Message ID | 1439023450-2689-1-git-send-email-robert.jarzmik@free.fr (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Robert Jarzmik <robert.jarzmik@free.fr> writes: ...zip... top posting in [1] ... zip ... Hi Andrew, There was no review for a couple of weeks I'm afraid on this patch. Could I know what I can do to push it up ? And another question : do you want another patch to add a MAINTAINERS entry for this sg_split ? Cheers. -- Robert [1] The posted patch > Sometimes a scatter-gather has to be split into several chunks, or sub > scatter lists. This happens for example if a scatter list will be > handled by multiple DMA channels, each one filling a part of it. > > A concrete example comes with the media V4L2 API, where the scatter list > is allocated from userspace to hold an image, regardless of the > knowledge of how many DMAs will fill it : > - in a simple RGB565 case, one DMA will pump data from the camera ISP > to memory > - in the trickier YUV422 case, 3 DMAs will pump data from the camera > ISP pipes, one for pipe Y, one for pipe U and one for pipe V > > For these cases, it is necessary to split the original scatter list into > multiple scatter lists, which is the purpose of this patch. > > The guarantees that are required for this patch are : > - the intersection of spans of any couple of resulting scatter lists is > empty. > - the union of spans of all resulting scatter lists is a subrange of > the span of the original scatter list. > - streaming DMA API operations (mapping, unmapping) should not happen > both on both the resulting and the original scatter list. It's either > the first or the later ones. > - the caller is reponsible to call kfree() on the resulting > scatterlists. > > Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> > > --- > Since RFC: Russell's review > - address both the sg_phys case and sg_dma_address case (aka mapped > case) > => this should take care of IOMMU coalescing > - add a way to return the new mapped lengths of resulting scatterlists > - add bound checks (EINVAL) for corner cases : > - skip > sum(sgi->length) or > skip > sum(sg_dma_len(sgi)) > - sum(sizei) > skip + sum(sgi->length) or > sum(sizei) > skip + sum(sg_dma_len(sgi)) > - fixed algorithm for single sgi split into multiple sg entries > (case where very small sizes, ie. size0+size1+size2 < sg0_length) > > Testing: > A semi-automated campaign was passed on this, and fixed last sg marking, > unused sg dma_len/dma_address, and cases where a sum of sizes landed at > the end of an sg entry. Valgrind was also passed to prevent memory > errors. > The input combinations of the tests were : > - skip: random > - sg : random of 1 to 10 entries, random phys address/values, 1/4th > random to have 2 sgs consecutive and coallesced in dma_map_sg() > - sizes[7] : random, sum(sizes) < 2 * sum(sgi->length) > > Memo of people to ask: > To: Russell King - ARM Linux <linux@arm.linux.org.uk> > To: Jens Axboe <axboe@kernel.dk> > To: Guennadi Liakhovetski <g.liakhovetski@gmx.de> > To: Andrew Morton <akpm@linux-foundation.org> > To: Mauro Carvalho Chehab <mchehab@osg.samsung.com> > Cc: linux-media@vger.kernel.org > --- > include/linux/scatterlist.h | 5 ++ > lib/Kconfig | 7 ++ > lib/Makefile | 1 + > lib/sg_split.c | 202 ++++++++++++++++++++++++++++++++++++++++++++ > 4 files changed, 215 insertions(+) > create mode 100644 lib/sg_split.c > > diff --git a/include/linux/scatterlist.h b/include/linux/scatterlist.h > index 9b1ef0c820a7..5fa4ab1a4605 100644 > --- a/include/linux/scatterlist.h > +++ b/include/linux/scatterlist.h > @@ -251,6 +251,11 @@ struct scatterlist *sg_next(struct scatterlist *); > struct scatterlist *sg_last(struct scatterlist *s, unsigned int); > void sg_init_table(struct scatterlist *, unsigned int); > void sg_init_one(struct scatterlist *, const void *, unsigned int); > +int sg_split(struct scatterlist *in, const int in_mapped_nents, > + const off_t skip, const int nb_splits, > + const size_t *split_sizes, > + struct scatterlist **out, int *out_mapped_nents, > + gfp_t gfp_mask); > > typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); > typedef void (sg_free_fn)(struct scatterlist *, unsigned int); > diff --git a/lib/Kconfig b/lib/Kconfig > index 3a2ef67db6c7..dc516164415a 100644 > --- a/lib/Kconfig > +++ b/lib/Kconfig > @@ -521,6 +521,13 @@ config UCS2_STRING > > source "lib/fonts/Kconfig" > > +config SG_SPLIT > + def_bool n > + help > + Provides a heler to split scatterlists into chunks, each chunk being a > + scatterlist. This should be selected by a driver or an API which > + whishes to split a scatterlist amongst multiple DMA channel. > + > # > # sg chaining option > # > diff --git a/lib/Makefile b/lib/Makefile > index 6897b527581a..2ee6ea2e9b08 100644 > --- a/lib/Makefile > +++ b/lib/Makefile > @@ -160,6 +160,7 @@ obj-$(CONFIG_GENERIC_STRNLEN_USER) += strnlen_user.o > > obj-$(CONFIG_GENERIC_NET_UTILS) += net_utils.o > > +obj-$(CONFIG_SG_SPLIT) += sg_split.o > obj-$(CONFIG_STMP_DEVICE) += stmp_device.o > > libfdt_files = fdt.o fdt_ro.o fdt_wip.o fdt_rw.o fdt_sw.o fdt_strerror.o \ > diff --git a/lib/sg_split.c b/lib/sg_split.c > new file mode 100644 > index 000000000000..b063410c3593 > --- /dev/null > +++ b/lib/sg_split.c > @@ -0,0 +1,202 @@ > +/* > + * Copyright (C) 2015 Robert Jarzmik <robert.jarzmik@free.fr> > + * > + * Scatterlist splitting helpers. > + * > + * This source code is licensed under the GNU General Public License, > + * Version 2. See the file COPYING for more details. > + */ > + > +#include <linux/scatterlist.h> > +#include <linux/slab.h> > + > +struct sg_splitter { > + struct scatterlist *in_sg0; > + int nents; > + off_t skip_sg0; > + unsigned int length_last_sg; > + > + struct scatterlist *out_sg; > +}; > + > +static int sg_calculate_split(struct scatterlist *in, int nents, int nb_splits, > + off_t skip, const size_t *sizes, > + struct sg_splitter *splitters, bool mapped) > +{ > + int i; > + unsigned int sglen; > + size_t size = sizes[0], len; > + struct sg_splitter *curr = splitters; > + struct scatterlist *sg; > + > + for (i = 0; i < nb_splits; i++) { > + splitters[i].in_sg0 = NULL; > + splitters[i].nents = 0; > + } > + > + for_each_sg(in, sg, nents, i) { > + sglen = mapped ? sg_dma_len(sg) : sg->length; > + if (skip > sglen) { > + skip -= sglen; > + continue; > + } > + > + len = min_t(size_t, size, sglen - skip); > + if (!curr->in_sg0) { > + curr->in_sg0 = sg; > + curr->skip_sg0 = skip; > + } > + size -= len; > + curr->nents++; > + curr->length_last_sg = len; > + > + while (!size && (skip + len < sglen) && (--nb_splits > 0)) { > + curr++; > + size = *(++sizes); > + skip += len; > + len = min_t(size_t, size, sglen - skip); > + > + curr->in_sg0 = sg; > + curr->skip_sg0 = skip; > + curr->nents = 1; > + curr->length_last_sg = len; > + size -= len; > + } > + skip = 0; > + > + if (!size && --nb_splits > 0) { > + curr++; > + size = *(++sizes); > + } > + > + if (!nb_splits) > + break; > + } > + > + return (size || !splitters[0].in_sg0) ? -EINVAL : 0; > +} > + > +static void sg_split_phys(struct sg_splitter *splitters, const int nb_splits) > +{ > + int i, j; > + struct scatterlist *in_sg, *out_sg; > + struct sg_splitter *split; > + > + for (i = 0, split = splitters; i < nb_splits; i++, split++) { > + in_sg = split->in_sg0; > + out_sg = split->out_sg; > + for (j = 0; j < split->nents; j++, out_sg++) { > + *out_sg = *in_sg; > + if (!j) { > + out_sg->offset += split->skip_sg0; > + out_sg->length -= split->skip_sg0; > + } else { > + out_sg->offset = 0; > + } > + sg_dma_address(out_sg) = 0; > + sg_dma_len(out_sg) = 0; > + in_sg = sg_next(in_sg); > + } > + out_sg[-1].length = split->length_last_sg; > + sg_mark_end(out_sg - 1); > + } > +} > + > +static void sg_split_mapped(struct sg_splitter *splitters, const int nb_splits) > +{ > + int i, j; > + struct scatterlist *in_sg, *out_sg; > + struct sg_splitter *split; > + > + for (i = 0, split = splitters; i < nb_splits; i++, split++) { > + in_sg = split->in_sg0; > + out_sg = split->out_sg; > + for (j = 0; j < split->nents; j++, out_sg++) { > + sg_dma_address(out_sg) = sg_dma_address(in_sg); > + sg_dma_len(out_sg) = sg_dma_len(in_sg); > + if (!j) { > + sg_dma_address(out_sg) += split->skip_sg0; > + sg_dma_len(out_sg) -= split->skip_sg0; > + } > + in_sg = sg_next(in_sg); > + } > + sg_dma_len(--out_sg) = split->length_last_sg; > + } > +} > + > +/** > + * sg_split - split a scatterlist into several scatterlists > + * @in: the input sg list > + * @in_mapped_nents: the result of a dma_map_sg(in, ...), or 0 if not mapped. > + * @skip: the number of bytes to skip in the input sg list > + * @nb_splits: the number of desired sg outputs > + * @split_sizes: the respective size of each output sg list in bytes > + * @out: an array where to store the allocated output sg lists > + * @out_mapped_nents: the resulting sg lists mapped number of sg entries. Might > + * be NULL if sglist not already mapped (in_mapped_nents = 0) > + * @gfp_mask: the allocation flag > + * > + * This function splits the input sg list into nb_splits sg lists, which are > + * allocated and stored into out. > + * The @in is split into : > + * - @out[0], which covers bytes [@skip .. @skip + @split_sizes[0] - 1] of @in > + * - @out[1], which covers bytes [@skip + split_sizes[0] .. > + * @skip + @split_sizes[0] + @split_sizes[1] -1] > + * etc ... > + * It will be the caller's duty to kfree() out array members. > + * > + * Returns 0 upon success, or error code > + */ > +int sg_split(struct scatterlist *in, const int in_mapped_nents, > + const off_t skip, const int nb_splits, > + const size_t *split_sizes, > + struct scatterlist **out, int *out_mapped_nents, > + gfp_t gfp_mask) > +{ > + int i, ret; > + struct sg_splitter *splitters; > + > + splitters = kcalloc(nb_splits, sizeof(*splitters), gfp_mask); > + if (!splitters) > + return -ENOMEM; > + > + ret = sg_calculate_split(in, sg_nents(in), nb_splits, skip, split_sizes, > + splitters, false); > + if (ret < 0) > + goto err; > + > + ret = -ENOMEM; > + for (i = 0; i < nb_splits; i++) { > + splitters[i].out_sg = kmalloc_array(splitters[i].nents, > + sizeof(struct scatterlist), > + gfp_mask); > + if (!splitters[i].out_sg) > + goto err; > + } > + > + /* > + * The order of these 3 calls is important and should be kept. > + */ > + sg_split_phys(splitters, nb_splits); > + ret = sg_calculate_split(in, in_mapped_nents, nb_splits, skip, > + split_sizes, splitters, true); > + if (ret < 0) > + goto err; > + sg_split_mapped(splitters, nb_splits); > + > + for (i = 0; i < nb_splits; i++) { > + out[i] = splitters[i].out_sg; > + if (out_mapped_nents) > + out_mapped_nents[i] = splitters[i].nents; > + } > + > + kfree(splitters); > + return 0; > + > +err: > + for (i = 0; i < nb_splits; i++) > + kfree(splitters[i].out_sg); > + kfree(splitters); > + return ret; > +} > +EXPORT_SYMBOL(sg_split); -- To unsubscribe from this list: send the line "unsubscribe linux-media" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html
On 08/08/2015 02:44 AM, Robert Jarzmik wrote: > Sometimes a scatter-gather has to be split into several chunks, or sub > scatter lists. This happens for example if a scatter list will be > handled by multiple DMA channels, each one filling a part of it. > > A concrete example comes with the media V4L2 API, where the scatter list > is allocated from userspace to hold an image, regardless of the > knowledge of how many DMAs will fill it : > - in a simple RGB565 case, one DMA will pump data from the camera ISP > to memory > - in the trickier YUV422 case, 3 DMAs will pump data from the camera > ISP pipes, one for pipe Y, one for pipe U and one for pipe V > > For these cases, it is necessary to split the original scatter list into > multiple scatter lists, which is the purpose of this patch. > > The guarantees that are required for this patch are : > - the intersection of spans of any couple of resulting scatter lists is > empty. > - the union of spans of all resulting scatter lists is a subrange of > the span of the original scatter list. > - streaming DMA API operations (mapping, unmapping) should not happen > both on both the resulting and the original scatter list. It's either > the first or the later ones. > - the caller is reponsible to call kfree() on the resulting > scatterlists. > > Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> I think this looks fine. But do we really need the Kconfig option? It's not a lot of code, and it seems silly to put the onus on the driver for having to enable something that is a subset of the SG api.
On Mon, 24 Aug 2015 14:15:08 -0600 Jens Axboe <axboe@kernel.dk> wrote: > On 08/08/2015 02:44 AM, Robert Jarzmik wrote: > > Sometimes a scatter-gather has to be split into several chunks, or sub > > scatter lists. This happens for example if a scatter list will be > > handled by multiple DMA channels, each one filling a part of it. > > > > A concrete example comes with the media V4L2 API, where the scatter list > > is allocated from userspace to hold an image, regardless of the > > knowledge of how many DMAs will fill it : > > - in a simple RGB565 case, one DMA will pump data from the camera ISP > > to memory > > - in the trickier YUV422 case, 3 DMAs will pump data from the camera > > ISP pipes, one for pipe Y, one for pipe U and one for pipe V > > > > For these cases, it is necessary to split the original scatter list into > > multiple scatter lists, which is the purpose of this patch. > > > > The guarantees that are required for this patch are : > > - the intersection of spans of any couple of resulting scatter lists is > > empty. > > - the union of spans of all resulting scatter lists is a subrange of > > the span of the original scatter list. > > - streaming DMA API operations (mapping, unmapping) should not happen > > both on both the resulting and the original scatter list. It's either > > the first or the later ones. > > - the caller is reponsible to call kfree() on the resulting > > scatterlists. > > > > Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> > > I think this looks fine. But do we really need the Kconfig option? It's > not a lot of code, and it seems silly to put the onus on the driver for > having to enable something that is a subset of the SG api. Blame me for that. It's so that all kernels don't need to carry a lump of code which only a small number of media drivers actually use. The tradeoff is a bit of once-off build-time effort versus a permanent runtime gain for many systems. That's a good tradeoff. -- To unsubscribe from this list: send the line "unsubscribe linux-media" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html
On 08/24/2015 02:26 PM, Andrew Morton wrote: > On Mon, 24 Aug 2015 14:15:08 -0600 Jens Axboe <axboe@kernel.dk> wrote: > >> On 08/08/2015 02:44 AM, Robert Jarzmik wrote: >>> Sometimes a scatter-gather has to be split into several chunks, or sub >>> scatter lists. This happens for example if a scatter list will be >>> handled by multiple DMA channels, each one filling a part of it. >>> >>> A concrete example comes with the media V4L2 API, where the scatter list >>> is allocated from userspace to hold an image, regardless of the >>> knowledge of how many DMAs will fill it : >>> - in a simple RGB565 case, one DMA will pump data from the camera ISP >>> to memory >>> - in the trickier YUV422 case, 3 DMAs will pump data from the camera >>> ISP pipes, one for pipe Y, one for pipe U and one for pipe V >>> >>> For these cases, it is necessary to split the original scatter list into >>> multiple scatter lists, which is the purpose of this patch. >>> >>> The guarantees that are required for this patch are : >>> - the intersection of spans of any couple of resulting scatter lists is >>> empty. >>> - the union of spans of all resulting scatter lists is a subrange of >>> the span of the original scatter list. >>> - streaming DMA API operations (mapping, unmapping) should not happen >>> both on both the resulting and the original scatter list. It's either >>> the first or the later ones. >>> - the caller is reponsible to call kfree() on the resulting >>> scatterlists. >>> >>> Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> >> >> I think this looks fine. But do we really need the Kconfig option? It's >> not a lot of code, and it seems silly to put the onus on the driver for >> having to enable something that is a subset of the SG api. > > Blame me for that. It's so that all kernels don't need to carry a lump > of code which only a small number of media drivers actually use. Right > The tradeoff is a bit of once-off build-time effort versus a permanent > runtime gain for many systems. That's a good tradeoff. I guess that's true, errors in this area will be found pretty quickly.
diff --git a/include/linux/scatterlist.h b/include/linux/scatterlist.h index 9b1ef0c820a7..5fa4ab1a4605 100644 --- a/include/linux/scatterlist.h +++ b/include/linux/scatterlist.h @@ -251,6 +251,11 @@ struct scatterlist *sg_next(struct scatterlist *); struct scatterlist *sg_last(struct scatterlist *s, unsigned int); void sg_init_table(struct scatterlist *, unsigned int); void sg_init_one(struct scatterlist *, const void *, unsigned int); +int sg_split(struct scatterlist *in, const int in_mapped_nents, + const off_t skip, const int nb_splits, + const size_t *split_sizes, + struct scatterlist **out, int *out_mapped_nents, + gfp_t gfp_mask); typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); typedef void (sg_free_fn)(struct scatterlist *, unsigned int); diff --git a/lib/Kconfig b/lib/Kconfig index 3a2ef67db6c7..dc516164415a 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -521,6 +521,13 @@ config UCS2_STRING source "lib/fonts/Kconfig" +config SG_SPLIT + def_bool n + help + Provides a heler to split scatterlists into chunks, each chunk being a + scatterlist. This should be selected by a driver or an API which + whishes to split a scatterlist amongst multiple DMA channel. + # # sg chaining option # diff --git a/lib/Makefile b/lib/Makefile index 6897b527581a..2ee6ea2e9b08 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -160,6 +160,7 @@ obj-$(CONFIG_GENERIC_STRNLEN_USER) += strnlen_user.o obj-$(CONFIG_GENERIC_NET_UTILS) += net_utils.o +obj-$(CONFIG_SG_SPLIT) += sg_split.o obj-$(CONFIG_STMP_DEVICE) += stmp_device.o libfdt_files = fdt.o fdt_ro.o fdt_wip.o fdt_rw.o fdt_sw.o fdt_strerror.o \ diff --git a/lib/sg_split.c b/lib/sg_split.c new file mode 100644 index 000000000000..b063410c3593 --- /dev/null +++ b/lib/sg_split.c @@ -0,0 +1,202 @@ +/* + * Copyright (C) 2015 Robert Jarzmik <robert.jarzmik@free.fr> + * + * Scatterlist splitting helpers. + * + * This source code is licensed under the GNU General Public License, + * Version 2. See the file COPYING for more details. + */ + +#include <linux/scatterlist.h> +#include <linux/slab.h> + +struct sg_splitter { + struct scatterlist *in_sg0; + int nents; + off_t skip_sg0; + unsigned int length_last_sg; + + struct scatterlist *out_sg; +}; + +static int sg_calculate_split(struct scatterlist *in, int nents, int nb_splits, + off_t skip, const size_t *sizes, + struct sg_splitter *splitters, bool mapped) +{ + int i; + unsigned int sglen; + size_t size = sizes[0], len; + struct sg_splitter *curr = splitters; + struct scatterlist *sg; + + for (i = 0; i < nb_splits; i++) { + splitters[i].in_sg0 = NULL; + splitters[i].nents = 0; + } + + for_each_sg(in, sg, nents, i) { + sglen = mapped ? sg_dma_len(sg) : sg->length; + if (skip > sglen) { + skip -= sglen; + continue; + } + + len = min_t(size_t, size, sglen - skip); + if (!curr->in_sg0) { + curr->in_sg0 = sg; + curr->skip_sg0 = skip; + } + size -= len; + curr->nents++; + curr->length_last_sg = len; + + while (!size && (skip + len < sglen) && (--nb_splits > 0)) { + curr++; + size = *(++sizes); + skip += len; + len = min_t(size_t, size, sglen - skip); + + curr->in_sg0 = sg; + curr->skip_sg0 = skip; + curr->nents = 1; + curr->length_last_sg = len; + size -= len; + } + skip = 0; + + if (!size && --nb_splits > 0) { + curr++; + size = *(++sizes); + } + + if (!nb_splits) + break; + } + + return (size || !splitters[0].in_sg0) ? -EINVAL : 0; +} + +static void sg_split_phys(struct sg_splitter *splitters, const int nb_splits) +{ + int i, j; + struct scatterlist *in_sg, *out_sg; + struct sg_splitter *split; + + for (i = 0, split = splitters; i < nb_splits; i++, split++) { + in_sg = split->in_sg0; + out_sg = split->out_sg; + for (j = 0; j < split->nents; j++, out_sg++) { + *out_sg = *in_sg; + if (!j) { + out_sg->offset += split->skip_sg0; + out_sg->length -= split->skip_sg0; + } else { + out_sg->offset = 0; + } + sg_dma_address(out_sg) = 0; + sg_dma_len(out_sg) = 0; + in_sg = sg_next(in_sg); + } + out_sg[-1].length = split->length_last_sg; + sg_mark_end(out_sg - 1); + } +} + +static void sg_split_mapped(struct sg_splitter *splitters, const int nb_splits) +{ + int i, j; + struct scatterlist *in_sg, *out_sg; + struct sg_splitter *split; + + for (i = 0, split = splitters; i < nb_splits; i++, split++) { + in_sg = split->in_sg0; + out_sg = split->out_sg; + for (j = 0; j < split->nents; j++, out_sg++) { + sg_dma_address(out_sg) = sg_dma_address(in_sg); + sg_dma_len(out_sg) = sg_dma_len(in_sg); + if (!j) { + sg_dma_address(out_sg) += split->skip_sg0; + sg_dma_len(out_sg) -= split->skip_sg0; + } + in_sg = sg_next(in_sg); + } + sg_dma_len(--out_sg) = split->length_last_sg; + } +} + +/** + * sg_split - split a scatterlist into several scatterlists + * @in: the input sg list + * @in_mapped_nents: the result of a dma_map_sg(in, ...), or 0 if not mapped. + * @skip: the number of bytes to skip in the input sg list + * @nb_splits: the number of desired sg outputs + * @split_sizes: the respective size of each output sg list in bytes + * @out: an array where to store the allocated output sg lists + * @out_mapped_nents: the resulting sg lists mapped number of sg entries. Might + * be NULL if sglist not already mapped (in_mapped_nents = 0) + * @gfp_mask: the allocation flag + * + * This function splits the input sg list into nb_splits sg lists, which are + * allocated and stored into out. + * The @in is split into : + * - @out[0], which covers bytes [@skip .. @skip + @split_sizes[0] - 1] of @in + * - @out[1], which covers bytes [@skip + split_sizes[0] .. + * @skip + @split_sizes[0] + @split_sizes[1] -1] + * etc ... + * It will be the caller's duty to kfree() out array members. + * + * Returns 0 upon success, or error code + */ +int sg_split(struct scatterlist *in, const int in_mapped_nents, + const off_t skip, const int nb_splits, + const size_t *split_sizes, + struct scatterlist **out, int *out_mapped_nents, + gfp_t gfp_mask) +{ + int i, ret; + struct sg_splitter *splitters; + + splitters = kcalloc(nb_splits, sizeof(*splitters), gfp_mask); + if (!splitters) + return -ENOMEM; + + ret = sg_calculate_split(in, sg_nents(in), nb_splits, skip, split_sizes, + splitters, false); + if (ret < 0) + goto err; + + ret = -ENOMEM; + for (i = 0; i < nb_splits; i++) { + splitters[i].out_sg = kmalloc_array(splitters[i].nents, + sizeof(struct scatterlist), + gfp_mask); + if (!splitters[i].out_sg) + goto err; + } + + /* + * The order of these 3 calls is important and should be kept. + */ + sg_split_phys(splitters, nb_splits); + ret = sg_calculate_split(in, in_mapped_nents, nb_splits, skip, + split_sizes, splitters, true); + if (ret < 0) + goto err; + sg_split_mapped(splitters, nb_splits); + + for (i = 0; i < nb_splits; i++) { + out[i] = splitters[i].out_sg; + if (out_mapped_nents) + out_mapped_nents[i] = splitters[i].nents; + } + + kfree(splitters); + return 0; + +err: + for (i = 0; i < nb_splits; i++) + kfree(splitters[i].out_sg); + kfree(splitters); + return ret; +} +EXPORT_SYMBOL(sg_split);
Sometimes a scatter-gather has to be split into several chunks, or sub scatter lists. This happens for example if a scatter list will be handled by multiple DMA channels, each one filling a part of it. A concrete example comes with the media V4L2 API, where the scatter list is allocated from userspace to hold an image, regardless of the knowledge of how many DMAs will fill it : - in a simple RGB565 case, one DMA will pump data from the camera ISP to memory - in the trickier YUV422 case, 3 DMAs will pump data from the camera ISP pipes, one for pipe Y, one for pipe U and one for pipe V For these cases, it is necessary to split the original scatter list into multiple scatter lists, which is the purpose of this patch. The guarantees that are required for this patch are : - the intersection of spans of any couple of resulting scatter lists is empty. - the union of spans of all resulting scatter lists is a subrange of the span of the original scatter list. - streaming DMA API operations (mapping, unmapping) should not happen both on both the resulting and the original scatter list. It's either the first or the later ones. - the caller is reponsible to call kfree() on the resulting scatterlists. Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> --- Since RFC: Russell's review - address both the sg_phys case and sg_dma_address case (aka mapped case) => this should take care of IOMMU coalescing - add a way to return the new mapped lengths of resulting scatterlists - add bound checks (EINVAL) for corner cases : - skip > sum(sgi->length) or skip > sum(sg_dma_len(sgi)) - sum(sizei) > skip + sum(sgi->length) or sum(sizei) > skip + sum(sg_dma_len(sgi)) - fixed algorithm for single sgi split into multiple sg entries (case where very small sizes, ie. size0+size1+size2 < sg0_length) Testing: A semi-automated campaign was passed on this, and fixed last sg marking, unused sg dma_len/dma_address, and cases where a sum of sizes landed at the end of an sg entry. Valgrind was also passed to prevent memory errors. The input combinations of the tests were : - skip: random - sg : random of 1 to 10 entries, random phys address/values, 1/4th random to have 2 sgs consecutive and coallesced in dma_map_sg() - sizes[7] : random, sum(sizes) < 2 * sum(sgi->length) Memo of people to ask: To: Russell King - ARM Linux <linux@arm.linux.org.uk> To: Jens Axboe <axboe@kernel.dk> To: Guennadi Liakhovetski <g.liakhovetski@gmx.de> To: Andrew Morton <akpm@linux-foundation.org> To: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: linux-media@vger.kernel.org --- include/linux/scatterlist.h | 5 ++ lib/Kconfig | 7 ++ lib/Makefile | 1 + lib/sg_split.c | 202 ++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 215 insertions(+) create mode 100644 lib/sg_split.c