctrl_val_param *param, pid_t bm_pid,
- const char *bw_report)
+int measure_read_mem_bw(const struct user_params *uparams,
+ struct resctrl_val_param *param, pid_t bm_pid)
{
unsigned long bw_resc, bw_resc_start, bw_resc_end;
FILE *mem_bw_fp;
float bw_imc;
int ret;
- bw_report = get_bw_report_type(bw_report);
- if (!bw_report)
- return -1;
-
mem_bw_fp = open_mem_bw_resctrl(mbm_total_path);
if (!mem_bw_fp)
return -1;
- ret = perf_open_imc_mem_bw(uparams->cpu);
+ ret = perf_open_imc_read_mem_bw(uparams->cpu);
if (ret < 0)
goto close_fp;
@@ -590,17 +504,17 @@ int measure_mem_bw(const struct user_params *uparams,
rewind(mem_bw_fp);
- do_imc_mem_bw_test();
+ do_imc_read_mem_bw_test();
ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end);
if (ret < 0)
goto close_imc;
- ret = get_mem_bw_imc(bw_report, &bw_imc);
+ ret = get_read_mem_bw_imc(&bw_imc);
if (ret < 0)
goto close_imc;
- perf_close_imc_mem_bw();
+ perf_close_imc_read_mem_bw();
fclose(mem_bw_fp);
bw_resc = (bw_resc_end - bw_resc_start) / MB;
@@ -608,87 +522,30 @@ int measure_mem_bw(const struct user_params *uparams,
return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
close_imc:
- perf_close_imc_mem_bw();
+ perf_close_imc_read_mem_bw();
close_fp:
fclose(mem_bw_fp);
return ret;
}
-/*
- * run_benchmark - Run a specified benchmark or fill_buf (default benchmark)
- * in specified signal. Direct benchmark stdio to /dev/null.
- * @signum: signal number
- * @info: signal info
- * @ucontext: user context in signal handling
- */
-static void run_benchmark(int signum, siginfo_t *info, void *ucontext)
-{
- int operation, ret, memflush;
- char **benchmark_cmd;
- size_t span;
- bool once;
- FILE *fp;
-
- benchmark_cmd = info->si_ptr;
-
- /*
- * Direct stdio of child to /dev/null, so that only parent writes to
- * stdio (console)
- */
- fp = freopen("/dev/null", "w", stdout);
- if (!fp) {
- ksft_perror("Unable to direct benchmark status to /dev/null");
- parent_exit(ppid);
- }
-
- if (strcmp(benchmark_cmd[0], "fill_buf") == 0) {
- /* Execute default fill_buf benchmark */
- span = strtoul(benchmark_cmd[1], NULL, 10);
- memflush = atoi(benchmark_cmd[2]);
- operation = atoi(benchmark_cmd[3]);
- if (!strcmp(benchmark_cmd[4], "true")) {
- once = true;
- } else if (!strcmp(benchmark_cmd[4], "false")) {
- once = false;
- } else {
- ksft_print_msg("Invalid once parameter\n");
- parent_exit(ppid);
- }
-
- if (run_fill_buf(span, memflush, operation, once))
- fprintf(stderr, "Error in running fill buffer\n");
- } else {
- /* Execute specified benchmark */
- ret = execvp(benchmark_cmd[0], benchmark_cmd);
- if (ret)
- ksft_perror("execvp");
- }
-
- fclose(stdout);
- ksft_print_msg("Unable to run specified benchmark\n");
- parent_exit(ppid);
-}
-
/*
* resctrl_val: execute benchmark and measure memory bandwidth on
* the benchmark
* @test: test information structure
* @uparams: user supplied parameters
- * @benchmark_cmd: benchmark command and its arguments
* @param: parameters passed to resctrl_val()
*
* Return: 0 when the test was run, < 0 on error.
*/
int resctrl_val(const struct resctrl_test *test,
const struct user_params *uparams,
- const char * const *benchmark_cmd,
struct resctrl_val_param *param)
{
- struct sigaction sigact;
- int ret = 0, pipefd[2];
- char pipe_message = 0;
- union sigval value;
+ unsigned char *buf = NULL;
+ cpu_set_t old_affinity;
int domain_id;
+ int ret = 0;
+ pid_t ppid;
if (strcmp(param->filename, "") == 0)
sprintf(param->filename, "stdio");
@@ -699,111 +556,65 @@ int resctrl_val(const struct resctrl_test *test,
return ret;
}
- /*
- * If benchmark wasn't successfully started by child, then child should
- * kill parent, so save parent's pid
- */
ppid = getpid();
- if (pipe(pipefd)) {
- ksft_perror("Unable to create pipe");
+ /* Taskset test to specified CPU. */
+ ret = taskset_benchmark(ppid, uparams->cpu, &old_affinity);
+ if (ret)
+ return ret;
- return -1;
+ /* Write test to specified control & monitoring group in resctrl FS. */
+ ret = write_bm_pid_to_resctrl(ppid, param->ctrlgrp, param->mongrp);
+ if (ret)
+ goto reset_affinity;
+
+ if (param->init) {
+ ret = param->init(param, domain_id);
+ if (ret)
+ goto reset_affinity;
}
/*
- * Fork to start benchmark, save child's pid so that it can be killed
- * when needed
+ * If not running user provided benchmark, run the default
+ * "fill_buf". First phase of "fill_buf" is to prepare the
+ * buffer that the benchmark will operate on. No measurements
+ * are needed during this phase and prepared memory will be
+ * passed to next part of benchmark via copy-on-write thus
+ * no impact on the benchmark that relies on reading from
+ * memory only.
*/
+ if (param->fill_buf) {
+ buf = alloc_buffer(param->fill_buf->buf_size,
+ param->fill_buf->memflush);
+ if (!buf) {
+ ret = -ENOMEM;
+ goto reset_affinity;
+ }
+ }
+
fflush(stdout);
bm_pid = fork();
if (bm_pid == -1) {
+ ret = -errno;
ksft_perror("Unable to fork");
-
- return -1;
+ goto free_buf;
}
- if (bm_pid == 0) {
- /*
- * Mask all signals except SIGUSR1, parent uses SIGUSR1 to
- * start benchmark
- */
- sigfillset(&sigact.sa_mask);
- sigdelset(&sigact.sa_mask, SIGUSR1);
-
- sigact.sa_sigaction = run_benchmark;
- sigact.sa_flags = SA_SIGINFO;
-
- /* Register for "SIGUSR1" signal from parent */
- if (sigaction(SIGUSR1, &sigact, NULL)) {
- ksft_perror("Can't register child for signal");
- parent_exit(ppid);
- }
-
- /* Tell parent that child is ready */
- close(pipefd[0]);
- pipe_message = 1;
- if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) <
- sizeof(pipe_message)) {
- ksft_perror("Failed signaling parent process");
- close(pipefd[1]);
- return -1;
- }
- close(pipefd[1]);
-
- /* Suspend child until delivery of "SIGUSR1" from parent */
- sigsuspend(&sigact.sa_mask);
-
- ksft_perror("Child is done");
- parent_exit(ppid);
- }
-
- ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid);
-
/*
- * The cast removes constness but nothing mutates benchmark_cmd within
- * the context of this process. At the receiving process, it becomes
- * argv, which is mutable, on exec() but that's after fork() so it
- * doesn't matter for the process running the tests.
+ * What needs to be measured runs in separate process until
+ * terminated.
*/
- value.sival_ptr = (void *)benchmark_cmd;
-
- /* Taskset benchmark to specified cpu */
- ret = taskset_benchmark(bm_pid, uparams->cpu, NULL);
- if (ret)
- goto out;
-
- /* Write benchmark to specified control&monitoring grp in resctrl FS */
- ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp);
- if (ret)
- goto out;
-
- if (param->init) {
- ret = param->init(param, domain_id);
- if (ret)
- goto out;
- }
-
- /* Parent waits for child to be ready. */
- close(pipefd[1]);
- while (pipe_message != 1) {
- if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) <
- sizeof(pipe_message)) {
- ksft_perror("Failed reading message from child process");
- close(pipefd[0]);
- goto out;
- }
+ if (bm_pid == 0) {
+ if (param->fill_buf)
+ fill_cache_read(buf, param->fill_buf->buf_size, false);
+ else if (uparams->benchmark_cmd[0])
+ execvp(uparams->benchmark_cmd[0], (char **)uparams->benchmark_cmd);
+ exit(EXIT_SUCCESS);
}
- close(pipefd[0]);
- /* Signal child to start benchmark */
- if (sigqueue(bm_pid, SIGUSR1, value) == -1) {
- ksft_perror("sigqueue SIGUSR1 to child");
- ret = -1;
- goto out;
- }
+ ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid);
- /* Give benchmark enough time to fully run */
+ /* Give benchmark enough time to fully run. */
sleep(1);
/* Test runs until the callback setup() tells the test to stop. */
@@ -821,8 +632,10 @@ int resctrl_val(const struct resctrl_test *test,
break;
}
-out:
kill(bm_pid, SIGKILL);
-
+free_buf:
+ free(buf);
+reset_affinity:
+ taskset_restore(ppid, &old_affinity);
return ret;
}
@@ -182,7 +182,7 @@ int get_cache_size(int cpu_no, const char *cache_type, unsigned long *cache_size
return -1;
}
- if (fscanf(fp, "%s", cache_str) <= 0) {
+ if (fscanf(fp, "%63s", cache_str) <= 0) {
ksft_perror("Could not get cache_size");
fclose(fp);
@@ -831,23 +831,6 @@ int filter_dmesg(void)
return 0;
}
-const char *get_bw_report_type(const char *bw_report)
-{
- if (strcmp(bw_report, "reads") == 0)
- return bw_report;
- if (strcmp(bw_report, "writes") == 0)
- return bw_report;
- if (strcmp(bw_report, "nt-writes") == 0) {
- return "writes";
- }
- if (strcmp(bw_report, "total") == 0)
- return bw_report;
-
- fprintf(stderr, "Requested iMC bandwidth report type unavailable\n");
-
- return NULL;
-}
-
int perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu,
int group_fd, unsigned long flags)
{
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
-CFLAGS += -O3 -Wl,-no-as-needed -Wall
+CFLAGS += -O3 -Wl,-no-as-needed -Wall -I$(top_srcdir)/usr/include
LDLIBS += -lrt -lpthread -lm
TEST_GEN_PROGS = rtctest
@@ -25,6 +25,12 @@
static char *rtc_file = "/dev/rtc0";
+enum rtc_alarm_state {
+ RTC_ALARM_UNKNOWN,
+ RTC_ALARM_ENABLED,
+ RTC_ALARM_DISABLED,
+};
+
FIXTURE(rtc) {
int fd;
};
@@ -82,6 +88,24 @@ static void nanosleep_with_retries(long ns)
}
}
+static enum rtc_alarm_state get_rtc_alarm_state(int fd)
+{
+ struct rtc_param param = { 0 };
+ int rc;
+
+ /* Validate kernel reflects unsupported RTC alarm state */
+ param.param = RTC_PARAM_FEATURES;
+ param.index = 0;
+ rc = ioctl(fd, RTC_PARAM_GET, ¶m);
+ if (rc < 0)
+ return RTC_ALARM_UNKNOWN;
+
+ if ((param.uvalue & _BITUL(RTC_FEATURE_ALARM)) == 0)
+ return RTC_ALARM_DISABLED;
+
+ return RTC_ALARM_ENABLED;
+}
+
TEST_F_TIMEOUT(rtc, date_read_loop, READ_LOOP_DURATION_SEC + 2) {
int rc;
long iter_count = 0;
@@ -197,11 +221,16 @@ TEST_F(rtc, alarm_alm_set) {
fd_set readfds;
time_t secs, new;
int rc;
+ enum rtc_alarm_state alarm_state = RTC_ALARM_UNKNOWN;
if (self->fd == -1 && errno == ENOENT)
SKIP(return, "Skipping test since %s does not exist", rtc_file);
ASSERT_NE(-1, self->fd);
+ alarm_state = get_rtc_alarm_state(self->fd);
+ if (alarm_state == RTC_ALARM_DISABLED)
+ SKIP(return, "Skipping test since alarms are not supported.");
+
rc = ioctl(self->fd, RTC_RD_TIME, &tm);
ASSERT_NE(-1, rc);
@@ -210,6 +239,11 @@ TEST_F(rtc, alarm_alm_set) {
rc = ioctl(self->fd, RTC_ALM_SET, &tm);
if (rc == -1) {
+ /*
+ * Report error if rtc alarm was enabled. Fallback to check ioctl
+ * error number if rtc alarm state is unknown.
+ */
+ ASSERT_EQ(RTC_ALARM_UNKNOWN, alarm_state);
ASSERT_EQ(EINVAL, errno);
TH_LOG("skip alarms are not supported.");
return;
@@ -255,11 +289,16 @@ TEST_F(rtc, alarm_wkalm_set) {
fd_set readfds;
time_t secs, new;
int rc;
+ enum rtc_alarm_state alarm_state = RTC_ALARM_UNKNOWN;
if (self->fd == -1 && errno == ENOENT)
SKIP(return, "Skipping test since %s does not exist", rtc_file);
ASSERT_NE(-1, self->fd);
+ alarm_state = get_rtc_alarm_state(self->fd);
+ if (alarm_state == RTC_ALARM_DISABLED)
+ SKIP(return, "Skipping test since alarms are not supported.");
+
rc = ioctl(self->fd, RTC_RD_TIME, &alarm.time);
ASSERT_NE(-1, rc);
@@ -270,6 +309,11 @@ TEST_F(rtc, alarm_wkalm_set) {
rc = ioctl(self->fd, RTC_WKALM_SET, &alarm);
if (rc == -1) {
+ /*
+ * Report error if rtc alarm was enabled. Fallback to check ioctl
+ * error number if rtc alarm state is unknown.
+ */
+ ASSERT_EQ(RTC_ALARM_UNKNOWN, alarm_state);
ASSERT_EQ(EINVAL, errno);
TH_LOG("skip alarms are not supported.");
return;
@@ -307,11 +351,16 @@ TEST_F_TIMEOUT(rtc, alarm_alm_set_minute, 65) {
fd_set readfds;
time_t secs, new;
int rc;
+ enum rtc_alarm_state alarm_state = RTC_ALARM_UNKNOWN;
if (self->fd == -1 && errno == ENOENT)
SKIP(return, "Skipping test since %s does not exist", rtc_file);
ASSERT_NE(-1, self->fd);
+ alarm_state = get_rtc_alarm_state(self->fd);
+ if (alarm_state == RTC_ALARM_DISABLED)
+ SKIP(return, "Skipping test since alarms are not supported.");
+
rc = ioctl(self->fd, RTC_RD_TIME, &tm);
ASSERT_NE(-1, rc);
@@ -320,6 +369,11 @@ TEST_F_TIMEOUT(rtc, alarm_alm_set_minute, 65) {
rc = ioctl(self->fd, RTC_ALM_SET, &tm);
if (rc == -1) {
+ /*
+ * Report error if rtc alarm was enabled. Fallback to check ioctl
+ * error number if rtc alarm state is unknown.
+ */
+ ASSERT_EQ(RTC_ALARM_UNKNOWN, alarm_state);
ASSERT_EQ(EINVAL, errno);
TH_LOG("skip alarms are not supported.");
return;
@@ -365,11 +419,16 @@ TEST_F_TIMEOUT(rtc, alarm_wkalm_set_minute, 65) {
fd_set readfds;
time_t secs, new;
int rc;
+ enum rtc_alarm_state alarm_state = RTC_ALARM_UNKNOWN;
if (self->fd == -1 && errno == ENOENT)
SKIP(return, "Skipping test since %s does not exist", rtc_file);
ASSERT_NE(-1, self->fd);
+ alarm_state = get_rtc_alarm_state(self->fd);
+ if (alarm_state == RTC_ALARM_DISABLED)
+ SKIP(return, "Skipping test since alarms are not supported.");
+
rc = ioctl(self->fd, RTC_RD_TIME, &alarm.time);
ASSERT_NE(-1, rc);
@@ -380,6 +439,11 @@ TEST_F_TIMEOUT(rtc, alarm_wkalm_set_minute, 65) {
rc = ioctl(self->fd, RTC_WKALM_SET, &alarm);
if (rc == -1) {
+ /*
+ * Report error if rtc alarm was enabled. Fallback to check ioctl
+ * error number if rtc alarm state is unknown.
+ */
+ ASSERT_EQ(RTC_ALARM_UNKNOWN, alarm_state);
ASSERT_EQ(EINVAL, errno);
TH_LOG("skip alarms are not supported.");
return;
similarity index 70%
rename from tools/testing/selftests/sigaltstack/.gitignore
rename to tools/testing/selftests/signal/.gitignore
@@ -1,2 +1,3 @@
# SPDX-License-Identifier: GPL-2.0-only
+mangle_uc_sigmask
sas
similarity index 56%
rename from tools/testing/selftests/sigaltstack/Makefile
rename to tools/testing/selftests/signal/Makefile
@@ -1,6 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-only
CFLAGS = -Wall
-TEST_GEN_PROGS = sas
+TEST_GEN_PROGS = mangle_uc_sigmask
+TEST_GEN_PROGS += sas
include ../lib.mk
similarity index 100%
rename from tools/testing/selftests/sigaltstack/current_stack_pointer.h
rename to tools/testing/selftests/signal/current_stack_pointer.h
new file mode 100644
@@ -0,0 +1,184 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2024 ARM Ltd.
+ *
+ * Author: Dev Jain <dev.jain@arm.com>
+ *
+ * Test describing a clear distinction between signal states - delivered and
+ * blocked, and their relation with ucontext.
+ *
+ * A process can request blocking of a signal by masking it into its set of
+ * blocked signals; such a signal, when sent to the process by the kernel,
+ * will get blocked by the process and it may later unblock it and take an
+ * action. At that point, the signal will be delivered.
+ *
+ * We test the following functionalities of the kernel:
+ *
+ * ucontext_t describes the interrupted context of the thread; this implies
+ * that, in case of registering a handler and catching the corresponding
+ * signal, that state is before what was jumping into the handler.
+ *
+ * The thread's mask of blocked signals can be permanently changed, i.e, not
+ * just during the execution of the handler, by mangling with uc_sigmask
+ * from inside the handler.
+ *
+ * Assume that we block the set of signals, S1, by sigaction(), and say, the
+ * signal for which the handler was installed, is S2. When S2 is sent to the
+ * program, it will be considered "delivered", since we will act on the
+ * signal and jump to the handler. Any instances of S1 or S2 raised, while the
+ * program is executing inside the handler, will be blocked; they will be
+ * delivered immediately upon termination of the handler.
+ *
+ * For standard signals (also see real-time signals in the man page), multiple
+ * blocked instances of the same signal are not queued; such a signal will
+ * be delivered just once.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <signal.h>
+#include <ucontext.h>
+
+#include "../kselftest.h"
+
+void handler_verify_ucontext(int signo, siginfo_t *info, void *uc)
+{
+ int ret;
+
+ /* Kernel dumps ucontext with USR2 blocked */
+ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR2);
+ ksft_test_result(ret == 1, "USR2 blocked in ucontext\n");
+
+ /*
+ * USR2 is blocked; can be delivered neither here, nor after
+ * exit from handler
+ */
+ if (raise(SIGUSR2))
+ ksft_exit_fail_perror("raise");
+}
+
+void handler_segv(int signo, siginfo_t *info, void *uc)
+{
+ /*
+ * Three cases possible:
+ * 1. Program already terminated due to segmentation fault.
+ * 2. SEGV was blocked even after returning from handler_usr.
+ * 3. SEGV was delivered on returning from handler_usr.
+ * The last option must happen.
+ */
+ ksft_test_result_pass("SEGV delivered\n");
+}
+
+static int cnt;
+
+void handler_usr(int signo, siginfo_t *info, void *uc)
+{
+ int ret;
+
+ /*
+ * Break out of infinite recursion caused by raise(SIGUSR1) invoked
+ * from inside the handler
+ */
+ ++cnt;
+ if (cnt > 1)
+ return;
+
+ /* SEGV blocked during handler execution, delivered on return */
+ if (raise(SIGSEGV))
+ ksft_exit_fail_perror("raise");
+
+ ksft_print_msg("SEGV bypassed successfully\n");
+
+ /*
+ * Signal responsible for handler invocation is blocked by default;
+ * delivered on return, leading to recursion
+ */
+ if (raise(SIGUSR1))
+ ksft_exit_fail_perror("raise");
+
+ ksft_test_result(cnt == 1,
+ "USR1 is blocked, cannot invoke handler right now\n");
+
+ /* Raise USR1 again; only one instance must be delivered upon exit */
+ if (raise(SIGUSR1))
+ ksft_exit_fail_perror("raise");
+
+ /* SEGV has been blocked in sa_mask, but ucontext is empty */
+ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGSEGV);
+ ksft_test_result(ret == 0, "SEGV not blocked in ucontext\n");
+
+ /* USR1 has been blocked, but ucontext is empty */
+ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR1);
+ ksft_test_result(ret == 0, "USR1 not blocked in ucontext\n");
+
+ /*
+ * Mangle ucontext; this will be copied back into ¤t->blocked
+ * on return from the handler.
+ */
+ if (sigaddset(&((ucontext_t *)uc)->uc_sigmask, SIGUSR2))
+ ksft_exit_fail_perror("sigaddset");
+}
+
+int main(int argc, char *argv[])
+{
+ struct sigaction act, act2;
+ sigset_t set, oldset;
+
+ ksft_print_header();
+ ksft_set_plan(7);
+
+ act.sa_flags = SA_SIGINFO;
+ act.sa_sigaction = &handler_usr;
+
+ /* Add SEGV to blocked mask */
+ if (sigemptyset(&act.sa_mask) || sigaddset(&act.sa_mask, SIGSEGV)
+ || (sigismember(&act.sa_mask, SIGSEGV) != 1))
+ ksft_exit_fail_msg("Cannot add SEGV to blocked mask\n");
+
+ if (sigaction(SIGUSR1, &act, NULL))
+ ksft_exit_fail_perror("Cannot install handler");
+
+ act2.sa_flags = SA_SIGINFO;
+ act2.sa_sigaction = &handler_segv;
+
+ if (sigaction(SIGSEGV, &act2, NULL))
+ ksft_exit_fail_perror("Cannot install handler");
+
+ /* Invoke handler */
+ if (raise(SIGUSR1))
+ ksft_exit_fail_perror("raise");
+
+ /* USR1 must not be queued */
+ ksft_test_result(cnt == 2, "handler invoked only twice\n");
+
+ /* Mangled ucontext implies USR2 is blocked for current thread */
+ if (raise(SIGUSR2))
+ ksft_exit_fail_perror("raise");
+
+ ksft_print_msg("USR2 bypassed successfully\n");
+
+ act.sa_sigaction = &handler_verify_ucontext;
+ if (sigaction(SIGUSR1, &act, NULL))
+ ksft_exit_fail_perror("Cannot install handler");
+
+ if (raise(SIGUSR1))
+ ksft_exit_fail_perror("raise");
+
+ /*
+ * Raising USR2 in handler_verify_ucontext is redundant since it
+ * is blocked
+ */
+ ksft_print_msg("USR2 still blocked on return from handler\n");
+
+ /* Confirm USR2 blockage by sigprocmask() too */
+ if (sigemptyset(&set))
+ ksft_exit_fail_perror("sigemptyset");
+
+ if (sigprocmask(SIG_BLOCK, &set, &oldset))
+ ksft_exit_fail_perror("sigprocmask");
+
+ ksft_test_result(sigismember(&oldset, SIGUSR2) == 1,
+ "USR2 present in ¤t->blocked\n");
+
+ ksft_finished();
+}
similarity index 100%
rename from tools/testing/selftests/sigaltstack/sas.c
rename to tools/testing/selftests/signal/sas.c
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
-CFLAGS += -O3 -Wl,-no-as-needed -Wall
+CFLAGS += -O3 -Wl,-no-as-needed -Wall -I $(top_srcdir)
LDLIBS += -lrt -lpthread -lm
# these are all "safe" tests that don't modify
@@ -22,14 +22,10 @@
#include <sys/time.h>
#include <sys/timex.h>
#include <time.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define CLOCK_MONOTONIC_RAW 4
-
-#define NSEC_PER_SEC 1000000000LL
-#define USEC_PER_SEC 1000000
-
#define MILLION 1000000
long systick;
@@ -28,24 +28,10 @@
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
+#include <include/vdso/time64.h>
+#include <errno.h>
#include "../kselftest.h"
-#define CLOCK_REALTIME 0
-#define CLOCK_MONOTONIC 1
-#define CLOCK_PROCESS_CPUTIME_ID 2
-#define CLOCK_THREAD_CPUTIME_ID 3
-#define CLOCK_MONOTONIC_RAW 4
-#define CLOCK_REALTIME_COARSE 5
-#define CLOCK_MONOTONIC_COARSE 6
-#define CLOCK_BOOTTIME 7
-#define CLOCK_REALTIME_ALARM 8
-#define CLOCK_BOOTTIME_ALARM 9
-#define CLOCK_HWSPECIFIC 10
-#define CLOCK_TAI 11
-#define NR_CLOCKIDS 12
-
-
-#define NSEC_PER_SEC 1000000000ULL
#define UNREASONABLE_LAT (NSEC_PER_SEC * 5) /* hopefully we resume in 5 secs */
#define SUSPEND_SECS 15
@@ -142,8 +128,8 @@ int main(void)
alarmcount = 0;
if (timer_create(alarm_clock_id, &se, &tm1) == -1) {
- printf("timer_create failed, %s unsupported?\n",
- clockstring(alarm_clock_id));
+ printf("timer_create failed, %s unsupported?: %s\n",
+ clockstring(alarm_clock_id), strerror(errno));
break;
}
@@ -28,24 +28,13 @@
#include <sys/timex.h>
#include <string.h>
#include <signal.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define CALLS_PER_LOOP 64
-#define NSEC_PER_SEC 1000000000ULL
-
-#define CLOCK_REALTIME 0
-#define CLOCK_MONOTONIC 1
-#define CLOCK_PROCESS_CPUTIME_ID 2
-#define CLOCK_THREAD_CPUTIME_ID 3
-#define CLOCK_MONOTONIC_RAW 4
-#define CLOCK_REALTIME_COARSE 5
-#define CLOCK_MONOTONIC_COARSE 6
-#define CLOCK_BOOTTIME 7
-#define CLOCK_REALTIME_ALARM 8
-#define CLOCK_BOOTTIME_ALARM 9
+/* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */
#define CLOCK_HWSPECIFIC 10
-#define CLOCK_TAI 11
-#define NR_CLOCKIDS 12
+
+#define CALLS_PER_LOOP 64
char *clockstring(int clockid)
{
@@ -152,7 +141,7 @@ int main(int argc, char *argv[])
{
int clockid, opt;
int userclock = CLOCK_REALTIME;
- int maxclocks = NR_CLOCKIDS;
+ int maxclocks = CLOCK_TAI + 1;
int runtime = 10;
struct timespec ts;
@@ -48,9 +48,9 @@
#include <string.h>
#include <signal.h>
#include <unistd.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000ULL
#define CLOCK_TAI 11
time_t next_leap;
@@ -29,9 +29,9 @@
#include <signal.h>
#include <errno.h>
#include <mqueue.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000ULL
#define TARGET_TIMEOUT 100000000 /* 100ms in nanoseconds */
#define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
@@ -27,23 +27,11 @@
#include <sys/timex.h>
#include <string.h>
#include <signal.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000ULL
-
-#define CLOCK_REALTIME 0
-#define CLOCK_MONOTONIC 1
-#define CLOCK_PROCESS_CPUTIME_ID 2
-#define CLOCK_THREAD_CPUTIME_ID 3
-#define CLOCK_MONOTONIC_RAW 4
-#define CLOCK_REALTIME_COARSE 5
-#define CLOCK_MONOTONIC_COARSE 6
-#define CLOCK_BOOTTIME 7
-#define CLOCK_REALTIME_ALARM 8
-#define CLOCK_BOOTTIME_ALARM 9
+/* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */
#define CLOCK_HWSPECIFIC 10
-#define CLOCK_TAI 11
-#define NR_CLOCKIDS 12
#define UNSUPPORTED 0xf00f
@@ -132,11 +120,12 @@ int main(int argc, char **argv)
{
long long length;
int clockid, ret;
+ int max_clocks = CLOCK_TAI + 1;
ksft_print_header();
- ksft_set_plan(NR_CLOCKIDS);
+ ksft_set_plan(max_clocks);
- for (clockid = CLOCK_REALTIME; clockid < NR_CLOCKIDS; clockid++) {
+ for (clockid = CLOCK_REALTIME; clockid < max_clocks; clockid++) {
/* Skip cputime clockids since nanosleep won't increment cputime */
if (clockid == CLOCK_PROCESS_CPUTIME_ID ||
@@ -24,26 +24,13 @@
#include <sys/timex.h>
#include <string.h>
#include <signal.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000ULL
-
#define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
-
-#define CLOCK_REALTIME 0
-#define CLOCK_MONOTONIC 1
-#define CLOCK_PROCESS_CPUTIME_ID 2
-#define CLOCK_THREAD_CPUTIME_ID 3
-#define CLOCK_MONOTONIC_RAW 4
-#define CLOCK_REALTIME_COARSE 5
-#define CLOCK_MONOTONIC_COARSE 6
-#define CLOCK_BOOTTIME 7
-#define CLOCK_REALTIME_ALARM 8
-#define CLOCK_BOOTTIME_ALARM 9
+/* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */
#define CLOCK_HWSPECIFIC 10
-#define CLOCK_TAI 11
-#define NR_CLOCKIDS 12
#define UNSUPPORTED 0xf00f
@@ -145,11 +132,12 @@ int main(int argc, char **argv)
{
long long length;
int clockid, ret;
+ int max_clocks = CLOCK_TAI + 1;
ksft_print_header();
- ksft_set_plan(NR_CLOCKIDS - CLOCK_REALTIME - SKIPPED_CLOCK_COUNT);
+ ksft_set_plan(max_clocks - CLOCK_REALTIME - SKIPPED_CLOCK_COUNT);
- for (clockid = CLOCK_REALTIME; clockid < NR_CLOCKIDS; clockid++) {
+ for (clockid = CLOCK_REALTIME; clockid < max_clocks; clockid++) {
/* Skip cputime clockids since nanosleep won't increment cputime */
if (clockid == CLOCK_PROCESS_CPUTIME_ID ||
@@ -15,13 +15,12 @@
#include <string.h>
#include <unistd.h>
#include <time.h>
+#include <include/vdso/time64.h>
#include <pthread.h>
#include "../kselftest.h"
#define DELAY 2
-#define USECS_PER_SEC 1000000
-#define NSECS_PER_SEC 1000000000
static void __fatal_error(const char *test, const char *name, const char *what)
{
@@ -86,9 +85,9 @@ static int check_diff(struct timeval start, struct timeval end)
long long diff;
diff = end.tv_usec - start.tv_usec;
- diff += (end.tv_sec - start.tv_sec) * USECS_PER_SEC;
+ diff += (end.tv_sec - start.tv_sec) * USEC_PER_SEC;
- if (llabs(diff - DELAY * USECS_PER_SEC) > USECS_PER_SEC / 2) {
+ if (llabs(diff - DELAY * USEC_PER_SEC) > USEC_PER_SEC / 2) {
printf("Diff too high: %lld..", diff);
return -1;
}
@@ -448,7 +447,7 @@ static inline int64_t calcdiff_ns(struct timespec t1, struct timespec t2)
{
int64_t diff;
- diff = NSECS_PER_SEC * (int64_t)((int) t1.tv_sec - (int) t2.tv_sec);
+ diff = NSEC_PER_SEC * (int64_t)((int) t1.tv_sec - (int) t2.tv_sec);
diff += ((int) t1.tv_nsec - (int) t2.tv_nsec);
return diff;
}
@@ -479,7 +478,7 @@ static void check_sigev_none(int which, const char *name)
do {
if (clock_gettime(which, &now))
fatal_error(name, "clock_gettime()");
- } while (calcdiff_ns(now, start) < NSECS_PER_SEC);
+ } while (calcdiff_ns(now, start) < NSEC_PER_SEC);
if (timer_gettime(timerid, &its))
fatal_error(name, "timer_gettime()");
@@ -536,7 +535,7 @@ static void check_gettime(int which, const char *name)
wraps++;
prev = its;
- } while (calcdiff_ns(now, start) < NSECS_PER_SEC);
+ } while (calcdiff_ns(now, start) < NSEC_PER_SEC);
if (timer_delete(timerid))
fatal_error(name, "timer_delete()");
@@ -587,7 +586,7 @@ static void check_overrun(int which, const char *name)
do {
if (clock_gettime(which, &now))
fatal_error(name, "clock_gettime()");
- } while (calcdiff_ns(now, start) < NSECS_PER_SEC);
+ } while (calcdiff_ns(now, start) < NSEC_PER_SEC);
/* Unblock it, which should deliver a signal */
if (sigprocmask(SIG_UNBLOCK, &set, NULL))
@@ -25,11 +25,9 @@
#include <sys/time.h>
#include <sys/timex.h>
#include <time.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define CLOCK_MONOTONIC_RAW 4
-#define NSEC_PER_SEC 1000000000LL
-
#define shift_right(x, s) ({ \
__typeof__(x) __x = (x); \
__typeof__(s) __s = (s); \
@@ -27,10 +27,9 @@
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000LL
-
#define KTIME_MAX ((long long)~((unsigned long long)1 << 63))
#define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
@@ -28,24 +28,12 @@
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define CLOCK_REALTIME 0
-#define CLOCK_MONOTONIC 1
-#define CLOCK_PROCESS_CPUTIME_ID 2
-#define CLOCK_THREAD_CPUTIME_ID 3
-#define CLOCK_MONOTONIC_RAW 4
-#define CLOCK_REALTIME_COARSE 5
-#define CLOCK_MONOTONIC_COARSE 6
-#define CLOCK_BOOTTIME 7
-#define CLOCK_REALTIME_ALARM 8
-#define CLOCK_BOOTTIME_ALARM 9
+/* CLOCK_HWSPECIFIC == CLOCK_SGI_CYCLE (Deprecated) */
#define CLOCK_HWSPECIFIC 10
-#define CLOCK_TAI 11
-#define NR_CLOCKIDS 12
-
-#define NSEC_PER_SEC 1000000000ULL
#define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
#define TIMER_SECS 1
@@ -80,7 +68,7 @@ char *clockstring(int clockid)
return "CLOCK_BOOTTIME_ALARM";
case CLOCK_TAI:
return "CLOCK_TAI";
- };
+ }
return "UNKNOWN_CLOCKID";
}
@@ -254,6 +242,7 @@ int main(void)
struct sigaction act;
int signum = SIGRTMAX;
int ret = 0;
+ int max_clocks = CLOCK_TAI + 1;
/* Set up signal handler: */
sigfillset(&act.sa_mask);
@@ -262,7 +251,7 @@ int main(void)
sigaction(signum, &act, NULL);
printf("Setting timers for every %i seconds\n", TIMER_SECS);
- for (clock_id = 0; clock_id < NR_CLOCKIDS; clock_id++) {
+ for (clock_id = 0; clock_id < max_clocks; clock_id++) {
if ((clock_id == CLOCK_PROCESS_CPUTIME_ID) ||
(clock_id == CLOCK_THREAD_CPUTIME_ID) ||
@@ -29,11 +29,9 @@
#include <string.h>
#include <signal.h>
#include <unistd.h>
+#include <include/vdso/time64.h>
#include "../kselftest.h"
-#define NSEC_PER_SEC 1000000000LL
-#define USEC_PER_SEC 1000000LL
-
#define ADJ_SETOFFSET 0x0100
#include <sys/syscall.h>