@@ -931,22 +931,12 @@ static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
barrier();
#endif
/*
- * !pmd_present() checks for pmd migration entries
- *
- * The complete check uses is_pmd_migration_entry() in linux/swapops.h
- * But using that requires moving current function and pmd_trans_unstable()
- * to linux/swapops.h to resovle dependency, which is too much code move.
- *
- * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
- * because !pmd_present() pages can only be under migration not swapped
- * out.
- *
- * pmd_none() is preseved for future condition checks on pmd migration
+ * pmd_none() is preseved for future condition checks on pmd swap
* entries and not confusing with this function name, although it is
* redundant with !pmd_present().
*/
if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
- (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
+ (IS_ENABLED(CONFIG_HAVE_PMD_SWAP_ENTRY) && !pmd_present(pmdval)))
return 1;
if (unlikely(pmd_bad(pmdval))) {
pmd_clear_bad(pmd);
@@ -376,6 +376,8 @@ static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma,
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_THP_SWAP
+extern int split_huge_swap_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long address, pmd_t orig_pmd);
extern int do_huge_pmd_swap_page(struct vm_fault *vmf, pmd_t orig_pmd);
static inline bool transparent_hugepage_swapin_enabled(
@@ -401,6 +403,12 @@ static inline bool transparent_hugepage_swapin_enabled(
return false;
}
#else /* CONFIG_THP_SWAP */
+static inline int split_huge_swap_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long address, pmd_t orig_pmd)
+{
+ return 0;
+}
+
static inline int do_huge_pmd_swap_page(struct vm_fault *vmf, pmd_t orig_pmd)
{
return 0;
@@ -1721,8 +1721,8 @@ static void __split_huge_swap_pmd(struct vm_area_struct *vma,
}
#ifdef CONFIG_THP_SWAP
-static int split_huge_swap_pmd(struct vm_area_struct *vma, pmd_t *pmd,
- unsigned long address, pmd_t orig_pmd)
+int split_huge_swap_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long address, pmd_t orig_pmd)
{
struct mm_struct *mm = vma->vm_mm;
spinlock_t *ptl;
@@ -1931,6 +1931,11 @@ static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
}
+static inline int pmd_same_as_swp(pmd_t pmd, pmd_t swp_pmd)
+{
+ return pmd_same(pmd_swp_clear_soft_dirty(pmd), swp_pmd);
+}
+
/*
* No need to decide whether this PTE shares the swap entry with others,
* just let do_wp_page work it out if a write is requested later - to
@@ -1992,6 +1997,53 @@ static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
return ret;
}
+#ifdef CONFIG_THP_SWAP
+static int unuse_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, swp_entry_t entry, struct page *page)
+{
+ struct mem_cgroup *memcg;
+ spinlock_t *ptl;
+ int ret = 1;
+
+ if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
+ &memcg, true)) {
+ ret = -ENOMEM;
+ goto out_nolock;
+ }
+
+ ptl = pmd_lock(vma->vm_mm, pmd);
+ if (unlikely(!pmd_same_as_swp(*pmd, swp_entry_to_pmd(entry)))) {
+ mem_cgroup_cancel_charge(page, memcg, true);
+ ret = 0;
+ goto out;
+ }
+
+ add_mm_counter(vma->vm_mm, MM_SWAPENTS, -HPAGE_PMD_NR);
+ add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+ get_page(page);
+ set_pmd_at(vma->vm_mm, addr, pmd,
+ pmd_mkold(mk_huge_pmd(page, vma->vm_page_prot)));
+ page_add_anon_rmap(page, vma, addr, true);
+ mem_cgroup_commit_charge(page, memcg, true, true);
+ swap_free(entry, HPAGE_PMD_NR);
+ /*
+ * Move the page to the active list so it is not
+ * immediately swapped out again after swapon.
+ */
+ activate_page(page);
+out:
+ spin_unlock(ptl);
+out_nolock:
+ return ret;
+}
+#else
+static int unuse_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, swp_entry_t entry, struct page *page)
+{
+ return 0;
+}
+#endif
+
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
@@ -2032,7 +2084,7 @@ static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
- pmd_t *pmd;
+ pmd_t swp_pmd = swp_entry_to_pmd(entry), *pmd, orig_pmd;
unsigned long next;
int ret;
@@ -2040,6 +2092,27 @@ static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
do {
cond_resched();
next = pmd_addr_end(addr, end);
+ orig_pmd = *pmd;
+ if (IS_ENABLED(CONFIG_THP_SWAP) && is_swap_pmd(orig_pmd)) {
+ if (likely(!pmd_same_as_swp(orig_pmd, swp_pmd)))
+ continue;
+ /*
+ * Huge cluster has been split already, split
+ * PMD swap mapping and fallback to unuse PTE
+ */
+ if (!PageTransCompound(page)) {
+ ret = split_huge_swap_pmd(vma, pmd,
+ addr, orig_pmd);
+ if (ret)
+ return ret;
+ ret = unuse_pte_range(vma, pmd, addr,
+ next, entry, page);
+ } else
+ ret = unuse_pmd(vma, pmd, addr, entry, page);
+ if (ret)
+ return ret;
+ continue;
+ }
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
continue;
ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
@@ -2233,6 +2306,7 @@ int try_to_unuse(unsigned int type, bool frontswap,
* there are races when an instance of an entry might be missed.
*/
while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
+retry:
if (signal_pending(current)) {
retval = -EINTR;
break;
@@ -2248,6 +2322,8 @@ int try_to_unuse(unsigned int type, bool frontswap,
page = read_swap_cache_async(entry,
GFP_HIGHUSER_MOVABLE, NULL, 0, false);
if (!page) {
+ struct swap_cluster_info *ci = NULL;
+
/*
* Either swap_duplicate() failed because entry
* has been freed independently, and will not be
@@ -2264,6 +2340,14 @@ int try_to_unuse(unsigned int type, bool frontswap,
*/
if (!swcount || swcount == SWAP_MAP_BAD)
continue;
+ if (si->cluster_info)
+ ci = si->cluster_info + i / SWAPFILE_CLUSTER;
+ /* Split huge cluster if failed to allocate huge page */
+ if (cluster_is_huge(ci)) {
+ retval = split_swap_cluster(entry, 0);
+ if (!retval || retval == -EEXIST)
+ goto retry;
+ }
retval = -ENOMEM;
break;
}
During swapoff, for a huge swap cluster, we need to allocate a THP, read its contents into the THP and unuse the PMD and PTE swap mappings to it. If failed to allocate a THP, the huge swap cluster will be split. During unuse, if it is found that the swap cluster mapped by a PMD swap mapping is split already, we will split the PMD swap mapping and unuse the PTEs. Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> --- include/asm-generic/pgtable.h | 14 +----- include/linux/huge_mm.h | 8 ++++ mm/huge_memory.c | 4 +- mm/swapfile.c | 86 ++++++++++++++++++++++++++++++++++- 4 files changed, 97 insertions(+), 15 deletions(-)