@@ -448,6 +448,13 @@ config MTD_NAND_RENESAS
Enables support for the NAND controller found on Renesas R-Car
Gen3 and RZ/N1 SoC families.
+config MTD_NAND_LOONGSON1
+ tristate "Loongson1 NAND controller"
+ depends on LOONGSON1_APB_DMA || COMPILE_TEST
+ select REGMAP_MMIO
+ help
+ Enables support for NAND controller on Loongson1 SoCs.
+
comment "Misc"
config MTD_SM_COMMON
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o
obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o
obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o
+obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
new file mode 100644
@@ -0,0 +1,818 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * NAND Controller Driver for Loongson-1 SoC
+ *
+ * Copyright (C) 2015-2024 Keguang Zhang <keguang.zhang@gmail.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/iopoll.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/sizes.h>
+
+/* Loongson-1 NAND Controller Registers */
+#define LS1X_NAND_CMD 0x0
+#define LS1X_NAND_ADDR1 0x4
+#define LS1X_NAND_ADDR2 0x8
+#define LS1X_NAND_TIMING 0xc
+#define LS1X_NAND_IDL 0x10
+#define LS1X_NAND_IDH_STATUS 0x14
+#define LS1X_NAND_PARAM 0x18
+#define LS1X_NAND_OP_NUM 0x1c
+
+/* NAND Command Register Bits */
+#define LS1X_NAND_CMD_OP_DONE BIT(10)
+#define LS1X_NAND_CMD_OP_SPARE BIT(9)
+#define LS1X_NAND_CMD_OP_MAIN BIT(8)
+#define LS1X_NAND_CMD_STATUS BIT(7)
+#define LS1X_NAND_CMD_RESET BIT(6)
+#define LS1X_NAND_CMD_READID BIT(5)
+#define LS1X_NAND_CMD_BLOCKS_ERASE BIT(4)
+#define LS1X_NAND_CMD_ERASE BIT(3)
+#define LS1X_NAND_CMD_WRITE BIT(2)
+#define LS1X_NAND_CMD_READ BIT(1)
+#define LS1X_NAND_CMD_VALID BIT(0)
+
+#define LS1X_NAND_CMD_OP_AREA_MASK GENMASK(9, 8)
+#define LS1X_NAND_WAIT_CYCLE_MASK GENMASK(7, 0)
+#define LS1X_NAND_HOLD_CYCLE_MASK GENMASK(15, 8)
+#define LS1X_NAND_CELL_SIZE_MASK GENMASK(11, 8)
+
+#define LS1X_NAND_MAX_ADDR_CYC 5U
+#define LS1X_NAND_DMA_ADDR 0x1fe78040
+
+#define BITS_PER_WORD (4 * BITS_PER_BYTE)
+
+struct ls1x_nfc_op {
+ char addrs[LS1X_NAND_MAX_ADDR_CYC];
+ unsigned int naddrs;
+ unsigned int addrs_offset;
+ unsigned int addr1_reg;
+ unsigned int addr2_reg;
+ unsigned int aligned_offset;
+ unsigned int row_shift;
+ unsigned int cmd_reg;
+ unsigned int rdy_timeout_ms;
+ unsigned int len;
+ size_t dma_len;
+ bool restore_row;
+ bool is_write;
+ char *buf;
+};
+
+struct ls1x_nfc_data {
+ unsigned int status_field;
+ unsigned int op_scope_field;
+ unsigned int hold_cycle;
+ unsigned int wait_cycle;
+ void (*parse_address)(struct ls1x_nfc_op *op);
+};
+
+struct ls1x_nfc {
+ struct device *dev;
+ struct nand_chip chip;
+ struct nand_controller controller;
+ const struct ls1x_nfc_data *data;
+ void __iomem *reg_base;
+ struct regmap *regmap;
+ /* DMA Engine stuff */
+ struct dma_chan *dma_chan;
+ dma_cookie_t dma_cookie;
+ struct completion dma_complete;
+};
+
+static const struct regmap_config ls1x_nand_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static int ls1x_nand_op_cmd_mapping(struct nand_chip *chip,
+ struct ls1x_nfc_op *op, u8 opcode)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ int ret = 0;
+
+ op->row_shift = chip->page_shift + 1;
+
+ /* The controller abstracts the following NAND operations. */
+ switch (opcode) {
+ case NAND_CMD_RESET:
+ op->cmd_reg = LS1X_NAND_CMD_RESET;
+ break;
+ case NAND_CMD_READID:
+ op->cmd_reg = LS1X_NAND_CMD_READID;
+ break;
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ op->cmd_reg = LS1X_NAND_CMD_ERASE;
+ op->addrs_offset = 2;
+ op->row_shift = chip->page_shift;
+ break;
+ case NAND_CMD_STATUS:
+ op->cmd_reg = LS1X_NAND_CMD_STATUS;
+ break;
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_PAGEPROG:
+ op->cmd_reg = LS1X_NAND_CMD_WRITE;
+ op->is_write = true;
+ break;
+ case NAND_CMD_RNDOUT:
+ case NAND_CMD_RNDOUTSTART:
+ op->restore_row = true;
+ fallthrough;
+ case NAND_CMD_READ0:
+ case NAND_CMD_READSTART:
+ op->cmd_reg = LS1X_NAND_CMD_READ;
+ break;
+ default:
+ dev_err(nfc->dev, "Opcode not supported: %u\n", opcode);
+ return -EOPNOTSUPP;
+ }
+
+ return ret;
+}
+
+static int ls1x_nand_parse_instructions(struct nand_chip *chip,
+ const struct nand_subop *subop,
+ struct ls1x_nfc_op *op)
+{
+ unsigned int op_id;
+ int ret;
+
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ const struct nand_op_instr *instr = &subop->instrs[op_id];
+ unsigned int offset, naddrs;
+ const u8 *addrs;
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ ret = ls1x_nand_op_cmd_mapping(chip, op,
+ instr->ctx.cmd.opcode);
+ if (ret < 0)
+ return ret;
+ break;
+ case NAND_OP_ADDR_INSTR:
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ if (naddrs > LS1X_NAND_MAX_ADDR_CYC)
+ return -EOPNOTSUPP;
+ op->naddrs = naddrs;
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+ memcpy(op->addrs + op->addrs_offset, addrs, naddrs);
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ op->len = nand_subop_get_data_len(subop, op_id);
+ if (instr->type == NAND_OP_DATA_IN_INSTR)
+ op->buf = instr->ctx.data.buf.in + offset;
+ else if (instr->type == NAND_OP_DATA_OUT_INSTR)
+ op->buf =
+ (void *)instr->ctx.data.buf.out + offset;
+
+ break;
+ case NAND_OP_WAITRDY_INSTR:
+ op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return 0;
+}
+
+static void ls1b_nand_parse_address(struct ls1x_nfc_op *op)
+{
+ int i;
+
+ for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
+ if (i < 2)
+ op->addr1_reg |= (u32)op->addrs[i] << i * BITS_PER_BYTE;
+ else if (i < 4)
+ op->addr1_reg |=
+ (u32)op->addrs[i] << (op->row_shift +
+ (i - 2) * BITS_PER_BYTE);
+ else
+ op->addr2_reg |=
+ (u32)op->addrs[i] >> (BITS_PER_WORD -
+ op->row_shift - (i - 4) *
+ BITS_PER_BYTE);
+ }
+}
+
+static void ls1c_nand_parse_address(struct ls1x_nfc_op *op)
+{
+ int i;
+
+ for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
+ if (i < 2)
+ op->addr1_reg |= (u32)op->addrs[i] << i * BITS_PER_BYTE;
+ else
+ op->addr2_reg |=
+ (u32)op->addrs[i] << (i - 2) * BITS_PER_BYTE;
+ }
+}
+
+static void ls1x_nand_trigger_op(struct ls1x_nfc *nfc, struct ls1x_nfc_op *op)
+{
+ struct nand_chip *chip = &nfc->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int col0 = op->addrs[0];
+ short col;
+
+ /* restore row address for column change */
+ if (op->restore_row) {
+ op->addr2_reg = readl(nfc->reg_base + LS1X_NAND_ADDR2);
+ op->addr1_reg = readl(nfc->reg_base + LS1X_NAND_ADDR1);
+ op->addr1_reg &= ~(mtd->writesize - 1);
+ }
+
+ if (!IS_ALIGNED(col0, chip->buf_align)) {
+ col0 = ALIGN_DOWN(op->addrs[0], chip->buf_align);
+ op->aligned_offset = op->addrs[0] - col0;
+ op->addrs[0] = col0;
+ }
+
+ if (nfc->data->parse_address)
+ nfc->data->parse_address(op);
+
+ /* set address */
+ writel(op->addr1_reg, nfc->reg_base + LS1X_NAND_ADDR1);
+ writel(op->addr2_reg, nfc->reg_base + LS1X_NAND_ADDR2);
+
+ /* set data length */
+ op->dma_len = ALIGN(op->len + op->aligned_offset, chip->buf_align);
+ if (op->cmd_reg & LS1X_NAND_CMD_ERASE)
+ writel(1, nfc->reg_base + LS1X_NAND_OP_NUM);
+ else
+ writel(op->dma_len, nfc->reg_base + LS1X_NAND_OP_NUM);
+
+ /* set operation area */
+ col = op->addrs[1] << BITS_PER_BYTE | op->addrs[0];
+ if (op->len) {
+ if (col < mtd->writesize)
+ op->cmd_reg |= LS1X_NAND_CMD_OP_MAIN;
+
+ op->cmd_reg |= LS1X_NAND_CMD_OP_SPARE;
+ }
+
+ /* set operation scope */
+ if (nfc->data->op_scope_field) {
+ int op_area = op->cmd_reg & LS1X_NAND_CMD_OP_AREA_MASK;
+ unsigned int op_scope;
+
+ switch (op_area) {
+ case LS1X_NAND_CMD_OP_MAIN:
+ op_scope = mtd->writesize;
+ break;
+ case LS1X_NAND_CMD_OP_SPARE:
+ op_scope = mtd->oobsize;
+ break;
+ case LS1X_NAND_CMD_OP_AREA_MASK:
+ op_scope = mtd->writesize + mtd->oobsize;
+ break;
+ default:
+ op_scope = 0;
+ break;
+ }
+
+ op_scope <<= __ffs(nfc->data->op_scope_field);
+ regmap_update_bits(nfc->regmap, LS1X_NAND_PARAM,
+ nfc->data->op_scope_field, op_scope);
+ }
+
+ /* set command */
+ writel(op->cmd_reg, nfc->reg_base + LS1X_NAND_CMD);
+
+ /* trigger operation */
+ regmap_write_bits(nfc->regmap, LS1X_NAND_CMD,
+ LS1X_NAND_CMD_VALID, LS1X_NAND_CMD_VALID);
+}
+
+static int ls1x_nand_wait_for_op_done(struct ls1x_nfc *nfc,
+ struct ls1x_nfc_op *op)
+{
+ unsigned int val;
+ int ret = 0;
+
+ if (op->rdy_timeout_ms) {
+ ret = regmap_read_poll_timeout(nfc->regmap, LS1X_NAND_CMD,
+ val, val & LS1X_NAND_CMD_OP_DONE,
+ 0, op->rdy_timeout_ms * 1000);
+ if (ret)
+ dev_err(nfc->dev, "operation failed\n");
+ }
+
+ return ret;
+}
+
+static void ls1x_nand_dma_callback(void *data)
+{
+ struct ls1x_nfc *nfc = (struct ls1x_nfc *)data;
+ struct dma_chan *chan = nfc->dma_chan;
+ struct device *dev = chan->device->dev;
+ enum dma_status status;
+
+ status = dmaengine_tx_status(chan, nfc->dma_cookie, NULL);
+ if (likely(status == DMA_COMPLETE))
+ dev_dbg(dev, "DMA complete with cookie=%d\n", nfc->dma_cookie);
+ else
+ dev_err(dev, "DMA error with cookie=%d\n", nfc->dma_cookie);
+
+ complete(&nfc->dma_complete);
+}
+
+static int ls1x_nand_dma_transfer(struct ls1x_nfc *nfc,
+ struct ls1x_nfc_op *op)
+{
+ struct nand_chip *chip = &nfc->chip;
+ struct dma_chan *chan = nfc->dma_chan;
+ struct device *dev = chan->device->dev;
+ struct dma_async_tx_descriptor *desc;
+ enum dma_data_direction data_dir =
+ op->is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+ enum dma_transfer_direction xfer_dir =
+ op->is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
+ char *dma_buf = NULL;
+ dma_addr_t dma_addr;
+ int ret;
+
+ if (IS_ALIGNED((u32)op->buf, chip->buf_align) &&
+ IS_ALIGNED(op->len, chip->buf_align)) {
+ dma_addr = dma_map_single(dev, op->buf, op->len, data_dir);
+ if (dma_mapping_error(dev, dma_addr)) {
+ dev_err(dev, "failed to map DMA buffer\n");
+ return -ENXIO;
+ }
+ } else if (!op->is_write) {
+ dma_buf = dma_alloc_coherent(dev, op->dma_len, &dma_addr,
+ GFP_KERNEL);
+ if (!dma_buf)
+ return -ENOMEM;
+ } else {
+ dev_err(dev, "subpage writing not supported\n");
+ return -EOPNOTSUPP;
+ }
+
+ desc = dmaengine_prep_slave_single(chan, dma_addr, op->dma_len,
+ xfer_dir, DMA_PREP_INTERRUPT);
+ if (!desc) {
+ dev_err(dev, "failed to prepare DMA descriptor\n");
+ ret = PTR_ERR(desc);
+ goto err;
+ }
+ desc->callback = ls1x_nand_dma_callback;
+ desc->callback_param = nfc;
+
+ nfc->dma_cookie = dmaengine_submit(desc);
+ ret = dma_submit_error(nfc->dma_cookie);
+ if (ret) {
+ dev_err(dev, "failed to submit DMA descriptor\n");
+ goto err;
+ }
+
+ dev_dbg(dev, "issue DMA with cookie=%d\n", nfc->dma_cookie);
+ dma_async_issue_pending(chan);
+
+ ret = wait_for_completion_timeout(&nfc->dma_complete,
+ msecs_to_jiffies(2000));
+ if (!ret) {
+ dmaengine_terminate_sync(chan);
+ reinit_completion(&nfc->dma_complete);
+ ret = -ETIMEDOUT;
+ goto err;
+ }
+ ret = 0;
+
+ if (dma_buf)
+ memcpy(op->buf, dma_buf + op->aligned_offset, op->len);
+err:
+ if (dma_buf)
+ dma_free_coherent(dev, op->dma_len, dma_buf, dma_addr);
+ else
+ dma_unmap_single(dev, dma_addr, op->len, data_dir);
+
+ return ret;
+}
+
+static int ls1x_nand_misc_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop,
+ struct ls1x_nfc_op *op)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ int ret;
+
+ ret = ls1x_nand_parse_instructions(chip, subop, op);
+ if (ret)
+ return ret;
+
+ ls1x_nand_trigger_op(nfc, op);
+
+ return ls1x_nand_wait_for_op_done(nfc, op);
+}
+
+static int ls1x_nand_read_id_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ struct ls1x_nfc_op op = { };
+ int i, ret;
+ union {
+ char ids[5];
+ struct {
+ int idl;
+ char idh;
+ };
+ } nand_id;
+
+ ret = ls1x_nand_misc_type_exec(chip, subop, &op);
+ if (ret) {
+ dev_err(nfc->dev, "failed to read id! %d\n", ret);
+ return ret;
+ }
+
+ nand_id.idl = readl(nfc->reg_base + LS1X_NAND_IDL);
+ nand_id.idh = readb(nfc->reg_base + LS1X_NAND_IDH_STATUS);
+
+ for (i = 0; i < min(sizeof(nand_id.ids), op.len); i++)
+ op.buf[i] = nand_id.ids[sizeof(nand_id.ids) - 1 - i];
+
+ return ret;
+}
+
+static int ls1x_nand_read_status_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ struct ls1x_nfc_op op = { };
+ int val, ret;
+
+ ret = ls1x_nand_misc_type_exec(chip, subop, &op);
+ if (ret) {
+ dev_err(nfc->dev, "failed to read status! %d\n", ret);
+ return ret;
+ }
+
+ val = readl(nfc->reg_base +
+ LS1X_NAND_IDH_STATUS) & ~nfc->data->status_field;
+ op.buf[0] = val << ffs(nfc->data->status_field);
+
+ return ret;
+}
+
+static int ls1x_nand_zerolen_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct ls1x_nfc_op op = { };
+
+ return ls1x_nand_misc_type_exec(chip, subop, &op);
+}
+
+static int ls1x_nand_data_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ struct ls1x_nfc_op op = { };
+ int ret;
+
+ ret = ls1x_nand_parse_instructions(chip, subop, &op);
+ if (ret)
+ return ret;
+
+ ls1x_nand_trigger_op(nfc, &op);
+
+ ret = ls1x_nand_dma_transfer(nfc, &op);
+ if (ret)
+ return ret;
+
+ return ls1x_nand_wait_for_op_done(nfc, &op);
+}
+
+static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_read_id_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_read_status_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_zerolen_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_zerolen_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_data_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
+ NAND_OP_PARSER_PATTERN(
+ ls1x_nand_data_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ );
+
+static int ls1x_nand_check_op(struct nand_chip *chip,
+ const struct nand_operation *op)
+{
+ const struct nand_op_instr *instr;
+ int op_id;
+
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ if (instr->ctx.cmd.opcode != NAND_CMD_RESET &&
+ instr->ctx.cmd.opcode != NAND_CMD_READID &&
+ instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
+ instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
+ instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
+ instr->ctx.cmd.opcode != NAND_CMD_SEQIN &&
+ instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
+ instr->ctx.cmd.opcode != NAND_CMD_RNDOUT &&
+ instr->ctx.cmd.opcode != NAND_CMD_RNDOUTSTART &&
+ instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
+ instr->ctx.cmd.opcode != NAND_CMD_READSTART)
+ return -EOPNOTSUPP;
+ break;
+ case NAND_OP_ADDR_INSTR:
+ if (instr->ctx.addr.naddrs > LS1X_NAND_MAX_ADDR_CYC)
+ return -EOPNOTSUPP;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return 0;
+}
+
+static int ls1x_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op, bool check_only)
+{
+ if (check_only)
+ return ls1x_nand_check_op(chip, op);
+
+ return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op,
+ check_only);
+}
+
+static int ls1x_nand_attach_chip(struct nand_chip *chip)
+{
+ struct ls1x_nfc *nfc = nand_get_controller_data(chip);
+ u64 chipsize = nanddev_target_size(&chip->base);
+ int cell_size = 0;
+
+ switch (chipsize) {
+ case SZ_128M:
+ cell_size = 0x0;
+ break;
+ case SZ_256M:
+ cell_size = 0x1;
+ break;
+ case SZ_512M:
+ cell_size = 0x2;
+ break;
+ case SZ_1G:
+ cell_size = 0x3;
+ break;
+ case SZ_2G:
+ cell_size = 0x4;
+ break;
+ case SZ_4G:
+ cell_size = 0x5;
+ break;
+ case SZ_8G:
+ cell_size = 0x6;
+ break;
+ case SZ_16G:
+ cell_size = 0x7;
+ break;
+ default:
+ dev_err(nfc->dev, "unsupported chip size: %llu MB\n", chipsize);
+ return -EOPNOTSUPP;
+ }
+
+ /* set cell size */
+ regmap_update_bits(nfc->regmap, LS1X_NAND_PARAM,
+ LS1X_NAND_CELL_SIZE_MASK,
+ FIELD_PREP(LS1X_NAND_CELL_SIZE_MASK, cell_size));
+
+ regmap_update_bits(nfc->regmap, LS1X_NAND_TIMING,
+ LS1X_NAND_HOLD_CYCLE_MASK,
+ FIELD_PREP(LS1X_NAND_HOLD_CYCLE_MASK,
+ nfc->data->hold_cycle));
+ regmap_update_bits(nfc->regmap, LS1X_NAND_TIMING,
+ LS1X_NAND_WAIT_CYCLE_MASK,
+ FIELD_PREP(LS1X_NAND_WAIT_CYCLE_MASK,
+ nfc->data->wait_cycle));
+
+ chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
+ chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
+
+ return 0;
+}
+
+static const struct nand_controller_ops ls1x_nfc_ops = {
+ .exec_op = ls1x_nand_exec_op,
+ .attach_chip = ls1x_nand_attach_chip,
+};
+
+static void ls1x_nand_controller_cleanup(struct ls1x_nfc *nfc)
+{
+ if (nfc->dma_chan)
+ dma_release_channel(nfc->dma_chan);
+}
+
+static int ls1x_nand_controller_init(struct ls1x_nfc *nfc)
+{
+ struct device *dev = nfc->dev;
+ struct dma_chan *chan;
+ struct dma_slave_config cfg = { };
+ int ret;
+
+ nfc->regmap = devm_regmap_init_mmio(dev, nfc->reg_base,
+ &ls1x_nand_regmap_config);
+ if (IS_ERR(nfc->regmap))
+ return dev_err_probe(dev, PTR_ERR(nfc->regmap),
+ "failed to init regmap\n");
+
+ chan = dma_request_chan(dev, "rxtx");
+ if (IS_ERR(chan))
+ return dev_err_probe(dev, PTR_ERR(chan),
+ "failed to request DMA channel\n");
+ nfc->dma_chan = chan;
+
+ cfg.src_addr = LS1X_NAND_DMA_ADDR;
+ cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.dst_addr = LS1X_NAND_DMA_ADDR;
+ cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ ret = dmaengine_slave_config(nfc->dma_chan, &cfg);
+ if (ret)
+ return dev_err_probe(dev, ret,
+ "failed to config DMA channel\n");
+
+ init_completion(&nfc->dma_complete);
+
+ dev_dbg(dev, "got %s for %s access\n",
+ dma_chan_name(nfc->dma_chan), dev_name(dev));
+
+ return 0;
+}
+
+static int ls1x_nand_chip_init(struct ls1x_nfc *nfc)
+{
+ struct device *dev = nfc->dev;
+ int nchips = of_get_child_count(dev->of_node);
+ struct device_node *chip_np;
+ struct nand_chip *chip = &nfc->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret = 0;
+
+ if (nchips != 1)
+ return dev_err_probe(dev, -EINVAL,
+ "Currently one NAND chip supported\n");
+
+ chip_np = of_get_next_child(dev->of_node, NULL);
+ if (!chip_np)
+ return dev_err_probe(dev, -ENODEV,
+ "failed to get child node for NAND chip\n");
+
+ chip->controller = &nfc->controller;
+ chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD;
+ chip->buf_align = 16;
+ nand_set_controller_data(chip, nfc);
+ nand_set_flash_node(chip, chip_np);
+
+ mtd->dev.parent = dev;
+ mtd->name = "ls1x-nand";
+ mtd->owner = THIS_MODULE;
+
+ ret = nand_scan(chip, 1);
+ if (ret) {
+ of_node_put(chip_np);
+ return ret;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "failed to register MTD device! %d\n", ret);
+ nand_cleanup(chip);
+ of_node_put(chip_np);
+ }
+
+ return ret;
+}
+
+static int ls1x_nand_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ const struct ls1x_nfc_data *data;
+ struct ls1x_nfc *nfc;
+ int ret;
+
+ data = of_device_get_match_data(dev);
+ if (!data)
+ return -ENODEV;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nfc->reg_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->reg_base))
+ return PTR_ERR(nfc->reg_base);
+
+ nand_controller_init(&nfc->controller);
+
+ nfc->dev = dev;
+ nfc->data = data;
+ nfc->controller.ops = &ls1x_nfc_ops;
+
+ ret = ls1x_nand_controller_init(nfc);
+ if (ret)
+ goto err;
+
+ ret = ls1x_nand_chip_init(nfc);
+ if (ret)
+ goto err;
+
+ platform_set_drvdata(pdev, nfc);
+
+ return 0;
+err:
+ ls1x_nand_controller_cleanup(nfc);
+
+ return ret;
+}
+
+static void ls1x_nand_remove(struct platform_device *pdev)
+{
+ struct ls1x_nfc *nfc = platform_get_drvdata(pdev);
+ struct nand_chip *chip = &nfc->chip;
+ int ret;
+
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ ls1x_nand_controller_cleanup(nfc);
+}
+
+static const struct ls1x_nfc_data ls1b_nfc_data = {
+ .status_field = GENMASK(15, 8),
+ .hold_cycle = 0x2,
+ .wait_cycle = 0xc,
+ .parse_address = ls1b_nand_parse_address,
+};
+
+static const struct ls1x_nfc_data ls1c_nfc_data = {
+ .status_field = GENMASK(23, 16),
+ .op_scope_field = GENMASK(29, 16),
+ .hold_cycle = 0x2,
+ .wait_cycle = 0xc,
+ .parse_address = ls1c_nand_parse_address,
+};
+
+static const struct of_device_id ls1x_nfc_match[] = {
+ { .compatible = "loongson,ls1b-nfc", .data = &ls1b_nfc_data },
+ { .compatible = "loongson,ls1c-nfc", .data = &ls1c_nfc_data },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, ls1x_nfc_match);
+
+static struct platform_driver ls1x_nand_driver = {
+ .probe = ls1x_nand_probe,
+ .remove = ls1x_nand_remove,
+ .driver = {
+ .name = KBUILD_MODNAME,
+ .of_match_table = ls1x_nfc_match,
+ },
+};
+
+module_platform_driver(ls1x_nand_driver);
+
+MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>");
+MODULE_DESCRIPTION("Loongson-1 NAND Controller driver");
+MODULE_LICENSE("GPL");