From patchwork Mon Jul 10 22:32:51 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Mina Almasry X-Patchwork-Id: 13307779 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id 16073C001DE for ; Mon, 10 Jul 2023 22:33:40 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S229901AbjGJWdj (ORCPT ); Mon, 10 Jul 2023 18:33:39 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:58596 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S229658AbjGJWdi (ORCPT ); Mon, 10 Jul 2023 18:33:38 -0400 Received: from mail-yw1-x114a.google.com (mail-yw1-x114a.google.com [IPv6:2607:f8b0:4864:20::114a]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id E7588100 for ; Mon, 10 Jul 2023 15:33:36 -0700 (PDT) Received: by mail-yw1-x114a.google.com with SMTP id 00721157ae682-573cacf4804so55096407b3.1 for ; Mon, 10 Jul 2023 15:33:36 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=20221208; t=1689028416; x=1691620416; h=content-transfer-encoding:cc:to:from:subject:message-id :mime-version:date:from:to:cc:subject:date:message-id:reply-to; bh=Vww/pYdC1DJeva2AfnXbGu4C5u6TgbMhBMBTAdXoxfg=; b=tYuqkf1i1ML5V4o25T0vWw2AWYvTHmOdYjkPseY2zygasjrULUgRP0lpwslZq4BlNn r1p4R05iJaCaBeDKpj43UQs0ywurMXa8xm/jLGob/nvAh3tjpHM1PVLFapsJwR/ka1YV OCsLUyi/uoR6UBz4oCwsZPYuOl7NB6tSRitea5cmk6T+xQOOyfhtosCAuCmmHP3pASl3 FTJcJXa6DUCUieE5FhnpIjd11iJE7Eyy6HtGjsye3wuVkng9TA1g9wlYGDtVF3B0KaVO 3HzZZK95D11PQUMva7mNWvWl66mMUrB5ooxHO0g24qTp1JovuF4cWpSDU4WzfBUUTKLM wSig== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20221208; t=1689028416; x=1691620416; h=content-transfer-encoding:cc:to:from:subject:message-id :mime-version:date:x-gm-message-state:from:to:cc:subject:date :message-id:reply-to; bh=Vww/pYdC1DJeva2AfnXbGu4C5u6TgbMhBMBTAdXoxfg=; b=QVosqA4wWVoKnAYVWCxYRH2znmfQwtNrUcUxPEJS8co2UtozflvyaT0cezYPdyg9rC lnVJP4ByLJLIRw0/CBBh03F4jjj+7k3jiEnNyQmHzKgT5pC4+F0q6w71tLQwnoumr9aH 5pPMwC/4DqdiaC2JB5+ymDextFIzxfQyHA57tQe2Rh0LM/p9Dd8BpoBRJRSiVnrIp17T LO7sNCXQcOe1Bw1BjIxwdBW9Fpa6OnsiE6qqhmgCsOOTSNXgx68sW4lQmzgUjmMoLOJ8 XcYn9auCYPaQPwZL4TQGDSg3lm5fU30u5OvMZ5ppq1rALv2wcvaC3KOove71unlj9Q8y UiSw== X-Gm-Message-State: ABy/qLanjwrw5aIwmUvVBOTs/J4x7aqmBgIJe6YDEuP0BvSHZfNuGnAd atCL4nZX95ZDoBf1EYiFcydWlyM8Hw7jTVHuLw== X-Google-Smtp-Source: APBJJlEO8eLcuFuH8wVnMQWAHkbzZWQHuwFwsGmDwYpzfNPSGiEWAwrAUfjiTOVp1l1HiHVrM6vyb9Q+AKeZ71Ccyg== X-Received: from almasrymina.svl.corp.google.com ([2620:15c:2c4:200:4c0f:bfb6:9942:8c53]) (user=almasrymina job=sendgmr) by 2002:a81:ad44:0:b0:565:9e73:f937 with SMTP id l4-20020a81ad44000000b005659e73f937mr67586ywk.4.1689028416099; Mon, 10 Jul 2023 15:33:36 -0700 (PDT) Date: Mon, 10 Jul 2023 15:32:51 -0700 Mime-Version: 1.0 X-Mailer: git-send-email 2.41.0.390.g38632f3daf-goog Message-ID: <20230710223304.1174642-1-almasrymina@google.com> Subject: [RFC PATCH 00/10] Device Memory TCP From: Mina Almasry To: linux-kernel@vger.kernel.org, linux-media@vger.kernel.org, dri-devel@lists.freedesktop.org, linaro-mm-sig@lists.linaro.org, netdev@vger.kernel.org, linux-arch@vger.kernel.org, linux-kselftest@vger.kernel.org Cc: Mina Almasry , Sumit Semwal , " =?utf-8?q?Christian_K=C3=B6nig?= " , "David S. Miller" , Eric Dumazet , Jakub Kicinski , Paolo Abeni , Jesper Dangaard Brouer , Ilias Apalodimas , Arnd Bergmann , David Ahern , Willem de Bruijn , Shuah Khan , jgg@ziepe.ca Precedence: bulk List-ID: X-Mailing-List: linux-media@vger.kernel.org * TL;DR: Device memory TCP (devmem TCP) is a proposal for transferring data to and/or from device memory efficiently, without bouncing the data to a host memory buffer. * Problem: A large amount of data transfers have device memory as the source and/or destination. Accelerators drastically increased the volume of such transfers. Some examples include: - ML accelerators transferring large amounts of training data from storage into GPU/TPU memory. In some cases ML training setup time can be as long as 50% of TPU compute time, improving data transfer throughput & efficiency can help improving GPU/TPU utilization. - Distributed training, where ML accelerators, such as GPUs on different hosts, exchange data among them. - Distributed raw block storage applications transfer large amounts of data with remote SSDs, much of this data does not require host processing. Today, the majority of the Device-to-Device data transfers the network are implemented as the following low level operations: Device-to-Host copy, Host-to-Host network transfer, and Host-to-Device copy. The implementation is suboptimal, especially for bulk data transfers, and can put significant strains on system resources, such as host memory bandwidth, PCIe bandwidth, etc. One important reason behind the current state is the kernel’s lack of semantics to express device to network transfers.  * Proposal: In this patch series we attempt to optimize this use case by implementing socket APIs that enable the user to: 1. send device memory across the network directly, and 2. receive incoming network packets directly into device memory. Packet _payloads_ go directly from the NIC to device memory for receive and from device memory to NIC for transmit. Packet _headers_ go to/from host memory and are processed by the TCP/IP stack normally. The NIC _must_ support header split to achieve this. Advantages: - Alleviate host memory bandwidth pressure, compared to existing network-transfer + device-copy semantics. - Alleviate PCIe BW pressure, by limiting data transfer to the lowest level of the PCIe tree, compared to traditional path which sends data through the root complex. With this proposal we're able to reach ~96.6% line rate speeds with data sent and received directly from/to device memory. * Patch overview: ** Part 1: struct paged device memory Currently the standard for device memory sharing is DMABUF, which doesn't generate struct pages. On the other hand, networking stack (skbs, drivers, and page pool) operate on pages. We have 2 options: 1. Generate struct pages for dmabuf device memory, or, 2. Modify the networking stack to understand a new memory type. This proposal implements option #1. We implement a small framework to generate struct pages for an sg_table returned from dma_buf_map_attachment(). The support added here should be generic and easily extended to other use cases interested in struct paged device memory. We use this framework to generate pages that can be used in the networking stack. ** Part 2: recvmsg() & sendmsg() APIs We define user APIs for the user to send and receive these dmabuf pages. ** part 3: support for unreadable skb frags Dmabuf pages are not accessible by the host; we implement changes throughput the networking stack to correctly handle skbs with unreadable frags. ** part 4: page pool support We piggy back on Jakub's page pool memory providers idea: https://github.com/kuba-moo/linux/tree/pp-providers It allows the page pool to define a memory provider that provides the page allocation and freeing. It helps abstract most of the device memory TCP changes from the driver. This is not strictly necessary, the driver can choose to allocate dmabuf pages and use them directly without going through the page pool (if acceptable to their maintainers). Not included with this RFC is the GVE devmem TCP support, just to simplify the review. Code available here if desired: https://github.com/mina/linux/tree/tcpdevmem This RFC is built on top of v6.4-rc7 with Jakub's pp-providers changes cherry-picked. * NIC dependencies: 1. (strict) Devmem TCP require the NIC to support header split, i.e. the capability to split incoming packets into a header + payload and to put each into a separate buffer. Devmem TCP works by using dmabuf pages for the packet payload, and host memory for the packet headers. 2. (optional) Devmem TCP works better with flow steering support & RSS support, i.e. the NIC's ability to steer flows into certain rx queues. This allows the sysadmin to enable devmem TCP on a subset of the rx queues, and steer devmem TCP traffic onto these queues and non devmem TCP elsewhere. The NIC I have access to with these properties is the GVE with DQO support running in Google Cloud, but any NIC that supports these features would suffice. I may be able to help reviewers bring up devmem TCP on their NICs. * Testing: The series includes a udmabuf kselftest that show a simple use case of devmem TCP and validates the entire data path end to end without a dependency on a specific dmabuf provider. Not included in this series is our devmem TCP benchmark, which transfers data to/from GPU dmabufs directly. With this implementation & benchmark we're able to reach ~96.6% line rate speeds with 4 GPU/NIC pairs running bi-direction traffic, with all the packet payloads going straight to the GPU memory (no host buffer bounce). ** Test Setup Kernel: v6.4-rc7, with this RFC and Jakub's memory provider API cherry-picked locally. Hardware: Google Cloud A3 VMs. NIC: GVE with header split & RSS & flow steering support. Benchmark: custom devmem TCP benchmark not yet open sourced. Mina Almasry (10): dma-buf: add support for paged attachment mappings dma-buf: add support for NET_RX pages dma-buf: add support for NET_TX pages net: add support for skbs with unreadable frags tcp: implement recvmsg() RX path for devmem TCP net: add SO_DEVMEM_DONTNEED setsockopt to release RX pages tcp: implement sendmsg() TX path for for devmem tcp selftests: add ncdevmem, netcat for devmem TCP memory-provider: updates core provider API for devmem TCP memory-provider: add dmabuf devmem provider drivers/dma-buf/dma-buf.c | 444 ++++++++++++++++ include/linux/dma-buf.h | 142 +++++ include/linux/netdevice.h | 1 + include/linux/skbuff.h | 34 +- include/linux/socket.h | 1 + include/net/page_pool.h | 21 + include/net/sock.h | 4 + include/net/tcp.h | 6 +- include/uapi/asm-generic/socket.h | 6 + include/uapi/linux/dma-buf.h | 12 + include/uapi/linux/uio.h | 10 + net/core/datagram.c | 3 + net/core/page_pool.c | 111 +++- net/core/skbuff.c | 81 ++- net/core/sock.c | 47 ++ net/ipv4/tcp.c | 262 +++++++++- net/ipv4/tcp_input.c | 13 +- net/ipv4/tcp_ipv4.c | 8 + net/ipv4/tcp_output.c | 5 +- net/packet/af_packet.c | 4 +- tools/testing/selftests/net/.gitignore | 1 + tools/testing/selftests/net/Makefile | 1 + tools/testing/selftests/net/ncdevmem.c | 693 +++++++++++++++++++++++++ 23 files changed, 1868 insertions(+), 42 deletions(-) create mode 100644 tools/testing/selftests/net/ncdevmem.c